

### AMS-02 Stato e risultati

Matteo Duranti INFN Sez. Perugia per la collaborazione AMS

# AMS-02

### On behalf of the AMS Collaboration 16 Countries, 60 Institutes and 600 Physicists



#### M. Duranti











### A precision, multipurpose spectrometer up to TeV



## AMS data on ISS - 1.03 TeV electron











4-04-2013



- Sun position: along the orbit + seasonal variation
- Solar array and ISS radiator position
- ISS attitude and visiting vehicles



AMS



## **Tracker alignment & Calibration**



MS-0



- Fundamental physics & Antimatter :
  - Primordial origin (signal : anti-nuclei )
  - Exotic sources (signal: positrons, anti-p, anti-D, γ)

- The CR composition and energy spectrum
  - Sources & acceleration : Proton and He
  - Propagation in the ISM: secondaries (B/C, ...)



### Primordial origin (Signal: anti-nuclei)

#### **Dirac's Nobel speech**

"We must regard it rather as an accident that the Earth [...] contains a preponderance of negative electrons and positive protons. It is quite possible that for some stars it is the other way about."





### WIMP as the responsible of Dark Matter (?)







4-04-2013



- Particle identification and energy measurement up to TeV:
  - e/p separation at the 10<sup>4</sup> level :TRD, e.m. calorimeter + energy momentum matching
  - Z : redundant measurements to evaluate fragmentation
  - Charge sign: matter to anti-matter separation
- Statistics
  - acceptance & efficiency
  - Exposure time



# Particle identification in TRD



4-04-2013



# Electron charge identification in tracker







## Systematic errors on positron fraction

- 1. Acceptance asymmetry
- 2. Selection dependence
  - > Dependence of the result on the cut values  $\rightarrow$  err.rel = 2% 0.4%
- 3. Migration bin-to bin
  - Migration of electron and positron events from the neighboring bins affects the measured fraction  $\rightarrow$  err.rel = 0.5% 0.01%
- 4. Reference spectrum
  - > Definition of the reference spectra is based on pure samples of electrons and protons of finite statistics  $\rightarrow$  err.rel = 0.2% 1%
- 5. Charge confusion
  - Two sources: large angle scattering and production of secondary tracks along the path of the primary track. Both are well reproduced by MC. Systematic errors correspond to variations of these effects within their statistical limits -> err.rel = 1% - 10%







In this model the e<sup>+</sup> and e<sup>-</sup> fluxes,  $\Phi_{e^+}$  and  $\Phi_{e^-}$ , are parametrized as the sum of individual diffuse power law spectra and the contribution of a single common source of e<sup>±</sup>:

 $\Phi_{e^+} = C_{e^+} E^{-\gamma_{e^+}} + C_s E^{-\gamma_s} e^{-E/E_s}$  $\Phi_{e^-} = C_{e^-} E^{-\gamma_{e^-}} + C_s E^{-\gamma_s} e^{-E/E_s}$ 

Coefficients  $C_{e+}$  and  $C_{e-}$  correspond to relative weights of diffuse spectra for positrons and electrons.

Minimal model

 $C_s$  is the weight of the source spectrum.

 $\gamma_{e^{+}}, \gamma_{e^{-}}$  and  $\gamma_{s}$  are the corresponding spectral indexes.

 $E_s$  is a characteristic cutoff energy for the source spectrum.

With this parametrization the positron fraction depends on 5 parameters.







A fit to the data in the energy range 1 to 350 GeV yields a  $\chi^2/d.f. = 28.5/57$  and:

 $\gamma_{e-} - \gamma_{e+} = -0.63 \pm 0.03$ , *i.e.*, the diffuse positron spectrum is less energetic than the diffuse electron spectrum;

 $\gamma_{e-} - \gamma_s = 0.66 \pm 0.05$ , *i.e.*, the source spectrum is more energetic than the diffuse electron spectrum;

 $C_{e^+}/C_{e^-} = 0.091 \pm 0.001$ , *i.e.*, the weight of the diffuse positron flux amounts to ~10% of that of the diffuse electron flux;

 $C_{\rm S}/C_{\rm e-} = 0.0078 \pm 0.0012$ , *i.e.*, the weight of the common source constitutes only ~1% of that of the diffuse electron flux;

 $1/E_{\rm s} = 0.0013 \pm 0.0007 \,{\rm GeV^{-1}}$ ,

corresponding to a cutoff energy of 760<sup>+1000</sup><sub>-280</sub> GeV.



