Gli eventi di neutrino nelle emulsioni nucleari

Giovanni De Lellis University "Federico II" of Naples and INFN

Gli inizi della tecnica delle emulsioni

- 1896 Bequerel scopre la radioattività osservando l'annerimento di lastre fotografiche a causa di sali di uranio
- 1910 Kinoshita osserva tracce di particelle α
- Importanti sviluppi sulla sensibilità delle emulsioni negli anni 30' e 40' grazie al gruppo di Bristol guidato da Powell che riuscì a sviluppare emulsioni sensibili agli elettroni
- Emulsioni originariamente da 50 μ m (parallele alla direzione delle particelle)
- Ricerca per sviluppare emulsioni più spesse (fino a 1mm) che contenessero le particelle cariche prodotte
- Dopo la seconda guerra mondiale, fervida collaborazione tra gruppi universitari e industrie fotografiche (Kodak,Ilford)

La scoperta del pione Studio dei raggi cosmici su aereo a circa 9 km e a Pic du Midi

Powell ricevette il premio Nobel per la Fisica nel 1950. Nella presentazione il Comitato sottolineò la semplicità dell'apparato utilizzato

Le emulsioni nucleari in un esperimento

Usate per instrumentare la regione del bersaglio di un apparato sperimentale per lo studio delle proprietà delle particelle incidenti e/o dei prodotti delle loro interazioni. Due modalità:

- "Bulk": bersaglio completamente costituito da film di emulsioni
- Emulsion Cloud Chamber (ECC): bersaglio costituito da materiale passivo intervallato con emulsioni nucleari che fungono da tracciatore di risoluzione micrometrica 4

Le Emulsioni in modalità "bulk"

Le Emulsioni in modalità ECC

fascio di particelle⊥ alle emulsioni

Tracce ricostruite nei singoli film e connesse in film consecutivi

Vertice di non ispezionabile

Differenze nei due approcci

- "Bulk": ispezione visiva al microscopio distingue decadimenti da interazioni adroniche (rinculo e/o evaporazione nucleare), combinati con rivelatori elettronici per misura temporale, misure cinematiche e riconoscimento del muone
- ECC: bersaglio compatto e relativamente economico, elevata massa (bassi flussi e/o sezione d'urto), misure cinematiche della quantità di moto attraverso la deflessione Coulombiana multipla nel materiale passivo, identificazione di sciami elettromagnetici . Rivelatori elettronici usati per restringere area di scansione

Prima osservazione del "charm"

A POSSIBLE DECAY IN FLIGHT OF A NEW TYPE PARTICLE Niu et al., Prog.Theor.Phys.46 (1971) 1644-1646.

(a) First evidence for the production and decay of short-lived particles $(-10^{19} s)$ in cosmic rays¹⁴⁹; (b) the event was observed in an emulsion chamber.

DISCOVERY OF A NARROW RESONANCE IN E+ E- ANNIHILATION Phys.Rev.Lett.33:1406-1408,1974

Due particelle con quark "beauty" sono create e decadono (10⁻¹² s) generando particelle con "charm" che a loro volta decadono

DIRECT OBSERVATION OF THE DECAY OF BEAUTY PARTICLES INTO CHARM PARTICLES, Phys. Lett. B158 (1985) 186, Esperimento WA75, CERN

Prima osservazione della produzione associata di charm in CC (CHORUS)

Phys. Lett B 539 (2002) 188, CHORUS Coll.

Produzione associata di charm in NC

European Physical Journal C52 (2007) 543, CHORUS Coll.

Precisione micrometrica in posizione \rightarrow accurata definizione topologica \rightarrow particelle a vita breve (10⁻¹⁵ ÷10⁻¹² s) Ma anche 1. Misura della densità di grani ∝ dE/dx 2. Accurata misura delle deflessioni angolari (mrad) 3. Riconoscimento di coppie elettrone-positrone grani lungo la Electron (e* Nucleus traiettoria

Photon (y)

Positron (e⁺)

Applicazioni anche alla fisica medica

Protoni e ioni Carbonio usati in adroterapia (picco di Bragg)

Scarsa conoscenza delle loro interazioni lungo il cammino

Rivelazione (topologica) delle interazioni degli ioni Carbonio prima del picco di Bragg e identificazione dei prodotti attraverso la misura della ionizzazione

