Non Scaling Fixed Field Alternating Gradient Gantries

Dejan Trbojevic
NS-FFAG GANTRIES

1. Introduction
 - Motives: reduction of cost by using method - simpler is better
 - Small size for carbon - superconducting combined function magnets
 - Spot scanning, simplify operation, large energy acceptance
 - CYCLOTRON application, TERA LINAC application

2. Basic concept of Non-Scaling FFAG (NS-FFAG)

3. SAD definition

4. NS-FFAG gantry with adjustable fields

5. NS-FFAG gantry with fixed fields

6. Summary
Motivation for the NS-FFAG gantries

Motivation

Reduce a major cost for the hadron therapy

Present solutions use large magnets (carbon ions especially)

Magnetic field is the same for all energies

Carbon $E_k=400$ MeV/u

$B_{\rho} = 6.35 \text{ Tm} \ (\theta = Bl/B_{\rho})$

If: $B=1.6 \text{ T}$ then $\rho \sim 4.0 \text{ m}$

If: $B=3.2 \text{ T}$ then $\rho \sim 2.0 \text{ m}$

Weight of the transport components - 135 tons

Total weight = 630 tons

Length of the rotating part 19 m long.
ACCELERATORS:

- Cyclotron
 *isochronous

- Synchrotron
 *const. closed orbit
 (varying mag. field)

- FFAG
 *varying closed orbit
 (const. mag. field)
Scaling vs. non-scaling FFAG

- Orbit offsets are proportional to the dispersion function:
 \[\Delta x = D_x \times \frac{\delta p}{p} \]

- To reduce the orbit offsets to ±4 cm range, for momentum range of \(\delta p/p \sim \pm 50\% \) the dispersion function \(D_x \) has to be of the order of:
 \[D_x \sim 4 \text{ cm} / 0.5 = 8 \text{ cm} \]
Non-scaling FFAG for Muon Acceleration

$$\Delta x = D_x * \delta p/p$$

- Extremely strong focusing with small dispersion function.
- Smaller energy acceptance.
- Tunes vary.
- Orbit offsets are small.
- Magnets are small.

Design of a nonscaling fixed field alternating gradient accelerator

D. Trbojevic, E. D. Courant, and M. Blaskiewicz

BNL, Upton, New York 11973, USA

Dejan Trbojevic, May 23, 2011

2nd Workshop on Hadron Beam Therapy of Cancer - Erice 2011
Basic cell of the “triplet” NS-FFAG muon

Orbit for \(\frac{dp}{p} = 33.3\% \)

Orbit for \(\frac{dp}{p} = 0 \)

Orbit for \(\frac{dp}{p} = -33.3\% \)

Angle \(q_f = -0.027 \)

L_qf = 0.58 m

Total Circumference \(C = 328 \) m

Cell length = 4.9697 m

Number of cells \(N = 66 \)

Drift for a cavity

\(\frac{1}{2} L_{cav} = 0.99185 \) m

\(s = \frac{L_{cav}}{2} \)

L_{qd} = 1.5 m

Angle \(q_d = 0.1436 \)
Orbits in the NS-FFAG muon acceleration triplet cell
Scaling FFAG - Non scaling FFAG

Scaling FFAG properties:
- Zero chromaticity.
- Orbits parallel for different $\delta p/p$.
- Relatively large circumference.
- Relatively large physical aperture (80 cm – 120 cm).
- RF - large aperture.
- Tunes are fixed for all energies no integer resonance crossing.
- Negative momentum compaction.
- $B = B_0 (r/r_0)^k$ non-linear field.
- Large acceptance.
- Large magnets.
- Very large range in $\Delta p/p = \pm 90\%$

Non-Scaling FFAG properties:
- Chromaticity is changing.
- Orbits are not parallel.
- Relatively small circumference.
- Relatively small physical aperture (0.50 cm – 10 cm).
- RF - smaller aperture.
- Tunes move 0.4-0.1 in basic cell resonance crossing for protons.
- Momentum compaction changes.
- $B = B_0 + x G_0$ linear field.
- Smaller acceptance.
- Small magnets.
- Large range in $\Delta p/p = \pm 60\%$.
Possible applications of the NS-FFAG gantries:

