Space Based X-ray and Gamma-ray Instruments and Missions

Josh Grindlay Harvard

Aug. 12, 2008

Outline of lecture

- motivation and brief historical background
- X-ray Missions, telescopes and detectors:
 - collimators, concentrators, and grazing incidence telescopes
 - CCD imagers vs. MCPs
 - grating vs. bolometer spectrometers
 - backgrounds and sensitivities
- Hard X-ray Missions, telescopes and detectors:
 - coded aperture wide-field imagers
 - grazing incidence and multilayer optics
 - pixel detector arrays (e.g. CZT)
 - backgrounds and sensitivities: <u>need narrrow vs. wide Surveys to **EXIST**</u>
- Gamma-ray Missions, telescopes and detectors:
 - Compton telescopes; tracking detectors
 - calorimeters
 - backgrounds and sensitivities
- Proposing and planning a mission
 - prioritizing the science
 - maximizing the instrument while minimizing cost
 - spacecraft, power, telemetry and mission planning
 - cycle of reviews and pressures to cut...
- Summary and References

Motivation for X, y telescopes in space

- Optical polarization of Crab (Minkowski 1954**) led Schlovsky (1956**) to propose synchrotron origin: TeV electrons likely, so "naturally" γ-rays (from corresponding protons; inverse Compton not yet considered)
- Cocconi (1958) proposed γ-rays from CRs on GMCs
- Kraushaar & Clark (1961) launch Explorer 11 and detect first cosmic γ-rays (31!) followed (1967) by OSO-3
- Giacconi et al (1962) search for fluorescence X-rays from solar wind impacting Moon resulted in discovery of Sco X-1 (accreting neutron star) and cosmic X-ray background! X-ray astronomy is launched (** dates approximate!)

Aug. 12, 2008

First X-ray Observatories in space

- First was UHURU (1971-73) [following many rockets in 60s]
 - Two proportional counters (840cm²)
 - 0.5° and 5° fields of view
 - Scanning for all sky survey: ~350 sources
 - Discovered/identified <u>X-ray binaries & X-rays from clusters</u>
- Copernicus (1972-81): US-UK UV & X-ray telescopes
 - Limited X-ray observations, but initial expt. with early focusing X-ray tel.
- ANS (1974-77): Dutch-US *pointed* broad-band mission
 - HX prop. ctr., (1-30keV), SX conc. mirror (0.16-0.28keV)
 - Bragg xtal spectrometer; UV telescope
 - Polar orbit: high bkgd. & limited obs. time
 - Discovery of X-ray bursts

Followup X-ray missions: better positions & sens.

- SAS-3 (1975-79): ~30arcsec positions; monitoring
 - MIT studies of bursters; discover Rapid Burster
 - Modulation collimator allows IDs of NS & BH LMXBs
 - Slat/tube prop. counters; SX (0.15-1.0 keV) 2.9° FoV
- Ariel V (1974-90): UK-US equatorial launch
 - Rot. Mod. Coll. provides source IDs
 - Pinhole camera for *all sky monitor*. AO620-00=BH trans.
 - Sky survey instr. Detects Fe 6.7keV line from gal. clust.
- HEAO-1 (1977-79): broad band survey
 - A1 expt. ~1m² PC; A2 expt. (6 PCs) measures CXB spec
 - A3 expt. scanning mod. coll. for 30" positions
 - A4 expt. Nal/Csl phoswich scintillators (100cm² ea.): 1st HX survey

Increasing size of (non-imaging) proportional counters for timing/spectra

- Hakucho (1979-85): first Japanese mission
 - 6 sets of prop. ctrs (0.1-20keV) + scint. (10-100keV)
 - Discovered more X-ray bursters; transients
- Tenma (1983-85): 2nd Japanese mission
 - 10 x 80cm² gas scintillation prop. ctrs. (2X En. Res.); 2-60 ke\
 - Discovered 6.4, 6.7 keV Fe lines from LMXBs & gal. ridge
- **Ginga** (1987-91): 3rd Japanese mission
 - 4000cm² prop. ctr. array (non-imaging) for high sens.
 - Discovered BH transients; weak NS transients; cycl. Lines
- RXTE (1995-): NASA's Rossi X-ray Timing Explorer
 - 6000cm² prop. ctr. Array; 1600cm² scintillators; all sky monitor
 - kHz QPOs from NSs and BHs; accreting millisecond pulsars!

