# Il Sistema di Posizionamento Globale (GPS)

- Dalla triangolazione su terra al GPS nello spazio
- I satelliti GPS
- Determinazione delle distanze dai satelliti mediante misure di tempo dei segnali
- Come è raggiunta la straordinaria precisione del GPS?
- GPS e Teoria della Relatività

Salvatore Mele e Paolo Strolin

strolin @ na.infn.it www.na.infn.it  $\rightarrow$  el. tel.  $\rightarrow$  Strolin

# Determinare la nostra posizione nello spazio: "dove siamo"?

- Uno dei problemi fondamentali dell'umanità,
   sin dai tempi antichi (pensiamo alla navigazione)
- · La scienza risponde anche a esigenze pratiche
- Strumenti per il "dove siamo?": bussola, sestante, orologi precisi ...

Oggi il <u>GPS</u> (Global Positioning System)

<u>Come funziona ?</u>

#### Per iniziare: la triangolazione

<u>Posizione</u> individuata in base alle <u>distanze</u> da <u>tre</u> punti di riferimento sulla superficie terrestre



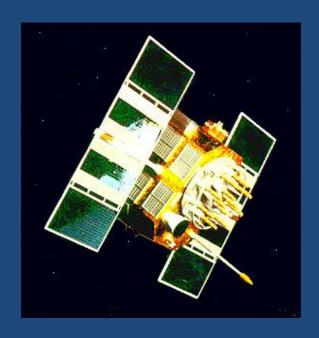
Ad esempio, se distiamo:

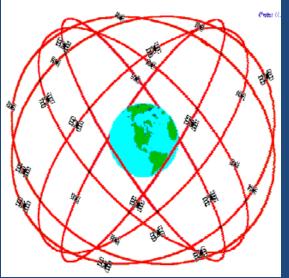
- 2,3 km dall'Eremo dei Camaldoli
- 1,6 km dall'incrocio tra Via Giustiniano e Via Piave
- 1,9 km dall'incrocio tra Via
   Terracina e Via Agnano-Astroni

... siamo all'Università a Monte S. Angelo (il punto in cui i cerchi si incrociano)



#### Come si trova la posizione con il GPS?

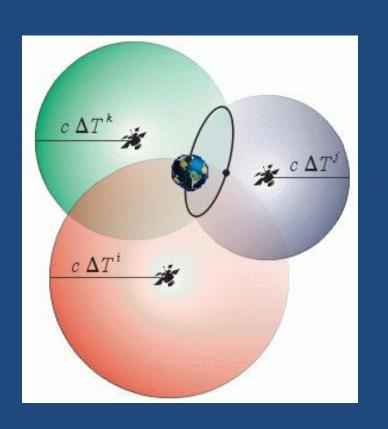

 Stessa idea di base della triangolazione: posizione in base a distanze da punti di riferimento la cui posizione è nota


· Quali punti di riferimento?

I satelliti del sistema GPS



#### I satelliti del sistema GPS






- ·Proprietà della Difesa USA
- · 27 satelliti (24+3 riserve)
- ·Lanciati dal 1978 al 1994
- · Circa 20.000 km dal suolo
- ·12 ore periodo di rivoluzione
- · 1 ton di peso
- •17 metri (con pannelli)
- 10 miliardi di euro (per il sistema completo)

### Nello spazio, che cosa corrisponde alla triangolazione?

#### Dal piano allo spazio -> da cerchi a sfere



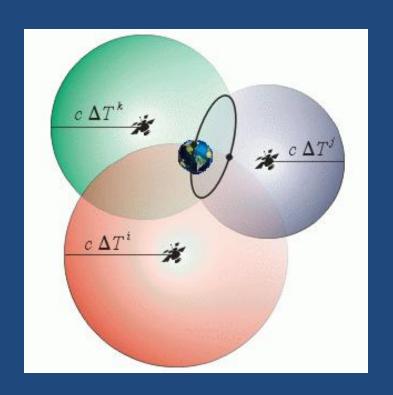
- 1. Siamo ad una certa distanza dal primo satellite: su una <u>sfera</u>
- 2. Siamo sul <u>cerchio</u> dove si intersecano la sfera del primo e del secondo satellite
- 3. Siamo in uno dei <u>due punti</u> dove il cerchio si interseca con la sfera del terzo satellite
- 4. Non possiamo che essere nel <u>punto</u> sulla Terra!