- **CYCLOTRON** – energy degrader
 - Spot scanning
 - Multi-leaf collimator

- Slow extraction slow cycling synchrotrons

- Fast cycling synchrotrons

- Linac modules
Possible application of the NS-FFAG Gantries
Possible application of the NS-FFAG Gantries
Possible application of the NS-FFAG Gantries

IDRA design: Riccardo Zennaro
with “LINAC” by Ken Crandall

Replace with NS-FFAG
Possible applications of the NS-FFAG gantries:

- CYCLOTRON – energy degrader
- Fast cycling synchrotrons
- Linac modules
- Spot scanning
- Multi-leaf collimator
- Slow extraction, slow cycling synchrotrons

Replace with NS-FFAG
SAD – SOURCE-TO-AXIS-DISTANCE

The maximum dose to the patient surface relative to the dose in the SOBP increases as the effective source-to-axis distance (SAD) decreases. For a fixed, horizontal beam, large SAD's are easy to achieve; but not for gantry beam lines. A smaller gantry with a physical outer diameter of less than 2 meters may have important cost implications. Such a gantry would require magnetic optics to ensure that the effective source-to-axis distance is large enough to provide adequate skin sparing.
Smaller size proton/carbon gantries with adjustable magnetic fields for each energy

\[L_d = 30 \text{ cm} \]
\[B_D = 5.58 \text{ T} \]
\[G_D = -93.0 \text{ T/m} \]

\[L_f = 32 \text{ cm}, \]
\[B_F = 3.665 \text{ T} \]
\[G_F = 110.0 \text{ T/m} \]

TRIPLET:
\[KDP1 = 31.0 \text{ T/m} \]
\[KFP2 = -48.4 \text{ T/m} \]
\[KDP3 = 31.0 \text{ T/m} \]
MAGNET PROPERTIES

Ld = 30 cm, Lf = 32 cm,
Byd = 5.58 T, Byf = 3.665 T
GF = 110.0 T/m
GD = -93.0 T/m

TRIPLET:
KDP1 = 31.0 T/m
KFP2 = -48.4 T/m
KDP3 = 31.0 T/m
Superconducting carbon ions gantry with energy acceptance $\Delta p/p = \pm 20\%$
$(200 \text{ MeV/u} < E_k < 400 \text{ MeV/u})$
Gradients and Magnetic fields

Combined Function magnets:
B\text{f} focusing magnet l=19 cm:
\[B_{\text{fo}} = 0.625 \text{ T, Gradient} = 200 \text{ T/m,} \]
Maximum field:
\[B_{\text{d}} = 0.625 + 202.8 \times 9.5 \times 10^{-3} = 2.55 \text{ T} \]
\[B_{\text{d}} = 0.625 + 202.8 \times (-7.2 \times 10^{-3}) = 1.09 \text{ T} \]

B\text{d} defocusing magnet l=19 cm:
\[B_{\text{do}} = 5.21 \text{ T, Gradient} = -157.26 \text{ T/m,} \]
Maximum field:
\[B_{\text{d}} = 4.97 + (-157.3) \times 9.5 \times 10^{-3} = 3.48 \text{ T} \]
\[B_{\text{d}} = 4.97 + (-157.3) \times (-7.2 \times 10^{-3}) = 6.1 \text{ T} \]
Particle tracking at the end of the gantry
All at once: Fixed field & fixed focusing

Magnification 30 TIMES

- 400 MeV/u
- 200 MeV/u

Dimensions:
- 3.883 m
- 4.166 m
- 1.483 m
- 2.683 m
- 9 mm
- 2 mm

Angles:
- 72°
- 18°
Vasily Morozov - Dejan Trbojevic
NS-FFAG 10 fixed gradients

KBF1 = 212.7332 T/m
KBD1 = -179.260 T/m
KBF2 = 214.650 T/m
KBD2 = -173.543 T/m
KBF3 = 216.805 T/m
KBD3 = -171.042 T/m
KBF4 = 220.030 T/m
KBD4 = -178.477 T/m
KBD5 = -182.891 T/m

