
Catena protone-protone

Da Wikipedia, l'enciclopedia libera.

La catena protone-protone è un processo nucleare che trasforma i nuclei di idrogeno (protoni) in nuclei di elio. Il processo fu ipotizzato nel 1939 dal fisico e astronomo tedesco Hans Albrecht Bethe. Il ciclo protone-protone rappresenta la sorgente di energia principale per la maggior parte delle stelle dell'universo, compreso il Sole nel quale questa catena è il processo predominante. Un altro processo che porta alla formazione di elio partendo da idrogeno è il ciclo CNO.

Indice

- 1 Catena delle reazioni
 - 1.1 Ramo pp I
 - 1.2 Ramo pp II
 - 1.3 Ramo pp III
 - 1.4 Ramo pp IV o Hep
 - 1.5 Energia rilasciata
- 2 Reazione pep
- 3 Voci correlate
- 4 Altri progetti
- 5 Collegamenti esterni

Catena delle reazioni

Nel primo passaggio due nuclei di idrogeno 1 H (protoni) si fondono per formare deuterio 2 H, rilasciando un positrone (poiché un protone è diventato un neutrone) ed un neutrino (decadimento β +).

$${}^{1}H + {}^{1}H \rightarrow {}^{2}H + e^{+} + v_{e}$$

con il neutrino che porta un'energia da 0 a 0,42 MeV.

Questo primo passaggio è estremamente lento per due motivi: il primo è che per i due protoni è necessario superare la barriera di repulsione elettrostatica (e ciò può avvenire unicamente per effetto tunnel, che ha una probabilità bassa anche se non nulla), e perché il decadimento da due protoni a deuterio è una interazione debole che converte un protone in un neutrone. Questo è il collo di bottiglia di tutta la catena, il protone deve aspettare circa 10⁹ anni prima di fondersi in deuterio.

Il positrone si annichila immediatamente con un elettrone, e le loro energie di massa sono trasformate in due raggi gamma.

$$e^+ + e^- \rightarrow 2\gamma + 1,02 \text{ MeV}$$

Dopo la produzione di deuterio nel primo passaggio esso si può fondere con un altro nucleo di idrogeno per produrre un isotopo leggero dell'elio, l' ³He:

$${}^{2}\text{H} + {}^{1}\text{H} \rightarrow {}^{3}\text{He} + \gamma + 5{,}49 \text{ MeV}$$

Da qui tre differenti rami portano alla formazione dell'isotopo dell'elio ⁴He. In pp1 l'elio-4 viene dalla fusione di due nuclei di elio-3; gli altri rami, pp2 e pp3 richiedono elio-4 prodotto nel pp1; entrambe presentano differenti percorsi che il Berillio-7 può seguire. Nel Sole, il ramo pp1 ha una frequenza del 91%, pp2 9% e pp3 0,1%.

Ramo pp I

$${}^{3}\text{He} + {}^{3}\text{He} \rightarrow {}^{4}\text{He} + {}^{1}\text{H} + {}^{1}\text{H} + 26,73 \text{ MeV}$$

Il completamento della catena pp I rilascia un'energia netta di 26,73 MeV.

Il ramo pp I è dominante a temperatura tra 10 e 14 MK. Sotto i 10 MK, la catena pp non produce più ⁴He.

Ramo pp II

3
He + 4 He → 7 Be + 7 Be + 2 Ci + 1 H → 4 He + 4 He

Il ramo pp II è dominante a temperature tra 14 e 23 MK.

Il 90% dei neutrini prodotti nella reazione ${}^{7}\text{Be}(e^{-},v_{e}){}^{7}\text{Li*}$ portano un'energia di 0,861 MeV, mentre il rimanente 10% un'energia di 0,383 MeV (dipende dal fatto che il litio-7 sia in uno stato eccitato o meno).

Ramo pp III

3
He + 4 He \rightarrow 7 Be + γ
 7 Be + 1 H \rightarrow 8 B + γ
 8 B \rightarrow 8 Be + e⁺ + ν_{e}
 8 Be \leftrightarrow 4 He + 4 He

Il ramo pp III è dominante a temperature maggiori di 23 MK.

Il ramo pp III non è la maggiore sorgente di energia per il Sole (poiché la temperatura del nucleo non è abbastanza alta) ma è molto importante per il problema dei neutrini solari poiché genera i neutrini a più alta energia (≤14.06 MeV).

Ramo pp IV o Hep

In questo caso l'elio-3 reagisce direttamente con un protone per dare elio-4

3
He + 1 H \rightarrow 4 He + ν_{e} + e^{+}

Energia rilasciata

Confrontando la massa dell'elio-4 finale con le masse dei quattro protoni si ottiene che lo 0,7% della massa originaria è persa. Questa massa è convertita in energia, sotto forma di raggi gamma e di neutrini rilasciati durante le reazioni individuali. L'energia totale che si ottiene da un ramo intero è di 26,73 MeV.

Solo l'energia rilasciata sotto forma di raggi gamma può interagire con gli elettroni e i protoni e scaldare l'interno del Sole. Questo riscaldamento fa sì che il Sole non collassi sotto il suo peso.

Reazione pep

Il deuterio può anche essere prodotto tramite una rara reazione di cattura elettronica pep (protone-elettroneprotone):

$${}^{1}\text{H} + \mathrm{e}^{-} + {}^{1}\text{H} \rightarrow {}^{2}\text{H} + \mathrm{v}_{\mathrm{e}}$$

Nel Sole, la frequenza della reazione pep è 1/400 della pp. Tuttavia i neutrini rilasciati sono molto più energetici: mentre i neutrini prodotti nel primo passaggio della pp vanno da 0 a 0,42 MeV, i neutrini della pep producono una linea stretta a 1,44 MeV.

Voci correlate

Ciclo CNO

Altri progetti

■ Wikimedia Commons (https://commons.wikimedia.org/wiki/?uselang=it) contiene immagini o altri file su Catena protone-protone (https://commons.wikimedia.org/wiki/Category:Proton-proton_chain_reaction?uselang=it)

Collegamenti esterni

■ La catena protone-protone (http://astrofisica.altervista.org/doku.php?id=c04:catena_protone_protone), Par. 4.3 di "Fondamenti di Astrofisica Stellare" di V. Castellani

Estratto da "http://it.wikipedia.org/w/index.php?title=Catena_protone-protone&oldid=70903221"

Categorie: Evoluzione stellare | Fusione nucleare

- Questa pagina è stata modificata per l'ultima volta il 17 feb 2015 alle 15:48.
- Il testo è disponibile secondo la licenza Creative Commons Attribuzione-Condividi allo stesso modo; possono applicarsi condizioni ulteriori. Vedi le Condizioni d'uso per i dettagli. Wikipedia® è un marchio registrato della Wikimedia Foundation, Inc.