Proportional counters: $UHURU \rightarrow RXTE...$

 X-ray interacts in high-Z (Ar or Xe) gas (+ quench) by *K-shell ionization;* photo-electron produces N ~ E/W electron-ion pairs by dE/dx losses, where W ~ 27eV, and thus E resolution

 $E/\Delta E \sim 2.6 E_{keV}^{0.5}$

- GSPCs excite larger N by UV flurorescence: ~2X better E/ΔE
- X-ray FoV defined by *slat collimators* (typ. Θ ~0.5 – 1°); positions by centroid δΘ ~Θ/(S/N)
- Modulation collimators with wire grids at angular size d/D improve ang. resol. to δΘ ~(d/D)/(S/N)_{mod} but yield multiple positions within Θ

Since a proportional counter has internal gain, the system noise can be neglected and the energy resolution is:

$$(\Delta E)_{\rm FWHM} = 2.35[(F+f)WE]^{1/2} \, {\rm eV},$$

where

E = energy deposited in counter (eV),

F = Fano factor,

Slat collimator (**left**) with FWHM = tan⁻¹ (a/h) x tan⁻¹ (b/h) vs. modulation collim. (**right**) (from Ramsey et al review)

[b] Planes of maximum transmission

Aug. 12, 2008

Sensitivities with non-focusing X-ray detectors

- Backgrounds limited by CR interactions in PC walls; shield by segmented anode-cathodes (optimized for HEAO-A2 and RXTE)
- Energy range limited by:
 - E_{min} ≥0.3keV, typically, from absorption in entrance window and thermal blankets
 - E_{max} by detector depth, atomic number Z since photoioniz. mass abs. coeff. $\sigma/\rho \sim (Z^4/A)E^{-8/3}$, and charge collection efficiency in thick detector
- Net sensitivity over band to signal S(E) with background B(E) and detector efficiency f(E) yielding N_s = f · S · A · T signal cts in detection area A over time t and background cts N_b = B · A · T gives signal to noise S/N = N_s/(N_s + N_b)^{1/2} which increases only as $(A \cdot T)^{1/2}$ for non-focusing detectors

Led to first true focusing X-ray mission...

- Einstein Observatory (1978-81): X-ray astronomy Arrives
 - Wolter I X-ray telescope (~5" resol.; 0.1 4 keV)
 - 4 instruments to rotate into focal plane (one at a time)
 - Two imagers: IPC (75' FoV, ΔE/E ~1), HRI (25' FoV; no energy res.)
 - Two spectrometers: Bragg xtal (FPCS) and Solid State (SSS)
 - Monitor proportional counter (MPC; 1-20 keV, ΔE/E ~0.2)
 - A_{geom} = 667 cm² *non-imaging:* >1mCrab sources
 - Key discoveries:
 - X-ray jets; AGN dominate soft CXB
 - Morphology & evolution of X-ray clusters
 - Stellar coronae; X-ray binary spectra & haloes
 - Morphology of supernova remnants

And then followup lower-resolution focusing missions

- **EXOSAT** (1983-86): ESA mission, 90h high orbit (long stares)
 - Two Wolter 1 XRTs: (0.05 2 keV)
 - PSD (IPC) & CMA (HRI) imagers; & trans. gratings for CMA
 - Non-imaging "Med. En." prop. Ctr. (1-50 keV; 1600cm²)
 - Key discoveries:
 - QPOs from X-ray binaries (ME; timing)
 - Fe line (6.4, 6.7keV) from AGN & clusters (ME spectra)

• **BeppoSAX** (1996-2002): Italy-Netherlands mission (1996-02):

- 1 low energy concentrator + 3 med. energy conc. (conical reflectors)
- High pressure GSPC & 2 coded aperture WideField cameras (2-20keV)
- Phoswich (Nal/Csl stack) hard X-ray detectors
- Key discoveries: X-ray afterglows from GRBs (WFCs + MECs)

Followed by next Gen Focusing X-ray Telescopes

- **ROSAT** (1990-99): German-US-UK mission
 - Two imagers: PSPC and HRI (larger FoV/res. than Einstein); energy band 0.15 – 2.5keV; astrometry systematics limited positions to ≥10"
 - XUV telescope (5° diam. FoV), 62 206 eV band
 - Key discoveries:
 - <u>All sky survey</u> (9mo.): ~150,000 sources!
 - Isolated NSs (still a challenge)
 - X-rays from comets (charge exch.) and more!
- ASCA (1993-2000): Japan-US mission
 - First foil X-ray telescope (low mass!); response to 8 keV
 - First X-ray CCD in space
 - Key discoveries:
 - Relativistic Fe lines from AGN
 - Non-thermal emission from supernova remnants
 - Abundances in galaxy clusters: TypeII SNe origin

