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Nucleon-nucleon Scattering


b >> 2 rp


Elastic scattering

Forward-forward scattering, no disassociation (protons stay protons)
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“Single-diffractive” scattering


One of the 2 nucleons disassociates into a spray of particles

–  Mostly π± and π0 particles

–  Mostly in the forward direction following the parent nucleonʼs momenum


b ~ 2 rp
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“Double-diffractive” scattering


Both nucleons break up

–  Resultant spray of particles is in the forward direction


b <  rp


Active detector


Active detector
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Proton-(anti)Proton Collisions


•  At “high” energies we are probing the nucleon structure

–  “High” means Compton wavelength λbeam ≡ hc/Ebeam << rproton ~ hc/”1GeV” ~ 1fm


•  Ebeam=1TeV@FNAL        5-7 TeV@LHC

–  We are really doing parton–parton scattering (parton = quark, gluon)


•  Look for scatterings with large momentum transfer, ends up in detector “central 
region” (large angles wrt beam direction)

–  Each parton has a momentum distribution – 


•  CM of hard scattering is not fixed as in e+e-  will be move along z-axis with a boost

•  This motivates studying boosts along z


–  Whatʼs “left over” from the other partons 
is called the “underlying event”


•  If no hard scattering happens, can still 
have disassociation

–  An “underlying event” with no hard 

scattering is called “minimum bias”
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“Total Cross-section”


•  By far most of the processes in nucleon-nucleon scattering are described by:


–   σ(Total) ~ σ(scattering) + σ(single diffractive) + σ(double diffractive)

“inelastic”
“elastic”


•  This can be naively estimated….

–   hard sphere scattering, partial wave analysis:

‒  σ ~ 4xAreaproton=4πrp

2 = 4π ×(1fm)2 ~ 125mb

•  But!  total cross-section stuff is NOT the 

reason we do these experiments!

•  Examples of “interesting” physics @ Tevatron 


–  W production and decay via lepton

•   σ⋅Br(W→ eν) ~ 2nb, 1 in 50x106 collisions


–  Z production and decay to lepton pairs

•  About 1/10 that of W to leptons


–  Top quark production

•   σ(total) ~ 5pb, 1 in 20x109 collisions


•  Rates for similar things at LHC will be ~10x 
higher




Needles in Haystacks
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•  What determines number of detected events 
N(X) for process “X”?

–  Or the rate:  R(X)=N(X)/sec?


•  N(X) per unit cross-section should be a function 
of the brightness of the beams

–  And should be constant for any process:

N(X)/σ(X) = constant==L (luminosity)

R(X)/σ(X) = L (instantaneous luminosity)


•  Units of luminosity:

–  “Number of events per barn”

–  Note: 1nb = 10-9 barns = 10-9x10-24cm2 = 10-33 cm2


–  LHC instantaneous design luminosity 

    1034 cm-2 s-1 = 10 nb-1/s, or 10 events per nb 

cross-section per second, or “10 inverse 
nanobarns per second”


•  e.g. 10 t-tbar events per second
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Coordinates


x


y


z
Proton beam direction


Proton or anti-proton beam direction


θ

Detector


φ

r
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Detect the “hard scattering”


Protons Anti-
Protons 

E 

Transverse E ≡ ET 
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Phase Space


•  Relativistic invariant phase-space element:

–  Define pp or pp collision axis along z-axis:

–  Coordinates pµ = (E,px,py,pz) – Invariance with respect to boosts along z?


•  2 longitudinal components:  E & pz (and dpz/E) NOT invariant

•  2 transverse components: px py, (and dpx, dpy) ARE invariant


•  Boosts along z-axis

–  For convenience:  define pµ where only 1 component is not Lorentz invariant 

–  Choose pT, m, φ as the “transverse” (invariant) coordinates


•  pT ≡ psin(θ) and φ is the azimuthal angle


–  For 4th coordinate define “rapidity” (y)


•  …How does it transform?