- More than 30 billion triggers have been collected by AMS-02 since May 19<sup>th</sup> 2011
- Accurate calibration of the apparatus is completed
- First publication on the precision measurement of the positron fraction at energies up to 350 GeV published!
- More to come soon...





# Backup

| AMS         | Data collected                                          |
|-------------|---------------------------------------------------------|
| 33-         |                                                         |
| 30-         | Billions events transferred                             |
| 26-         | Billions events reconstructed                           |
| ر<br>23 -   |                                                         |
| vent<br>20- |                                                         |
| 표<br>5 17-  |                                                         |
| Sulo 13     |                                                         |
| Billi       |                                                         |
| 10-         | Non-stop collection of ≈30 Billion triggers             |
| 7-          | $\rightarrow$ 70 TB of raw data on ground               |
| 3-          | $\rightarrow$ 300 TB of reconstructed data for analysis |
| 0-          |                                                         |
|             |                                                         |
|             |                                                         |

4-04-2013





Leptophilic dark matter or astrophysical sources ??





M. Duranti



### Full coverage of anti-matter & CR physics

|                    | <b>e</b> <sup>-</sup> | Ρ   | He,Li,Be,Fe         | γ |      | e+     | P, D       | He, C |
|--------------------|-----------------------|-----|---------------------|---|------|--------|------------|-------|
| TRD                |                       | ۲   | 7                   |   |      |        | •          | r     |
| TOF                | ۲                     | * * | ř                   | Ŧ |      | Ŧ      |            | ř     |
| Tracker            |                       |     |                     | 八 |      |        |            | ノ     |
| RICH               |                       |     | $ \longrightarrow $ |   |      |        |            |       |
| ECAL               |                       |     | Ŧ                   |   |      |        |            | ¥     |
| Physics<br>example |                       | С   | osmic Ray Physics   |   | Dark | matter | Antimatter |       |

# Electron charge identification in tracker



## AMS sensors for Thermal Control



#### M. Duranti

# AMS Nuclei Measurement on ISS







Difference between positron and electron acceptance due to known minute tracker asymmetry







Event migration effects are obtained by folding the measured spectra of positrons and electrons with the ECAL energy resolution.

Bin width:  $2\sigma$  at 5 GeV;  $4\sigma$  at 50 GeV;  $8\sigma$  at 100 GeV;  $19\sigma$  at 300 GeV.









**Energy (GeV)** Two sources: large angle scattering and production of secondary tracks along the path of the primary track. Both are well reproduced by MC. Systematic errors correspond to variations of these effects within their statistical limits.