X-ray optics: large sensitivity gain but FoV limited

- Grazing incidence X-ray optics described by complex index of refraction, n^{*}, of reflector, where δ is phase change and β accounts for absorption. Total external refl. at $\cos \varphi_c$ = 1 – δ , and since $\delta <<1$, $\varphi_c = \sqrt{2} \delta$ and $\varphi_c = 5.6 \lambda \sqrt{\rho} \ arcmin$ for λ in Angstroms and mirror density ρ in g/cm³
- Wolter I optics (paraboloid-hyperboloid) gives true focusing over area of *nested mirror shells* as shown here for ROSAT. FoV limited by E_{max} ~2 keV to ≤1°
- Sensitivity of detector area of A_{geom} ~ A_{mirror} cos φ_c ~1100cm² for ROSAT vs. detector bkgd in only ~4cm²: the <u>true</u> <u>imaging advantage</u> of low bkgd.

In the X-ray band the complex refractive index n^\ast is usually expressed as:

$$n^* = (1 - \delta) - i\beta,$$

Imaging detectors for Einstein, ROSAT and ASCA, Chandra

- Imaging PCs (Einstein IPC, or ROSAT PSPC): crossed anode-cathode planes with differing readouts (e.g. delay lines). Typical PC with ΔE/E ~1 @ 1 keV
- **Microchannel plates** (MCPs): 12.5 micron pore electron multiplier plates on Chandra HRC readout by crossed-grid with 16µs time resolution and essentially no energy resolution
- CCDs (e.g. ACIS on Chandra): closetiled (2 x 2) on ACIS-I; 1 x 6 on ACIS-S; cooled Si detector achieves ~140eV resolution across full 0.3-7keV band and 10X better for grating readout

Fig. 3.14. Diagram illustrating how charge is transferred in a three-phase charge coupled device (CCD). (a) Electrons lie in the potential well formed by high voltage on v₂. (b) Increased voltage on v₂ causes charge to be transferred to the lower potential region.

And the ultimate(?) X-ray telescope: Chandra

- Chandra X-ray Observatory (1999):
 - 1.2m outer-shell, 4-shell zero-dur mirrors, polished to <2 Angstrom surface errors for imaging psf ~0.35" FWHM. 10m focal length!
 - Two CCD imagers: ACIS-I (16' x 16' FoV) = 2 x 2 front-side illuminated CCDs + ACIS-S = 1 x 6 CCDs including 2 front-side CCDs, for readout of dispersed spectra

Obligatory artists conception...

- HRC-I (microchannel plate detector) improved from ROSAT for high time-res. Soft (<3keV) imaging + readout HRC-S array for LETGS grating
- Three transmission gratings for spectroscopy: HETGS, METGS (both for ACIS-S) and LETGS (read out by HRC-S)
- Science: too rich to summarize; in NASA's top 10 accomplishments over its 50y history!

Aug. 12, 2008

SSI08: X & Gamma Instruments in Space

Grating (In use) Zero-order beam Diffracted beam X-ray CCD detector array

14 Chandra **transmission grating** Spectrometers (HETGS, LETGS)

Chandra Instrument Layout and Parameters

Chandra Orbit:

2.5d period; 0.3d loss of observations during perigee passage through trapped radiation belts.

Chandra X-ray	Observatory	characteristics-	-an overview
---------------	-------------	------------------	--------------

Instrument	ACIS-I	HRC-I	$ACIS-S^{(1)}$	HRC-S ⁽²⁾ 0.070-10	
Bandpass (keV)	0.15-10	0.08-10	0.4-10		
$E/\Delta E$	~ 50	1 @ 1 keV	65-1070	> 1000	
Field of View arc min	16.9 imes 16.9	30×30	8.3 imes 50.6	6×99	
Effective Area cm ²	600 @ 1.5 keV	227 @ 1.5 keV	200 @ 1.5 keV	1-25	
Time Res.	2.85 ms	$16 \ \mu s$	2.85 ms	$16 \ \mu s$	
Sensitivity ⁽⁴⁾	$4 \times 10^{-15(5)}$	$1 \times 10^{-15(6)}$	-	8 8	

 $^{(1)}$ with the HEG and MEG, $^{(2)}$ with the LETG, $^{(3)}$ for 0.070–0.2 keV, $^{(4)}$ in erg cm $^{-2}$ s^{-1} , ⁽⁵⁾ in 10⁴ s, ⁽⁶⁾ in 3 × 10⁵ s.