€ 

dτ =
d3p
E

=
dpxdpydpz

E

€ 

y ≡ 1
2
ln E + pz
E − pz

€ 

pz = E tanh yor
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Boosts Along beam-axis


•  Form a boost of velocity β along z axis

–  pz ⇒ γ(pz + βE)

–  E ⇒ γ(E+ βpz)

–  Transform rapidity:


•  Boosts along the beam axis with v=βc will change y by a constant yb

–  (pT,y,φ,m) ⇒ (pT,y+yb,φ,m)  with y ⇒ y+ yb ,  yb ≡ ln γ(1+β)   simple additive to 

rapidity


–  Relationship between y, β, and θ can be seen using pz = pcos(θ) and p = βE


€ 

y =
1
2
ln E + pz
E − pz

⇒
1
2
ln
γ E + βpz( ) + γ pz + βE( )
γ E + βpz( ) − γ pz + βE( )

=
1
2
ln

E + pz( ) 1+ β( )
E − pz( ) 1−β( )

= y + lnγ 1+ β( )

y⇒ y + yb

€ 

y =
1
2
ln1+ β cosθ
1−β cosθ

€ 

tanh y = β cosθor                                         where β is the CM boost
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Phase Space (cont)


•  Transform phase space element dτ from (E,px,py,pz) to (pt, y, φ, m)


•  Gives:


•  Basic quantum mechanics:  dσ = |M |2dτ

–  If |M |2 varies slowly with respect to rapidity, dσ/dy will be ~constant in y

–  Origin of the “rapidity plateau” for the min bias and underlying event structure 

–  Apply to jet fragmentation - particles should be uniform in rapidity wrt jet axis:


•  We expect jet fragmentation to be function of momentum perpendicular to jet axis

•  This is tested in detectors that have a magnetic field used to measure tracks


€ 

dy = dpz
∂y
∂pz

+
∂y
∂E

∂E
∂pz

 

 
 

 

 
 

= dpz
E

E 2 − pz
2 −

pz
E 2 − pz

2
pz
E

 

 
 

 

 
 

=
dpz
E

€ 

dpxdpy =
1
2
dpT

2dφ

€ 

dτ =
1
2
dpT

2dφdy

€ 

dτ ≡ d
3p
E

=
dpxdpydpz

E

&


€ 

y ≡ 1
2
ln E + pz
E − pz

using
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Transverse Energy and Momentum Definitions


•  Transverse Momentum:  momentum perpendicular to beam direction:  


•  Transverse Energy defined as the energy if pz was identically 0:  ET≡E(pz=0)


•  How does E and pz change with the boost along beam direction?


–  Using                                  and                           gives


–  (remember boosts cause y → y + yb)

–  Note that the sometimes used formula                             is not (strictly) correct! 

–  But itʼs close – more later….


€ 

ET
2 = px

2 + py
2 + m2 = pT

2 + m2 = E 2 − pz
2

€ 

pz = E tanh y

€ 

E = ET cosh y

or


€ 

pT
2 = px

2 + py
2

€ 

pT = psinθ

€ 

ET = E sinθ

€ 

tanh y = β cosθ

€ 

pz = pcosθ

€ 

ET
2 = E 2 − pz

2 = E 2 − E 2 tanh2 y = E 2sech2y then


or                                  which also means


€ 

pz = ET sinh y
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Invariant Mass M1,2 of 2 particles p1, p2


•  Well defined:


•  Switch to pµ=(pT,y,φ,m) (and do some algebra…)


•  This gives

–  With βT ≡ pT/ET

–  Note:


•  For Δy → 0 and Δφ → 0, high momentum limit:  M → 0: angles “generate” mass

•  For β →1 (m/p → 0)


This is a useful formula when analyzing data… 



€ 

M1,2
2 = m1

2 + m2
2 + 2ET1

ET2
coshΔy −βT1βT2 cosΔφ( )

€ 

M1,2
2 = p1 + p2( )2 = m1

2 + m2
2 + 2 E1E2 − p1 ⋅ p2( )

with                         and


€ 

βT ≡ pT ET

€ 

M1,2
2 = 2ET1

ET2
coshΔy − cosΔφ( )

€ 

p1 ⋅ p1 = px1 px2 + py1 py2 + pz1 pz2 = ET1
ET2

βT1βT 2 cosΔφ + sinh y1 sinh y2( )