#### Notate bene

Sia nella triangolazione che con il GPS la posizione si misura in base a distanze da punti di riferimento

(punti su terra per la triangolazione, satelliti per il GPS)

#### Come misurare le distanze?


Distanza D = Velocità V x Tempo T



Ad es: V=300 km/h, T=1 hD =  $300 \text{ km/h} \times 1 \text{ h} = 300 \text{ km}$ 

Se conosciamo la velocità e misuriamo il <u>tempo</u>, possiamo determinare la <u>distanza</u>!

#### E per la distanza da un satellite?



I segnali inviati dal satellite viaggiano con una velocità conosciuta con estrema precisione:

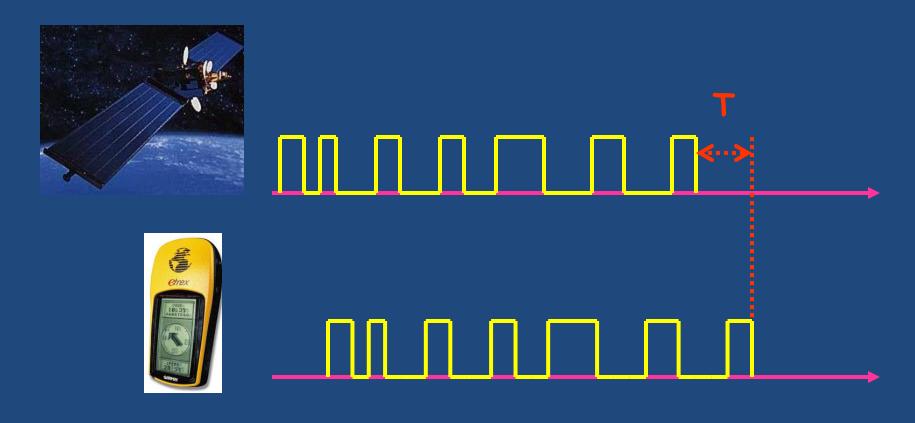
la velocità della luce

Si <u>misura il tempo</u> T di percorrenza del segnale, quindi:

 $D = c \times T$ 

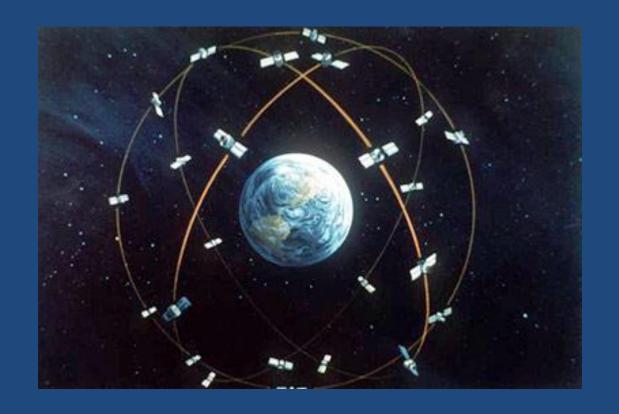
## Quanto sono piccoli i tempi da misurare?




Velocità della luce c = 300.000 km/sDistanza del satellite D = 20.000 km

 $D = c \times T$  $\rightarrow T = D/c = 20.000 \text{ km} / 300.000 \text{ km/s}$ 

Tempo T da misurare: <u>6,7 centesimi di secondo</u> e con estrema precisione (vedremo quanto)


Come?

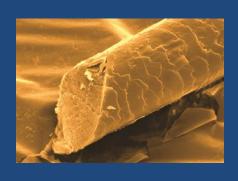
### Satellite e ricevitore "cantano la stessa canzone" (il segnale PRN : Pseudo Random Noise)



Misurando il ritardo T del "canto" del satellite, il ricevitore misura il tempo di percorrenza del segnale e quindi calcola la distanza D del satellite!