(From the Chandra X-ray Center's (CXC) Users' Guide, 2004.)

Chandra Transmission grating spectroscopy

Transmission grating spectroscopy

Principle of the X-ray transmission grating. m is the diffraction order.

An example partial spectrum (binary star Capella) produced by the Chandra X-ray Observatory's Low Energy Transmission Grating Spectrometer (LETGS). The spectral resolving power is > 1000 in the wavelength range 50–160 Å.

(From Brinkman et al., 2000, ApJ, 530, L111)

Aug. 12, 2008

SSI08: X & Gamma Instruments in Space

XMM as most recent XRT, as well as future (IXO), step back to ROSAT resolution (~6")

- XMM-Newton (1999 -): launched 5mo after Chandra, XMM has complementary characteristics: larger throughput, higher time resolution, but lower spatial and spectral resolution
 - 3 <u>replicated telescopes</u> (mandrel production): 2 for spectroscopy, 1 for high time resolution imaging. Effective area @1keV ~ 2X Chandra
 - Reflection gratings for dispersive R ~200 800 spectroscopy
 - PN CCDs on imaging telescope for fast timing
 - Optical monitor telescope (30cm) with 17' FoV and 180 - 650 nm coverage

 Science: Again, broad reach: from stars to MSPs (X-ray pulse profiles vs. energy constrain NS-EOS!) to AGN spectra, clusters and deep surveys...

Onto the Hard X-ray/Soft γ-ray band: ~10-600 keV

- HEAO-A4 scanning all-sky survey (1977-79) on HEAO-1: Crossed "slat" scintillators (phoswich: Nal/CsI) detected ~80 sources, all known previously from 2-10keV observations. Flux limit: ~30mCrab (**)
- OSSE pointed phoswich detectors, Compton GRO (1990-99): large FoV (~3 x 11deg) Nal/CsI detectors detected ~150 sources over 9y as well as diffuse 511 keV in galactic bulge. Flux limit: ~10 mCrab
- HEXTE rocking (on/off) phoswich detectors on RXTE (1995-): 2 x 800 cm² phoswich detectors chopping on/off pointings on sources detects some ~150 sources. Flux limit: ~3mCrab
- PDS (phoswich detector system) on BeppoSax (1996 02): detects ~100 sources. Flux limit: ~5 mCrab **1mCrab = 2 x 10⁻¹¹erg/cm²-sec)

Aug. 12, 2008

Hard X-ray missions operating, cont.

HXD GSO/BGO phoswich on Suzaku (Japan-US; 2006 -): Well-type shielding (BGO, active collimator) gives very low background. Point-stare (not on/off source) obs. and bkgd. modeling achieve flux limit ~1 mCrab in ~1d exposure.

Above all require separate background measures, with systematic uncertainties. > coded mask *imaging*

IBIS CdTe/CsI stacked on INTEGRAL(2002-): coded mask telescope, with Uniformly Redundant Array (URA) cyclic mask. Source(s) cast shadow on pixel CdTe (4 x 4 x 2mm crystals; 10-200keV) on top of CsI bars (0.1-1MeV) for correlation imaging (12' resolution in 9° FoV) and simultaneous background measure URA coded mask

HXD flight unit

Schematic coded mask teles.

Aug. 12, 2008

Culminating now in Swift/BAT

 Swift/BAT (& XRT/UVOT): US-Italy-UK Midex Burst Alert Telescope (BAT) is coded mask telescope (15 – 150 keV) with Cd-Zn-Te (CZT) detectors (4 x 4 x 2mm) to image ~70° x 70° with 22' resolution for rapid detection of Gamma Ray Bursts (GRBs) and location to ~3' for slew of X-ray Telescope (XRT) and UV-Optical Telescope (UVOT) to obtain ~1-2" locations and identifications for ground-based redshifts.