10-Dec-2008
 D. Baden, U. Geneve
 15


Invariant Mass, multi particles

•  Extend to more than 2 particles:


•  In the high energy limit as m/p → 0 for each particle:


⇒ Multi-particle invariant masses where each mass is negligible – no need to id

⇒ Example:  t →Wb and W →jet+jet

–  Find M(jet,jet,b) by just adding the 3 2-body invariant masses in quadriture

–  Doesnʼt matter which one you call the b-jet and which the “other” jets as long as you 

are in the high energy limit


€ 

M1,2,3
2 = p1 + p2 + p3( )2 = p1 + p2( )2 + 2 p1 + p2( )p3 + m3

2

= M1,2
2 + 2p1p3[ ] + 2p2p3[ ] + m3

2

= M1,2
2 + p1

2 + 2p1p3 + p3
2[ ] −m12 −m3

2 + p2
2 + 2p2p3 + p3

2[ ] −m2
2 −m3

2 + m3
2

= M1,2
2 + M1,3

2 + M2,3
2 −m1

2 −m2
2 −m3

2

€ 

M1,2,3
2 = M1,2

2 + M2,3
2 + M1,3

2
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Pseudo-rapidity
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“Pseudo” rapidity and “Real” rapidity


•  Definition of y:  tanh(y) = β cos(θ) 
–  Can almost (but not quite) associate position in the detector (θ) with rapidity (y)


•  But…at Tevatron and LHC, most particles in the detector (>90%) are πʼs with β ≈1

•  Define “pseudo-rapidity”  defined as η ≡ y(θ,β=1), or tanh(η) = cos(θ) or 


€ 

η =
1
2
ln1+ cosθ
1− cosθ

= ln cosθ 2
sinθ 2

= −ln tanθ 2( )

(η=5, θ=0.77°)


CMS 
ECAL


CMS 
HCAL
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Rapidity (y) vs “Pseudo-rapidity” (η) 

•  From tanh(η) = cos(θ) = tanh(y)/β  


–  We see that   |η| ≥ |y| 

–  Processes “flat” in rapidity y will not be “flat” in pseudo-rapidity η 


•  (y distributions will be “pushed out” in pseudo-rapidity)


1.4 GeV π
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|η| – |y| and pT – Calorimeter Cells

•  At colliders, Center-of-Mass can be moving with respect to detector frame

•  Lots of longitudinal momentum can escape down beam pipe


–  But transverse momentum pT is conserved in the detector

•  Plot η-y for constant mπ, pT ⇒ β(θ)


•  For all η in DØ/CDF, can use η position to give y:

–  Pions:     |η|-|y| < 0.1 for pT > 0.1GeV

–  Protons:  |η|-|y| < 0.1 for pT > 2.0GeV

–  As β →1, y→ η (so much for “pseudo”)


DØ calorimeter cell width

Δη=0.1


pT=0.1GeV


pT=0.2GeV


pT=0.3GeV


CMS HCAL cell width  0.08

CMS ECAL cell width 0.005
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Rapidity “plateau”


•  Constant pt, rapidity plateau means dσ/dy ~ k

–  How does that translate into dσ/dη ?


–  Calculate dy/dη keeping m, and pt constant

–  After much algebra… dy/dη = β(η)


–  “pseudo-rapidity” plateau…only for β →1


€ 

tanh(y) = β(η)tanh(η)

€ 

dσ
dη

=
dσ
dy

dy
dη

= k dy
dη

€ 

dσ
dη

=
dσ
dy

dy
dη

= k dy
dη

= kβ η( )

€ 

β(η) =
p
E

=
pT
2 + pZ

2

pT
2 + pZ

2 + m2 =
cosh(η)

m2 pT
2 + cosh2η

…some useful formulae…
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Transverse Mass
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Measured momentum conservation


•  Momentum conservation:                                 and


•  What we measure using the calorimeter:                          and


•  For processes with high energy neutrinos in the final state:


•  We “measure” pν by “missing pT” method:

–  e.g. W → eν or µν 


•  Longitudinal momentum of neutrino cannot be reliably estimated

–  “Missing” measured longitudinal momentum also due to CM energy going down beam 

pipe due to the other (underlying) particles in the event

–  This gets a lot worse at LHC where there are multiple pp interactions per crossing


•  Most of the interactions donʼt involve hard scattering so it looks like a busier underlying event


  

€ 

 p T =
 p ν ≡ −

 
E T

cells
∑

€ 

pZ = PCM
particles
∑

€ 

pZ = PCM
cells
∑

  

€ 

 p T +
 p T ν = 0

cells
∑

  

€ 

 p T = 0
particles
∑

  

€ 

 p T = 0
cells
∑
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Transverse Mass


•  Since we donʼt measure pz of neutrino, cannot construct invariant mass of W

•  What measurements/constraints do we have?