KFTRP1 = 25.5 T/m
KDTRP2 = -25.5 T/m
KFTRP3 = 25.5 T/m

KFTRP1 = 25.5 T/m
KDTRP2 = -25.5 T/m
KFTRP3 = 25.5 T/m

LBFTRP = 0.20 m
LBDTRP = 0.34 m
LBFTRP = 0.20 m

BFtr = 1.905 T
BDtr = 0.4035 T
Magnet Properties:

Combined Function magnets:

\(B_f \) focusing magnet \(l=17 \text{ cm} \):
- \(B_{fo}=0.625 \ T \), Gradient \(=212.8 \ T/m \),
- Maximum field:
 \[B_f=0.403+ 212.8 \times 9.5 \times 10^{-3}=4.33 \ T \]
 \[B_f=0.403+ 212.8 \times (-5.7 \times 10^{-3})=-0.8 \ T \]

\(B_d \) defocusing magnet \(l=8 \text{ cm} \):
- \(B_{do}= 4.76 \ T \), Gradient-max \(=-174 \ T/m \),
- Maximum field:
 \[B_d=4.76+(-174) \times 9.5 \times 10^{-3} =3.48 \ T \]
 \[B_d=4.76+(-174) \times (-2.2 \times 10^{-3})=5.1 \ T \]
Magnet design

In a quadrupole, the coil length limits the fill factor in the cross-section when it becomes less than one fourth of the circumference. We used six spacers (wedges) in the cross-section to make the first six allowed harmonics nearly zero. Once again, a large integral transfer function is obtained since the mid-plane turns span the entire end-to-end coil length. The design has a coil diameter of 200 mm and coil length of 90 mm (less than half the radius). Quad with Coil Length Less Than Coil Radius Sextupole with Coil Length 2/3 Coil Radius We carried out a similar exercise for a 200 mm aperture sextupole having an end-to-end coil length of 66 mm. This is ~1/3 of diameter. We were again able to get a design with low harmonics and a good integral transfer function.

[Image: OPERA3d model of a short length dipole based on the Optimum Integral Design. Coil length is ~175 mm and coil diameter is 200 mm.]
BNL-preliminary combined function magnet design

![Diagram of Direct Wind Combined Function Gantry Magnet]

Even without shielding coil, fringe field < 2 gauss at 3 m.

- \(B_0 = 3.500 \) T
- \(C = 52.6 \) T/m

Field is very linear until close to the coil winding.
AML combined function magnet design

Figure 2. Dipole windings with 50% normal quad amplitude. The turn spacing, h', has been increased due to the conductor impingement effect at the mid-plane.

Figure 3. Diagram of a proposed 4-layer double-helix coil used in a 180° beam channel bend.
AML combined function magnet design

<table>
<thead>
<tr>
<th></th>
<th>Dipole</th>
<th>Dipole+quad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coil aperture, mm</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Coil current, A</td>
<td>5000</td>
<td>5000</td>
</tr>
<tr>
<td>Conductor turn spacing, mm</td>
<td>6.400</td>
<td>11.421</td>
</tr>
<tr>
<td>Quadrupole amplitude (e_2)</td>
<td>0.0</td>
<td>0.5</td>
</tr>
<tr>
<td>Dipole field, T</td>
<td>-5.124</td>
<td>-3.047</td>
</tr>
<tr>
<td>Quadrupole field @ r=30 mm, T</td>
<td>0.000</td>
<td>-1.385</td>
</tr>
<tr>
<td>Gradient, T/m</td>
<td>0.000</td>
<td>-46.167</td>
</tr>
</tbody>
</table>