#### M. Duranti



|             |                 |          | statistical<br>error    | acceptance<br>asymmetry | event<br>selection | bin-to-bin<br>migration | reference<br>spectra | charge<br>confusion | total<br>systematic<br>uncertainty |
|-------------|-----------------|----------|-------------------------|-------------------------|--------------------|-------------------------|----------------------|---------------------|------------------------------------|
| Energy[GeV] | N <sub>e+</sub> | Fraction | $\sigma_{\text{stat.}}$ | $\sigma_{acc.}$         | $\sigma_{sel.}$    | $\sigma_{mig.}$         | $\sigma_{ref.}$      | σ <sub>c.c.</sub>   | σ <sub>syst.</sub>                 |
| 0.50 -0.65  | 822             | 0.0947   | 0.0034                  | 0.001                   | 0.0016             | 0.0005                  | 0.0002               | 0.001               | 0.0022                             |
| 0.65 -0.81  | 3,045           | 0.0919   | 0.0016                  | 0.0007                  | 0.0014             | 0.0007                  | 0.0002               | 0.0008              | 0.0019                             |
| 0.81 -1.00  | 6,504           | 0.0902   | 0.0011                  | 0.0006                  | 0.0012             | 0.0009                  | 0.0002               | 0.0006              | 0.0017                             |
| 1.00 -1.21  | 9,335           | 0.0842   | 0.0008                  | 0.0005                  | 0.0009             | 0.0008                  | 0.0001               | 0.0005              | 0.0014                             |
| 1.21 -1.45  | 12,621          | 0.0783   | 0.0007                  | 0.0004                  | 0.0007             | 0.0006                  | 0.0001               | 0.0005              | 0.0011                             |
| 1.45 -1.70  | 15,189          | 0.0735   | 0.0006                  | 0.0003                  | 0.0005             | 0.0004                  | 0.0001               | 0.0003              | 0.0008                             |
| 1.70 -1.97  | 18,400          | 0.0685   | 0.0005                  | 0.0003                  | 0.0005             | 0.0003                  | 0.0001               | 0.0003              | 0.0007                             |
| 1.97 -2.28  | 23,893          | 0.0642   | 0.0004                  | 0.0002                  | 0.0005             | 0.0002                  | 0.0001               | 0.0002              | 0.0006                             |
| 2.28 -2.60  | 22,455          | 0.0605   | 0.0004                  | 0.0002                  | 0.0005             | 0.0001                  | 0.0001               | 0.0002              | 0.0006                             |
| 2.60 -2.94  | 21,587          | 0.0583   | 0.0004                  | 0.0001                  | 0.0005             | 0.0001                  | 0.0001               | 0.0002              | 0.0006                             |
| 2.94 -3.30  | 21,158          | 0.0568   | 0.0004                  | 0.0001                  | 0.0004             | 0                       | 0.0001               | 0.0002              | 0.0005                             |
| 3.30 - 3.70 | 20,707          | 0.055    | 0.0004                  | 0.0001                  | 0.0003             | 0                       | 0.0001               | 0.0002              | 0.0004                             |
| 3.70 -4.11  | 19,429          | 0.0541   | 0.0004                  | 0.0001                  | 0.0002             | 0                       | 0.0001               | 0.0002              | 0.0003                             |
| 4.11 -4.54  | 18,370          | 0.0533   | 0.0004                  | 0.0001                  | 0.0001             | 0                       | 0.0001               | 0.0002              | 0.0003                             |
| 4.54 -5.00  | 17,064          | 0.0519   | 0.0004                  | 0.0001                  | 0.0001             | 0                       | 0.0001               | 0.0002              | 0.0003                             |
| 5.00 -5.50  | 16,385          | 0.0512   | 0.0004                  | 0.0001                  | 0.0001             | 0                       | 0.0001               | 0.0002              | 0.0003                             |
| 5.50 -6.00  | 14,244          | 0.0508   | 0.0004                  | 0.0001                  | 0                  | 0                       | 0.0001               | 0.0002              | 0.0002                             |
| 6.00 -6.56  | 13,880          | 0.0501   | 0.0004                  | 0.0001                  | 0                  | 0                       | 0.0001               | 0.0002              | 0.0002                             |
| 6.56 -7.16  | 13,153          | 0.051    | 0.0004                  | 0.0001                  | 0                  | 0                       | 0.0001               | 0.0002              | 0.0002                             |