–  Electron 4-vector

–  Neutrino 2-d momentum (pT) and m=0


•  So construct “transverse mass” MT by:

1.  Form “transverse” 4-momentum by ignoring pz (or set pz=0)

2.  Form “transverse mass” from these 4-vectors:     


•  This is equivalent to setting η1=η2=0

•  For e/µ and ν, set me= mµ = mν = 0 to get:


–  This is another way to see that the opening angle “generates” the mass


€ 

MT1,2
2 ≡ pT1 + pT2( )

µ
pT1 + pT2( )µ

€ 

pT
µ ≡ ET , pT ,0( )

€ 

MT1,2
2 = 2ET1

ET2
1− cosΔφ( ) = 4ET1

ET2
sin2 (Δφ 2)
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Transverse Mass Kinematics for Ws

•  Transverse mass distribution?

•  Start with


•  Constrain to MW=80GeV and pT(W)=0

–  cosΔφ = -1

–  ETe = ETν  

–  This gives you ETeETν  versus Δη


•  Now construct transverse mass


–  Cleary MT=MW when ηe=ην=0


€ 

MW
2 = Me,ν

2 = 2ETe
ETν

coshΔη − cosΔφ( )

€ 

ETeETν =
802

2 coshΔη +1( )

€ 

MTe,ν
2 = 2ETeETν 1− cosΔφ( )

= 2 802

coshΔη +1
Δφ=π
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Neutrino Rapidity


•  Can you constrain M(e,ν) to determine the pseudo-rapidity of the ν?

–  Would be nice, then you could veto on θν in “crack” regions


•  Use M(e,ν) = 80GeV and


•  Since we know ηe, we know that ην=ηe ± Δη

–  Two solutions.  Neutrino can be either higher or lower in rapidity than electron

–  Why?  Because invariant mass involves the opening angle between particles.

–  Perhaps this can be used for neutrinoʼs (or other sources of missing energy?)


€ 

MW
2 = 802 = 2ETeETν coshΔη − cosΔφ( )

to get


€ 

coshΔη =
802

2ETeETν

+ cosΔφ

and solve for Δη:


€ 

Δη = ln coshΔη + cosh2Δη +1
2
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Jets
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Jet Definition

•  How to define a “jet” using calorimeter towers so that we can use it for invariant mass calculations


–  And for inclusive QCD measurements (e.g. dσ/dET)


•  QCD motivated:  

–  Leading parton radiates gluons uniformly distributed azimuthally around jet axis

–  Assume zero-mass particles using calorimeter towers


•  1 particle per tower

–  Each “particle” will have an energy       perpendicular to the jet axis:

–  From energy conservation we expect total energy perpendicular

      to the jet axis to be zero on average:


–  Find jet axis that minimizes kT relative to that axis

–  Use this to define jet 4-vector from calorimeter towers

–  Since calorimeter towers measure total energy, make a basic assumption:


•  Energy of tower       is from a single particle with that energy

•  Assume zero mass particle (assume itʼs a pion and you will be right >90%!)

•  Momentum of the particle is then given by 


–  Note:  mi=0 does NOT mean Mjet=0

•  Mass of jet is determined by opening angle between all contributors

•  Can see this in case of 2 “massless” particles, or energy in only 2 towers:


•  Mass is “generated” by opening angles.  