A = 4 cm
Reaching the patient with parallel beams

4.16 m
Reaching the patient with parallel beams
Scanning system

\[\Delta x = 0.028 \times 0.62 = 0.0174 \text{ m} \]
Scanning system

\[\Delta x = 0.028 \times 0.62 = 0.0174 \text{ m} \]
Scanning system

$\Delta x = 0.028 \times 0.62 = 0.0174 \text{ m}$

4.16 m
Possibility of SAD = ∞
Possibility of $SAD = \infty$
Betatron functions

4.16 m
NS-FFAG gantry with permanent magnets

Halbach PM Dipole Structures:

\[B_g = B_r \ln(OD/ID) \]

There is no upper limit for air gap flux density in Halbach dipole structures according to equation.
Permanent Halbach magnet NS-FFAG gantry

BRHO = 1.7372345376900 Tm ANG=2π/120 = 0.05235987755982988
BYD= 2.0214 T KF =160.0 T/m KD= -175.0 T/m
L_{CELL} =0.285081466313463

14 cells-27 cells

r=2.71 m

h_1=2.61 m

h_2=3.172 m

84°

162°
Spot scanning

Triplet combined function magnet properties and settings:

GF-TP1 = 27.1482 T/m
GD-TP2 = -23.967 T/m
GF-TP3 = 37.716 T/m

D22P = 0.9487 m
D31P = 0.2773 m
D32P = 0.0959 m

$\beta_{y_{\text{max}}} = 11.949 \text{ m}$
$\beta_{x_{\text{max}}} = 5.4445 \text{ m}$

$h_2 = 3.00 \text{ m (SAD)}$
$h_2 = 3.172 \text{ m}$

$L_1 = 10 \text{ cm}$
$L_2 = 10 \text{ cm}$
$L_3 = 10 \text{ cm}$

Drf4P = 1.348 m
What is innovative: extreme focusing

\[
\begin{align*}
L_{QF/2} &= 6.05 \text{ cm} \\
L_{QD} &= 9.2 \text{ cm} \\
L_B &= 3.8 \text{ cm} \\
29.7 \text{ cm}
\end{align*}
\]
Particle tracking through the gantry

Particles in x - y phase space at the end of the gantry

Energy range between 68-250 MeV
Matching NS-FFAG gantry with the triplet

Input parameters are:
\[x_{\text{max}} \] and \[x_{\text{min}} \] from the arc NS-FFAG
\[p_{\text{max}}, \ p_{\text{o}}, \ \text{and} \ p_{\text{min}}, \ D, \ \beta_x, \ \beta_y, \]

Unknowns: \[B_D, \ B_F, \ \Phi_{\text{fo}}, \ \Phi_{\text{do}}, \ \text{and} \ l_0 \]

\[
\rho_{\text{do}} = \frac{p_c}{eB_D}
\]
\[
\rho_{\text{d max}} = \frac{p_{\text{max}}}{eB_D}
\]
\[
\rho_{\text{d min}} = \frac{p_{\text{min}}}{eB_D}
\]
\[
\rho_{\text{f 0}} = \frac{p_c}{eB_F}
\]
\[
\rho_{\text{f max}} = \frac{p_{\text{max}}}{eB_F}
\]
\[
\rho_{\text{f min}} = \frac{p_{\text{min}}}{eB_D}
\]

To be matched to the input parameters of the linac: \[\beta_x, \ \beta_y, \ \alpha_x, \alpha_y \]
SUMMARY:

1. NS-FFAG gantries provide transfer of carbon ions with $\Delta p/p=\pm20\%$
2. Weight is reduced for one or two orders of magnitude.
3. Size of NS-FFAG the carbon gantry is of PSI proton one.
4. Operation is simplified as the magnetic field is fixed.
5. Scanning system is with SAD~3m.
6. Beam size is adjustable with the triplet magnets.
7. It is possible to transfer in one pass beam with all energies after the multi-leaf collimator.
8. Triplet magnets do not need to be superconducting