#### Systematic errors

## Positron fraction (0.5 - 350 GeV)

|               |                 |          | statistical<br>error | acceptance<br>asymmetry | event<br>selection | bin-to-bin<br>migration | reference<br>spectra | charge<br>confusion | total<br>systematic<br>uncertainty |
|---------------|-----------------|----------|----------------------|-------------------------|--------------------|-------------------------|----------------------|---------------------|------------------------------------|
| Energy[GeV]   | N <sub>e+</sub> | Fraction | $\sigma_{stat.}$     | $\sigma_{\sf acc.}$     | $\sigma_{sel.}$    | $\sigma_{mig.}$         | $\sigma_{ref.}$      | $\sigma_{c.c.}$     | $\sigma_{\text{syst.}}$            |
| 7.16 -7.80    | 11,747          | 0.0504   | 0.0005               | 0.0001                  | 0                  | 0                       | 0.0001               | 0.0002              | 0.0002                             |
| 7.80 -8.50    | 10,910          | 0.0513   | 0.0005               | 0.0001                  | 0                  | 0                       | 0.0001               | 0.0002              | 0.0002                             |
| 8.50 -9.21    | 9,110           | 0.051    | 0.0005               | 0.0001                  | 0                  | 0                       | 0.0001               | 0.0002              | 0.0002                             |
| 9.21 -9.95    | 7,501           | 0.0515   | 0.0006               | 0.0001                  | 0                  | 0                       | 0.0001               | 0.0002              | 0.0002                             |
| 9.95 -10.73   | 7,161           | 0.0519   | 0.0006               | 0.0001                  | 0                  | 0                       | 0.0001               | 0.0002              | 0.0002                             |
| 10.73 -11.54  | 6,047           | 0.0528   | 0.0007               | 0.0001                  | 0                  | 0                       | 0.0001               | 0.0001              | 0.0002                             |
| 11.54 -12.39  | 5,246           | 0.0535   | 0.0007               | 0.0001                  | 0                  | 0                       | 0.0001               | 0.0001              | 0.0002                             |
| 12.39 -13.27  | 4,787           | 0.0549   | 0.0008               | 0.0001                  | 0                  | 0                       | 0.0001               | 0.0001              | 0.0002                             |
| 13.27 -14.19  | 4,166           | 0.0551   | 0.0008               | 0.0001                  | 0                  | 0                       | 0.0001               | 0.0001              | 0.0002                             |
| 14.19 -15.15  | 3,698           | 0.0543   | 0.0009               | 0.0001                  | 0.0001             | 0                       | 0.0001               | 0.0001              | 0.0002                             |
| 15.15 -16.15  | 3,326           | 0.0556   | 0.001                | 0.0001                  | 0.0001             | 0                       | 0.0001               | 0.0001              | 0.0002                             |
| 16.15 -17.18  | 3,007           | 0.0583   | 0.0011               | 0.0001                  | 0.0001             | 0                       | 0.0001               | 0.0002              | 0.0003                             |
| 17.18 - 18.25 | 2,663           | 0.0586   | 0.0011               | 0.0001                  | 0.0001             | 0                       | 0.0001               | 0.0002              | 0.0003                             |
| 18.25 - 19.37 | 2,410           | 0.0592   | 0.0012               | 0.0001                  | 0.0001             | 0                       | 0.0001               | 0.0002              | 0.0003                             |
| 19.37 -20.54  | 2,322           | 0.0634   | 0.0013               | 0.0001                  | 0.0001             | 0                       | 0.0001               | 0.0002              | 0.0003                             |
| 20.54 -21.76  | 2,052           | 0.0618   | 0.0014               | 0.0001                  | 0.0001             | 0                       | 0.0001               | 0.0002              | 0.0003                             |
| 21.76 -23.07  | 1,992           | 0.0653   | 0.0015               | 0.0001                  | 0.0001             | 0                       | 0.0001               | 0.0002              | 0.0003                             |
| 23.07 -24.45  | 1,788           | 0.0651   | 0.0016               | 0.0001                  | 0.0001             | 0                       | 0.0001               | 0.0002              | 0.0003                             |
| 24.45 -25.87  | 1,642           | 0.0657   | 0.0016               | 0.0001                  | 0.0001             | 0                       | 0.0001               | 0.0002              | 0.0003                             |
| 25.87 -27.34  | 1,447           | 0.0668   | 0.0018               | 0.0001                  | 0.0001             | 0                       | 0.0001               | 0.0003              | 0.0003                             |
| 27.34 -28.87  | 1,260           | 0.0694   | 0.002                | 0.0001                  | 0.0001             | 0                       | 0.0001               | 0.0003              | 0.0003                             |
| 28.87 - 30.45 | 1,137           | 0.071    | 0.0021               | 0.0001                  | 0.0002             | 0                       | 0.0001               | 0.0003              | 0.0004                             |
| 30.45 -32.10  | 1,094           | 0.0701   | 0.0022               | 0.0001                  | 0.0002             | 0                       | 0.0001               | 0.0003              | 0.0004                             |
| 32.10 - 33.80 | 888             | 0.0707   | 0.0024               | 0.0001                  | 0.0002             | 0                       | 0.0001               | 0.0004              | 0.0005                             |