•  A rule of thumb: Zero mass parents of decay have θ12=0 always


  

€ 

 
k T

€ 

M 2
12 = 2E1E2(1− cosθ12) = 4E1E2 sin

2 θ12
2

€ 

kT
particles
∑ = 0

                        and       points to tower i with energy   
  

€ 

 p i = Ei ˆ n i

€ 

ˆ n i

€ 

Ei

€ 

Ei
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Quasi-analytical approach

•  Transform each calorimeter tower to frame of jet and minimize kT


–  2-d Euler rotation (in picture, φ=φjet, θ=θjet, set χ=0)


–  Tower in jet momentum frame:                                                      and apply


–  Check:  for 1 tower, φtower=φjet, should get E′xi = E′yi = 0  and E′zi = Ejet 

•  It does, after some algebra…


€ 

M φ jet,θ jet( ) =

−sinφ jet cosφ jet 0
−cosθ jet cosφ jet −cosθ jet sinφ jet sinθ jet

sinθ jet cosφ jet sinθ jet sinφ jet cosθ jet

 

 

 
 
 

 

 

 
 
 

€ 

′ E i = M θ jet ,φ jet( ) × Ei

€ 

kT
particles
∑ = 0

€ 

′ E xi = −Exi sinφ jet + Eyi cosφ jet

′ E yi = −Exi cosθ jet cosφ jet − Eyi cosθ jet sinφ jet + Ezi sinθ jet

′ E zi = Exi sinθ jet cosφ jet + Eyi sinθ jet sinφ jet + Ezi cosθ jet
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Minimize kT to Find Jet Axis


•  The equation                 is equivalent to                              so…


•  Momentum of the jet is such that:


€ 

kT
particles
∑ = 0

€ 

′ E xi =
i
∑ ′ E yi =

i
∑ 0

€ 

′ E xi∑ = −sinφ jet Exi∑ + cosφ jet Eyi∑ = 0

€ 

tanφ jet =
Eyi∑
Exi∑

€ 

′ E yi∑ = −cosθ jet cosφ jet Exi∑ − sinφ jet Eyi∑( ) + sinθ jet Ezi∑ = 0

€ 

tanθ jet =
Exi∑( )

2
+ Eyi∑( )

2

Ezi∑

€ 

tanφ jet =
py, jet
px, jet

€ 

px, jet = Exi∑
py, jet = Eyi∑

€ 

pT , jet = Exi∑( )
2

+ Eyi∑( )
2

pz, jet = Ezi∑€ 

tanθ jet =
pT , jet
pz, jet
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Jet 4-momentum summary

•  Jet Energy:


•  Jet Momentum:


•  Jet Mass:


•  Jet 4-vector:


•  Jet is an object now!  So how do we define ET?


  

€ 

pµ
jet = E jet ,

 p jet( ) = Ei
cells
∑ , Ei ˆ n i

cells
∑

 

 
 

 

 
 

  

€ 

 p jet = Ei ˆ n i
towers
∑

€ 

E jet = Ei
towers
∑

€ 

M jet
2 = E jet

2 − p jet
2
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ET of a Jet


•  For any object, ET is well defined:


•  There are 2 more ways you could imagine using to define ET of a jet but neither 
are technically correct:


–  How do they compare?  

–  Is there any ET or η dependence?


€ 

ET , jet = E jet sinθ jet

€ 

ET , jet = ET ,i
towers
∑

€ 

ET , jet ≡ E jet
2 − pz, jet

2 = pT , jet
2 + m jet

2

or


correct 

Alternative 1 Alternative 2 
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True ET vs Alternative 1


•  True:


•  Alternative 1:


•  Define                                                                                      which is always >0                                                   


–  Expand in powers of            :


–  For small η, tanhη → η  so either way is fine

•  Alternative 1 is the equivalent to true def central jets


–  Agree at few% level for |η|<0.5


–  For η ~ 0.5 or greater....cone dependent

•  Or “mass” dependent....same thing


€ 

ET , jet = pT , jet
2 + m jet

2

€ 

Δ1 ≡
ET , jet − E jet sinθ jet

ET , jet

=1−
pT , jet
2 + m jet

2 sin2θ jet

pT , jet
2 + m jet

2

€ 

m jet
2

pT , jet
2

€ 

Δ1→
m jet
2 tanh2η jet

2pT , jet
2

€ 

ET , jet = E jet sinθ jet = p jet
2 + m jet

2 sinθ jet = pT , jet
2 + m jet

2 sin2θ jet

Leading jet, |η|>0.5
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True ET vs Alternative 2