Swift/BAT blasted by a GRB

- BAT sensitivity: Flux limit (5σ) ~ 3mCrab/T(days)^{1/2}, limited
 ~ 0.5mCrab (1y,systematics)
- Corresponding AGN all-sky number (from logN-logS) for full sky BAT limiting survey is ~3000 *if systematics not dominant. Consistent with detection of 153 AGN in 9mo sample of partial exp. and coverage* (cf. Winter et al, arXiv)

Aug. 12, 2008

Hard X-ray detectors: CZT vs. scintillators

Material	Density (g cm ⁻³)	Band gap (eV)	λ of max. emission (Å)	Decay time ^{(a)} (μs)	Index of refrac- tion ^(δ)	Energy ^(c) (eV)	K-edge (keV)	Scintillation conversion ^(d) efficiency (%)	Notes
SCINTILLAT	FORS			- Alexandra			- 000000 - 24040-0	0.665,4945	
NaI(TI)	3.67	5.38	4100	0.23	1.85	-	1.07, 33.2	100	Hygroscopic
CaF ₂ (Eu)	3.18		4350	0.94	1.47	224	0.68, 4.04	50	Non-hygroscopic
CsI(Na)	4.51	5.67	4200	0.63	1.84		33.2, 36.0	80	Hygroscopic
CsI(T))	4.51	5,67	5650	1.0	1.80	254	33.2, 36.0	45	Non-hygroscopic
Plastics	1.06	-	3500-4500	0.002 - 0.020	Varies	-	0.284	20-30	Non-hygroscopic
Liquids	0.86		3500 - 4500	0.002 - 0.008	Varies	77-1	0.284	20-30	Non-hygroscopic
SOLID-STAT	Έ							2010/04/04/04	
Si(Li)	2.35	1.21	8. I	EI .	8. 1	3.6	1.84	-	LN ₂ required during operation
Ge(Li)	5.36	0.785	-	8	e.	2.9	11.1	-	LN ₂ required during operation
CdTe	5.85	1.44	-		8	4.43	26.7, 31.8	-	INTEGRAL/IBIS
CdZnTe (CZ	T) 5.81	1.6	 Room t 	emp. operatio	n–	4.6	26.7, 9.7, 31.8		Swift/BAT, EXIS 1

Properties of scintillation and solid-state detector materials

^{{a}Room temperature, exponential decay constant.

^(b)At emission maximum.

(c)Per electron-hole pair

^(d)Referred to Nal(Tl) with S-11 photocathode.

(Adapted from Harshaw Scintillation Phosphore, The Harshaw Chemical Company.)

And, finally, *Gamma-ray Missions!* (from the Compton to pair regimes)

• SAS-2 (following OSO-7) did 1st γ-ray Survey (1972-73):

- Spark chamber (32 layers, aligned with satellite spin axis)
- Energy range ~20 MeV 1 GeV, A_{eff} = 540 cm²
- detected Crab and Crab pulsar and Vela-X
- mapped diffuse emission in Galaxy & background
- Cos-B ESA mission carried out surveys (1975-82):
 - Magnetic core, wire matrix spark chamber, ~30 MeV 5 GeV
 - X-ray proportional counter (2 12 keV)
 - Crab, Vela pulsars; discovered Geminga
 - First detailed map of Galaxy

100

of absorbe

Culminating in Compton GRO

- Compton Gamma-ray Observatory (1991-2000):
 - 4 instruments:
 - EGRET: spark chamber covering ~30 MeV 10 GeV
 - **COMPTEL:** Compton telescope, 0.8 30 MeV
 - **OSSE:** Nal scintillators, 0.05 10 MeV
 - **BATSE:** Nal scintillators (8), 20 1000 keV

- Key Science:

- Isotropic distribution of GRBs; likely cosmologically distant sources
- Blazars as dominant feature of ~100 MeV sky
- New pop of gal. plane sources (pulsars?) & gal. diffuse emission
- ²⁶Al decay line (1.8MeV) mapped throughout Galaxy
- Black hole transients and X-ray binary HX variability vs. states

Which led to....the ultimate... GLAST (and why we are here...)

- 2 main instruments:
 - LAT: ~8000cm² Si tracker & CsI calorimeter with ~10X sensitivity and spatial resolution of EGRET
 - GBM: Optimized (long triggers, etc.) BATSE already matching it for GRB rates
- Key science (guesses from GUG chair):
 - Pulsars all over the disk (but *not* MSPs...)
 - Flaring Blazars; LBLs can match PKS2155 !
 - (Many) more LSI-61+xxx type Be-HMXBs
 - ULX/MicroBlazars in Local Group: Flaring Jets

And what do we need next?