AMS-02

## Positron fraction (0.5 - 350 GeV)

|              |                 |          | statistical<br>error    | acceptance<br>asymmetry | event<br>selection | bin-to-bin<br>migration | reference<br>spectra | charge<br>confusion | total<br>systematic<br>uncertainty |
|--------------|-----------------|----------|-------------------------|-------------------------|--------------------|-------------------------|----------------------|---------------------|------------------------------------|
| Energy[GeV]  | N <sub>e+</sub> | Fraction | $\sigma_{\text{stat.}}$ | $\sigma_{\sf acc.}$     | $\sigma_{sel.}$    | $\sigma_{mig.}$         | $\sigma_{ref.}$      | $\sigma_{c.c.}$     | $\sigma_{\text{syst.}}$            |
| 33.80 -35.57 | 807             | 0.0718   | 0.0026                  | 0.0001                  | 0.0003             | 0                       | 0.0001               | 0.0004              | 0.0005                             |
| 35.57 -37.40 | 787             | 0.0747   | 0.0027                  | 0.0001                  | 0.0003             | 0                       | 0.0001               | 0.0004              | 0.0005                             |
| 37.40 -40.00 | 982             | 0.0794   | 0.0026                  | 0.0002                  | 0.0004             | 0                       | 0.0001               | 0.0004              | 0.0006                             |
| 40.00 -43.39 | 976             | 0.0802   | 0.0026                  | 0.0002                  | 0.0005             | 0                       | 0.0001               | 0.0004              | 0.0007                             |
| 43.39 -47.01 | 856             | 0.0817   | 0.0029                  | 0.0002                  | 0.0005             | 0                       | 0.0001               | 0.0004              | 0.0007                             |
| 47.01 -50.87 | 739             | 0.0856   | 0.0032                  | 0.0002                  | 0.0006             | 0                       | 0.0001               | 0.0004              | 0.0008                             |
| 50.87 -54.98 | 605             | 0.0891   | 0.0038                  | 0.0002                  | 0.0006             | 0                       | 0.0001               | 0.0004              | 0.0008                             |
| 54.98 -59.36 | 558             | 0.0957   | 0.0041                  | 0.0002                  | 0.0008             | 0                       | 0.0001               | 0.0005              | 0.001                              |
| 59.36 -64.03 | 448             | 0.0962   | 0.0047                  | 0.0002                  | 0.0009             | 0                       | 0.0002               | 0.0006              | 0.0011                             |
| 64.03 -69.00 | 392             | 0.0978   | 0.005                   | 0.0002                  | 0.001              | 0                       | 0.0002               | 0.0007              | 0.0013                             |
| 69.00 -74.30 | 324             | 0.1032   | 0.0057                  | 0.0002                  | 0.001              | 0                       | 0.0002               | 0.0009              | 0.0014                             |
| 74.30 -80.00 | 276             | 0.0985   | 0.0062                  | 0.0002                  | 0.001              | 0                       | 0.0002               | 0.001               | 0.0014                             |
| 80.00 -86.00 | 232             | 0.1023   | 0.0067                  | 0.0002                  | 0.001              | 0                       | 0.0002               | 0.001               | 0.0014                             |
| 86.00 -92.50 | 240             | 0.112    | 0.0075                  | 0.0002                  | 0.001              | 0                       | 0.0003               | 0.0011              | 0.0015                             |
| 92.50 -100.0 | 226             | 0.1189   | 0.0081                  | 0.0002                  | 0.0011             | 0                       | 0.0003               | 0.0012              | 0.0017                             |
| 100.0 -115.1 | 304             | 0.1118   | 0.0066                  | 0.0002                  | 0.0015             | 0                       | 0.0003               | 0.0015              | 0.0022                             |
| 115.1 -132.1 | 223             | 0.1142   | 0.008                   | 0.0002                  | 0.0019             | 0                       | 0.0004               | 0.0019              | 0.0027                             |
| 132.1 -151.5 | 156             | 0.1215   | 0.01                    | 0.0002                  | 0.0021             | 0                       | 0.0005               | 0.0024              | 0.0032                             |
| 151.5 -173.5 | 144             | 0.1364   | 0.0121                  | 0.0002                  | 0.0026             | 0                       | 0.0006               | 0.0045              | 0.0052                             |
| 173.5 -206.0 | 134             | 0.1485   | 0.0133                  | 0.0002                  | 0.0031             | 0                       | 0.0009               | 0.005               | 0.006                              |
| 206.0 -260.0 | 101             | 0.153    | 0.016                   | 0.0003                  | 0.0031             | 0                       | 0.0013               | 0.0095              | 0.0101                             |
| 260.0 -350.0 | 72              | 0.155    | 0.02                    | 0.0003                  | 0.0056             | 0                       | 0.0018               | 0.014               | 0.0152                             |

AMS-02