Alternative 2:                                   harder to see analytically…imagine a jet w/2 
towers


–  TRUE:


–  Alternative 2:


–  Take difference: 


–  So this method also underestimates “true” ET

•  But not as much as Alternative 1 


€ 

ET , jet = ET ,i
towers
∑

€ 

ET , jet
2 = E jet

2 − pz, jet
2 = E1 + E2( )2 − pz1 + pz2( )2

= E1
2 + 2E1E2 + E1

2 − pz1
2 + 2pz1pz2 + p1

2

= ET1
2 + ET 2

2 + 2E1E2 1− cosθ1 cosθ2( )

€ 

ET1 + ET1( )2 = ET1
2 + ET 2

2 + 2ET1ET 2

= ET1
2 + ET 2

2 + 2E1E2 sinθ1 sinθ2

€ 

ET , jet
2 − ET1 + ET 2( )2 = 2E1E2 1− cosθ1 cosθ2 − sinθ1 sinθ2( )

= 2E1E2 1− cosδθ( ) = E1E2 sin
2δθ 2

Always > 0!


Leading jet, |η|>0.5
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Jet Shape


•  Jets are defined by                 but the “shape” is determined by


•  From Euler: 


•  Now form               for those towers close to the jet axis:  δθ →0 and δφ → 0


•  From                            we get                         which means


  

€ 

 
k T ,i

particles
∑ = 0

€ 

kT ,i
2

particles
∑ = ′ E x,i

2 + ′ E y,i
2

particles
∑ ≥ 0

€ 

′ E xi = −Exi sinφ jet + Eyi cosφ jet = ETi sinδφi

′ E yi = −Exi cosθ jet cosφ jet − Eyi cosθ jet sinφ jet + Ezi sinθ jet

= −ETi cosδφi cosθ jet + Ezi sinθ jet

€ 

kT ,i
2

particles
∑

€ 

′ E xi → ETiδφi

′ E yi →−ETi cosθ jet + Ezi sinθ jet = −Ei sinθi cosθ jet + Ei cosθi sinθ jet = Ei sinδθi ~ Eiδθi

€ 

δφ ≡ φi −φ jet

δθ ≡ θi −θ jet

€ 

tanhη = cosθ

€ 

dθ = −sinθdη

€ 

′ E xi → ETiδφi

′ E yi → Eiδθi = −Ei sinθiδηi →−ETiδηi

€ 

kT ,i
2 = ′ E xi

2 + ′ E yi
2 = ET ,i

2 δφi
2 + δηi

2( )So…


and…


€ 

kT ,i
2

particles
∑ = ′ E x,i

2 + ′ E y,i
2

particles
∑ = ET ,i

2 δφi
2 + δηi

2( )
particles
∑
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Jet Shape – ET Weighted


•  Define                          and                           


–  This gives:                                    and equivalently, 


–  Momentum of each “cell” perpendicular to jet momentum is from

•  Eti of particle in the detector, and

•  Distance from jet in ηφ plane


–  This also suggests jet shape should be roughly circular in ηφ plane

•  Providing above approximations are indicative overall….


•  Shape defined:

–  Use energy weighting to calculate true 2nd moment in ηφ plane


€ 

kT ,i
2

particles
∑ = ET ,i

2 δRi
2

particles
∑

€ 

δRi
2 ≡ δφi

2 + δηi
2

€ 

kTi = ETiδRi

€ 

δRi = δRi
2 = δφi

2 + δηi
2

€ 

σR
2 ≡

kT ,i
2

particles
∑

ET ,i
2

particles
∑

=

ET ,i
2 δRi

2

particles
∑

ET ,i
2

particles
∑

=σηη +σφφ

€ 

σηη ≡

ET ,i
2 δηi

2

particles
∑

ET ,i
2

particles
∑

€ 

σφφ ≡

ET ,i
2 δφi

2

particles
∑

ET ,i
2

particles
∑with
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Jet Shape – ET Weighted (cont)