- NuSTAR and the focusing HX telescope (2012?) for deep surveys at ~1arcmin resolution for AGN at fluxes F(20-40 keV) ~ 5 x 10⁻¹⁴ erg/cm²-sec, for ~30 AGN per sq. degree or sample N ~1000 AGN in ~5 x 5 degrees which will probe z ~1 2 for obscured fraction and constrain evolution of SMBH growth
- EXIST(**) as the ultimate wide-field coded aperture HX telescope for full-sky (every 2 orbits) surveys reaching F(20-40 keV) ~ 5 x 10⁻¹³ erg/cm²-sec, for ~1 AGN per sq. degree or sample N ~40,000 AGN for which 50% are at z >0.2 and ~1-2% at z >2. Constrain SMBH growth by *unique survey for Type 2 QSOs: do they EXIST?*

(**Energetic X-ray Imaging Survey Telescope)

What else would *EXIST* do ?

(unsolicited advertising...)

- Complement GLAST surveys for flaring Blazars and measure synch. vs. IC variable peak for Jet physics and required measurement for EBL
- With a 1.1m IRT (optical-IR imager/spectroscopy telescope for prompt GRB redshifts), and rapid (~100sec) pointing, *EXIST* is the ultimate multi-wavelength HEA observatory: spectra from NIR, 2.5µ to 0.3µ and 5-600 keV, with *possible* addition of an XRT (0.3 7 keV) from Italy!
- And much more.... (as the upcoming Decadal Survey will hear)

Current Baseline design for **EXIST**

- Large area (5.5m²) imaging CZT detector, close-tiled 0.6mm pixels. 5σ survey limit sources located to R(90%) ≤15"
- Central 1.1m opt-NIR telescope, cooled passively (cold sky) to -30C for sky-limited backgrounds at <2.2µ. AB(H) ~24 in 100s! ~10X faster than Keck. Obj. prism and IFU for low/high res. spectra of GRBs & AGN sample. NIR *needed* for high-z GRBs and obscured AGN
- Fits in 3.7m fairing of Atlas401 or ESA-Soyuz (possible Italian launch from Kourou?)
 Aug. 12, 2008
 SSI08: X & Gamma Instruments in Space

Could we (or anyone) build 5.5m² of imaging CZT?

• **ProtoEXIST** (balloon-borne prototype) is teaching us how:

• Balloon flight test for 2 sub-telescopes in May, 2009

Aug. 12, 2008

Integrate detectors, electronics into pressure vessel and pointing system for ProtoEXIST1

• Demonstrate the technology for large array CZT detectors with small pixels covering 10 – 600 keV

ProtoEXIST1 ~ 500 cm² (2.5 mm pixel) ProtoEXIST2 > 256 cm² (0.6 mm pixel) to enable EXIST ~ 5 m² (0.6 mm pixel)

• Determine the optimal shielding configuration for HETs in *EXIST* (active vs. passive side shields? Optimum rear active shields & GRB spectroscopy)

• Further demonstrate continuous scanning coded-aperture imaging technique (already "proven" with BATSS! But optimize scanning & analysis techniques)

ProtoEXIST1 1st flight: Spring 2009

Proposing/selling a mission (e.g. *EXIST*)

- Unique science? Yes: 1. GRBs as probes of z >7 Universe; Constrain epoch of re-ioniz. from pre-QSOs; 2. BH and Jet physics of extremes; 3. Discover and <u>identify</u> the transient Universe: BH novae to SMBH tidal flares
- Technology ready? Yes, though close-tiling & vertical integration is challenging; ASICs @ required ~20µW/ch not yet available (but within factor of ~2)
- Time is "right"? Yes, unique synergies with GLAST, LSST, and JWST
- Is it affordable? Yes, as "Medium Mission", particularly if Italian collaboration provides XRT, anti-co rear shield (BGO), OR launch Aug. 12, 2008
 SSI08: X & Gamma Instruments in Space 30

Summary

- X-ray astrophysics has prospered (and not *all* missions were listed above!). HEA is deservedly "rich" given the cutting edge fundamental science it probes
- GLAST has set a great example; it was proposed at the same time (1994) as Con-X and EXIST...
- The success of Swift/BAT (and INTEGRAL), the unique power of wide-field imaging, argue strongly for the next push for the HX band, both focusing (NuSTAR, NEXT) and *EXIST* to close the all-sky gap in "vF_v" between ROSAT and GLAST.

Aug. 12, 2008

References

- Paerels, F. and Kahn, S. 2003, Ann. Rev. Astron. & Astrophys, 41, 291
- Winter, L. et al 2008, astro-ph/0808.0461
- Ramsey, B. et al 1994, Space Sci. Rev., 69, 139
- Zombeck, M. 2008, Handbook of Space Astronomy and Astrophysics (3rd ed.), Cambridge Univ. Press