NASA / ESA / J. Hester / A. Loll / ASU

Bryan Gaensler

The University of Sydney / Harvard-Smithsonian Center for Astrophysics

Pulsar Wind Nebulae

- All pulsars are slowing down
 - $E = I\omega\omega = 10^{32} 10^{39} \text{ ergs s}^{-1}$
- Where does this energy go?
 usually negligible energy in pulses
 relativistic magnetized particle wind
- Shock where wind terminates
 - → *pulsar wind nebula* (PWN)
 - direct calorimeter for energy loss processes
 - laboratory for studying relativistic shocks & interaction with surroundings (GRBs, AGN)
 - unambiguous signpost for young, energetic neutron stars

NASA / CXC

Expansion into Unshocked Ejecta

- Assume continuous energy injection produces synchrotron nebula
- PWN expands supersonically into low-P environment, $R_{PWN} \propto t^{6/5}$
- Sound speed high: PWN stays centered on pulsar

SNR G21.5-0.9 with PWN and pulsar (X-rays; Matheson & Safi-Harb 2005)

SNR G11.2-0.3 with PWN and pulsar (X-rays; Kaspi et al. 2001)

Optical (HST; NASA / ESA / J. Hester / A. Loll / ASU)

Soft X-rays (Chandra; Weisskopf et al. 2000)

Gamma-rays From Crab Nebula

EGRET spectrum of Crab Nebula shows upturn at E ~ 1 GeV
 modelled as synchrotron + synchrotron-self-Compton

Gamma-rays from Other PWNe

- Several pulsar wind nebulae now seen in TeV gamma-rays
 - inverse Compton emission from CMB, starlight, IR from dust

How Do Pulsars Accelerate Particles?

- Theory says unshocked wind has $\gamma \sim 10^6$
- X-ray & γ-ray synchrotron emission in PWNe
 - termination shock accelerates particles to $\gamma > 10^9$
- Data at E > 100 TeV needed to measure IC roll-off
 - knowing γ_{max} as fn. of pulsar parameters constrains mechanism

Crab Nebula (*Chandra*; Weisskopf et al. 2000) PWN around PSR B1509-58 (*INTEGRAL*; Forot et al. 2006)

Spectrum of Crab Nebula (Atoyan & Aharonian 1996)

Inverse Compton in PWNe

- Synchrotron is convolution of N(E), B
- IC depends on N(E), photon field
- Spatial distribution of synch., IC
 - spatially resolved map of B
 - particle content, injection rate
 - $\sigma = E_{\text{fields}} / E_{\text{particles}}$
- Pulsed IC from *unshocked* wind? (Ball & Kirk 1999; Bogovalov & Aharonian 2000)

B1509-58 (HESS/rA;hStancast al.a2.02605)

Nucleons in Pulsar Winds

- Ions in wind will produce macroscopic shock structure
 - generate magnetosonic waves which can accelerate e⁻ (Hoshino et al. 1992)
 - may explain appearance and evolution of "wisps" in Crab Nebula & B1509-58 (Gallant & Arons 1994; Spitkovsky & Arons 2004)
- Do we see π^0 decay from relativistic ions accelerated in PWNe?

Expansion into Unshocked Ejecta

- PWN expands supersonically into low-P environment, $R_{\rm PWN} \propto t^{6/5}$
- Sound speed high: PWN stays centered on pulsar

SNR G21.5-0.9 with PWN and pulsar (X-rays; Matheson & Safi-Harb 2005)

SNR G11.2-0.3 with PWN and pulsar (X-rays; Kaspi et al. 2001)

Interaction with SNR Reverse Shock

- Reverse shock crushes PWN after time $t \sim 7M_{10M_{sum}}^{5/6}E_{51}^{-1/2}n_0^{-1/3}$ kyr
- Compression & reverberation; synchrotron burn-off at high energies
- Asymmetric collision for moving pulsar or ISM gradient
- Pulsar now at one edge of "relic" radio PWN

Offset Gamma-Ray PWNe

- HESS sees large TeV nebulae to one side of several energetic pulsars
 - energy dependence confirms IC mechanism
 - reverse shock interaction with SNR? (Gaensler et al. 2003; Aharonian et al. 2005)
 - TeV systems must have expanded rapidly, age ~ 10,000 - 40,000 years (e.g., de Jager & Venter 2005)
- Implies possible molecular cloud interactions?
 confirmed by ¹²CO detections (Lemiére et al. 2006)
- Approx. 25 "Vela-like" pulsars known (Kramer et al. 2003)
 - expect large number of offset PWNe
 - → particle transport, magnetic fields, diffusion, interaction with ISM/CSM

New Pulsar Wind Nebulae

Extended TeV source HESS J1813-178
radio reveals very young SNR, G12.8-0.0

New Pulsar Wind Nebulae

- Extended TeV source HESS J1813-178

 radio reveals very young SNR, G12.8-0.0
 matches X-ray source AX J181336-1749
 (Brogan, Gaensler et al. 2005; Ubertini et al. 2005) *XMM* images show central X-ray nebula
 (Funk et al. 2006)
 - TeV source HESS J1640-465
 - matches X-ray source AX J164042-4632
 - matches catalogued SNR G338.3-0.0 (Aharonian et al. 2006)

Red: VLA; Blue: HESS; Contours: ASCA (Brogan et al. 2005)

HESS J1640-465 (HESS; Aharonian et al. 2006)

Surveys & Discovery

- > 1000 missing supernova remnants in Galaxy
- Young pulsars without supernova remnants or pulsar wind nebulae
 PWNe & SNRs invisible in synchrotron if *B* is low
 - ... but inverse Compton independent of B
- <u>Many</u> new PWNe & SNRs still to be found, especially for $|l| < 45^{\circ}$

Summary

- TeV data yield distribution, injection rate, evolutionary history of fields + particles in PWNe
- TeV data reveal later stages of PWN evolution, and probe interaction with ambient gas / photons
- TeV data can help complete Galactic sample of PWNe & SNRs