•  Use sample of “unmerged” jets


•  Plot 


–  Shape depends on cone parameter

–  Mean and widths scale linearly with cone 

parameter
€ 

σR =

′ E x,i
2 + ′ E y,i

2

particles
∑

ET ,i
2

particles
∑

•  “Small angle” approximation pretty good

  For Cone=0.7, distribution in σR has:


  Mean ± Width =.25 ± .05


  99% of jets have σR <0.4


<σR> vs Jet Clustering Parameter (Cone Size)


<σ
R>





10-Dec-2008
 D. Baden, U. Geneve
 37


Jet Mass
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Jet Samples


•  DZero Run 1

•  All pathologies eliminated (Main Ring, Hot Cells, etc.)

•  |Zvtx|<60cm

•  No τ, e, or γ candidates in event


–  Checked ηφ coords of τeγ vs. jet list

–  Cut on cone size for jets


•  .025, .040, .060 for jets from cone cuttoff 0.3, 0.5, 0.7 respectively

•  “UNMERGED” Sample:


–  RECO events had 2 and only 2 jets for cones .3, .5, and .7

–  Bias against merged jets but they can still be there


•  e.g. if merging for all cones

•  “MERGED” Sample:


–  Jet algorithm reports merging
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Jet Mass


•  Jet is a physics object, so mass is calculated using:

–  Either one…


•  Note:  there is no such thing as “transverse mass” for a jet

–  Transverse mass is only defined for pairs (or more) of 4-vectors…


•  For large ET,jet we can see what happens by writing


–  And take limit as jet narrows                 and               and expand ET and pT


–  This gives


so….                                                       →                             using


€ 

M jet
2 = E jet

2 − p jet
2 = ET , jet

2 − pT , jet
2

€ 

M jet
2 = ET , jet

2 − pT , jet
2 = ET , jet + pT , jet( ) ET , jet − pT , jet( )

€ 

pT , jet → ET ,i 1−
δφi

2

2
 

 
 

 

 
 ∑

€ 

ET , jet → ET ,i 1+
δηi

2

2
 

 
 

 

 
 ∑

€ 

ET , jet − pT , jet =
1
2

ET ,i δηi
2 + δφi

2( )∑

€ 

ET , jet + pT , jet =
1
2

ET ,i 4 + δηi
2 −δφi

2( )∑ ≈ 2 ET ,i∑

€ 

M jet
2 = ETi∑ ETi δηi

2 + δφi
2( )∑

€ 

M jet ≅ ET , jetσR

€ 

ET , jet ≅ ET ,i
particles
∑

Jet mass is related to jet shape!!! (in the thin jet, high energy limit)
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Jet Mass (cont)


•  Jet Mass for unmerged sample                        How good is “thin jet” approximation?


Low-side tail is due to lower ET jets for smaller cones

(this sample has 2 and only 2 jets for all cones)
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Jet Merging


•  Does jet merging matter for physics? 

–  For some inclusive QCD studies, it doesnʼt matter

–  For invariant mass calculations from e.g. top→Wb, it will smear out mass distribution 

if merging two “tree-level” jets that happen to be close

•  Study σR…see clear correlation between σR and whether jet is merged or not


–  Can this be used to construct some kind of likelihood?

“Unmerged”, Jet Algorithm reports merging, all cone sizes
 “Unmerged” v. “Merged” sample
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Merging Likelihood


•  Crude attempt at a likelihood

–  Can see that for this (biased) sample, can use this to pick out “unmerged” jets 

based on shape

–  Might be useful in Higgs search for H→ bb jet invariant mass?


Jet cone 
parameter


Equal likelihood to be 
merged and unmerged


0.3
 0.155


0.5
 0.244


0.7
 0.292
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Merged Shape


•  Width in ηφ                                      “assumes” circular


–  Large deviations due to merging?


–  Define                                    should be independent of cone size


•  Clear broadening seen – “cigar”-shaped jets, maybe study… 

€ 

σR
2 =σηη +σφφ

€ 

δηφ ≡
σηη −σφφ

σηη +σφφ

“Unmerged” Sample
 “Merged” Sample


€ 

σφη ≡

ET ,i
2 δφiδηi

particles
∑

ET ,i
2

particles
∑