#### Le diverse canzoni dei satelliti




Il ricevitore sa <u>dove</u> si trovano i satelliti e <u>quale</u> sta ascoltando: ogni satellite "canta una canzone diversa"

Misura così le distanze da tutti i satelliti in vista

#### La precisione del GPS è incredibile

Una precisione di 10 m / D = 20.000 km equivale a 0,5 / un milione

E' come misurare l'altezza della Torre di Pisa con la precisione del diametro di un capello!



diametro capello ~50 µm

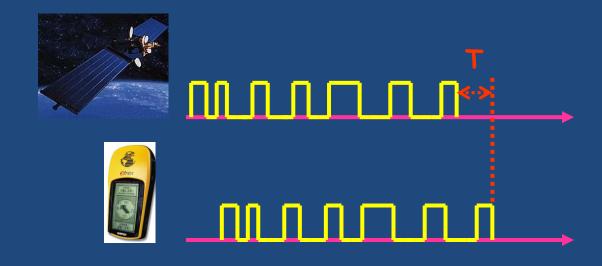
 $(1\mu m = 1 \text{ milionesimo di m})$ 

altezza Torre di Pisa ~70 m



Come è possibile?

#### Quale è l'errore dominante?


Le posizioni dei satelliti istante per istante sono conosciute con grande precisione

L'errore dominante sulla posizione viene da quello nella misura sulle distanze D

D = c x T ove velocità della luce c è nota

L'errore dominante su D e quindi sulla posizione data dal GPS proviene da quello nella misura dei tempi T

#### Quale precisione nella misura del tempo T?



- I satelliti hanno orologi atomici, i più precisi esistenti. Ma un orologio atomico costa 100.000 euro!
- I ricevitori hanno normali orologi al quarzo: con un errore su T di 0.00001 s, l'errore su D è  $300.000 \text{ km/s} \times 0.00001 s = 3 \text{ km}$

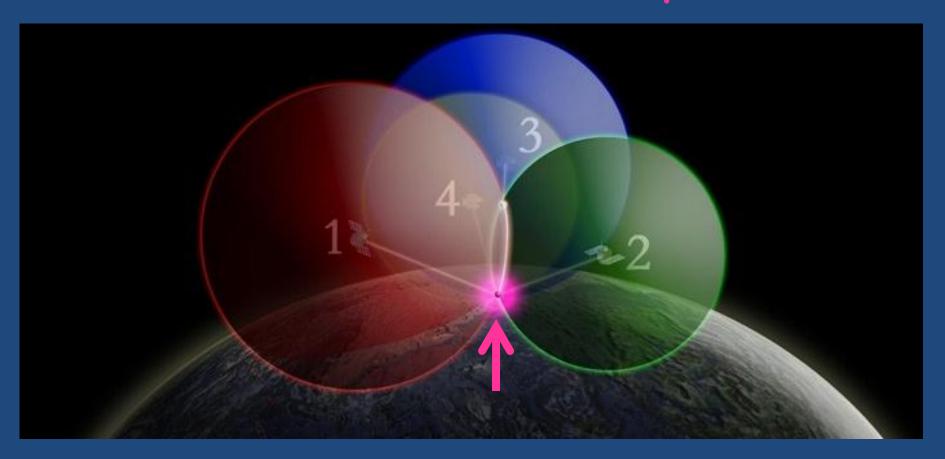
Come arrivare a precisioni di metri?

#### Notate bene

Orologio che non conta al ritmo giusto: errore "sistematico"

Si può correggere?




Correzione di un errore sistematico dello strumento



- I cerchi devono incrociarsi in un punto
- •Quindi cambiamo i diametri di <u>tutti</u> i cerchi moltiplicandoli per una costante fino a incrociarli in un punto solo
- Abbiamo corretto l'errore sistematico nella misura delle distanze D e migliorato la precisione senza comprare uno strumento migliore

E per correggere D del GPS?

#### Ora serve anche un <u>quarto</u> satellite: si scalano tutte le distanze fino a ottenere l'incrocio delle sfere in un <u>punto</u>!

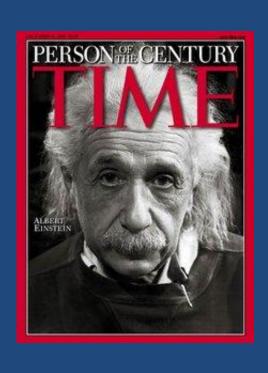


Con un ricevitore da 100 euro si arriva alla precisione di un orologio atomico da 100.000 euro!

#### IL GPS differenziale (DGPS)

Oltre al DGPS come "Stazione Mobile", si usa anche una "Stazione di Riferimento"

> <u>Stazione di Riferimento</u> : un ricevitore *G*PS di altissima qualità, posto in un punto (terrestre) con coordinate conosciute con estrema precisione


Confronta la posizione da lui determinata con quella attesa, calcola le correzioni (ad es. dovute a effetti atmosferici) e le trasmette tramite il proprio apparato radio-trasmittente

> <u>Stazione Mobile</u> : riceve le correzioni e le applica al punto determinato autonomamente

#### La precisione aumenta notevolmente

Usato per esempio in cartografia: precisioni dell'ordine delle decine di centimetri!

# La fisica fondamentale serve per il GPS?



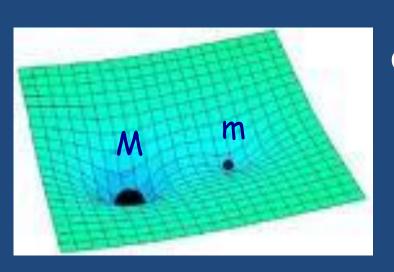


1905-2005, cento anni di Relatività

#### Relatività "Speciale"

Il <u>tempo</u> non è una variabile assoluta e indipendente:

è "relativo" al sistema in cui scorre e dipende dal rapporto tra la sua velocità v rispetto a noi e la velocità della luce c




Se il sistema si muove ad alta velocità rispetto a noi, il suo tempo ci appare scorrere più lentamente del nostro.

Effetto <u>trascurabile per v « c</u> come nella vita corrente

Si parla di coordinate di "spazio-tempo"

#### Relatività "Generale"



Una massa M produce un avallamento dello spazio-tempo entro cui una massa m viene attratta con la forza storicamente data dalla legge di Newton F = G mM/r<sup>2</sup>

Così la Relatività Generale spiega l'attrazione gravitazionale

#### Bisogna tenere conto della Relatività!

#### > Relatività Speciale

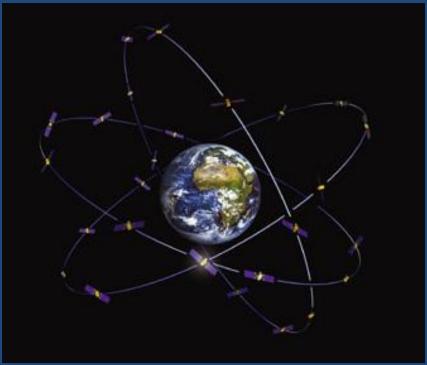
Orbita con raggio medio r=26.500 km e periodo di rivoluzione T=12 ore:  $V = 2\pi r/T = 4$  km/s Una velocità (su terra altissima) da confrontare con c = 300.000 km/s

Il satellite GPS "canta" più lentamente, un suo secondo dura 1,00000000007 nostri secondi.

Fa una differenza di circa -7 microsecondi al giorno!

#### > Relatività Generale

La "curvatura dello spazio-tempo" (prodotta dalla massa della Terra) all'altitudine del satellite è minore di quella al suolo e il tempo è accelerato: +45 microsecondi al giorno


#### Osservazioni finali

- · Una invenzione importante per la vita pratica
- Applicazione anche di fisica fondamentale: la Teoria della Relatività entra nella vita corrente
- Possibile conoscere la propria posizione con una precisione attorno alla decina di metri, per applicazioni specializzate anche meglio
- Tecnologia sviluppata per scopi militari, tuttora controllata dalla Difesa USA
- · L'agenzia spaziale ESA della Comunità Europea prepara il suo sistema GALILEO, per uso civile

#### La futura "costellazione" dei 30 satelliti europei di GALILEO

(suddivisi in 3 diverse orbite ad un'altitudine di 23.000 km)





http://www.esa.int/esaNA/galileo.html