Interazione di uno ione Carbonio

Altra interazione di uno ione Carbonio

Diffusione Coulombiana multipla per misurare la quantità di moto

Sciami elettromagnetici

Misura dell'energia in modo calorimetrico

Interazione di v_e

electron

In un campione di circa 800 interazioni localizzate abbiamo rivelato $6 v_e$

Ricerca del ν_τ in OPERA

Topologia di decadimento del τ

Pb

 τ attraversa un film prima di decadere e si nota un cambio di direzione

 τ decade prima di lasciare una traccia e si osserva un parametro di impatto non nullo rispetto al vertice

Il charm come dimostratore

- Adroni con contenuto di charm hanno tempi di vita analoghi a quelli del τ
- Il processo di produzione di charm usato per controllare le efficienze di rivelazione

Charm candidate event (dimuon)

Charm candidate event (4-prong)

 D_0 hypothesis: F.L.: 313.1 μ m, ϕ : 173.2⁰, invariant mass: 1.7 GeV

Decadimento di un adrone con charm in h⁺ $2\pi^0$

L'evento candidato v_{τ}

Evento (senza muone) come visto nel rivelatore elettronico Interazione di neutrino avvenuta il 22 August 2009, 19:27

Emulsioni di interfaccia: dai rivelatori elettronici (σ ~ 1 cm) al vertice di neutrino (σ ~ 1µm)

Dalle lastre di interfaccia al vertice

Passi dell'analisi dell'evento

Osservato il cambio di direzione

Studio dettagliato:

Ricerca di eventuali frammenti nucleari Ricerca di sciami da fotoni Misura delle quantità di moto Inseguimento delle tracce nei mattoni a valle Identificazione delle particelle

Caratteristiche topologiche

Caratteristiche topologiche

Side view

Inseguimento a valle di tutte le particelle cariche che fuoriescono dal mattone per provare la loro natura adronica

Caratteristiche delle particelle cariche

TRACK NUMBER	PID	Probability	Misura nel primo lab			Misura nel secondo lab		
			$\tan\Theta_{\rm X}$	$\tan\Theta_{\rm Y}$	P (GeV/c)	$\tan\Theta_{\rm X}$	$\tan \Theta_{Y}$	P (GeV/c)
1	HADRON range in Pb/emul=4.1/1.2 cm	Prob(µ)≈10 ⁻³	0.177	0.368	0.77 [0.66,0.93]	0.175	0.357	0,80 [0.65,1.05]
2	PROTON	range, scattering and dE/dx	-0.646	-0.001	0.60 [0.55,0.65]	-0.653	0.001	
3	HADRON	interaction seen	0.105	0.113	2.16 [1.80,2.69]	0.110	0.113	1,71 [1.42,2.15]
4 (PARENT)			-0.023	0.026		-0.030	0.018	
5	HADRON: range in Pb/emul=9.5/2.8 cm	Prob(µ)≈10 ^{.3}	0.165	0.275	1.33 [1.13,1.61]	0.149	0.259	1,23 [0.98,1.64]
6	HADRON: range in Pb/emul=1.6/0.5 cm	Prob(µ)≈10 ⁻³				0.334	-0.584	0,36 [0.27,0.54]
7	From a prompt neutral particle		0.430	0.419	0.34 [0.22,0.69]	0.445	0.419	0.58 [0.39,1.16]
8 (DAUGHTER)	HADRON	interaction seen	-0.004	-0.008	12 [9,18]	-0.009	-0.020	

Rivelazione dei γ

- lunghezza di radiazione a valle del vertice: 6.5 X₀
- ricerca dei fotoni in tutto il volume
- ispezione visiva di tutte le tracce

	Distance from 2ry vertex (mm)	Energy (GeV)		
$1^{st} \gamma$	2.2	$5.6 \pm 1.0 \pm 1.7$		
$2^{nd} \gamma$	12.6	$1.2 \pm 0.4 \pm 0.4$		

Associazione al vertice dei γ

	Distance from 2ry vertex (mm)	IP to 1ry vertex (μm) <resolution></resolution>	IP to 2ry vertex (μm) <resolution></resolution>	Prob. of attach. to 1ry vtx*	Prob. of attach. to 2ry vtx*	Attachment hypothesis
1 st γ	2.2	45.0 <11>	7.5 <7>	<10 ⁻³	0.32	2ry vertex
$2^{nd} \gamma$	12.6	85.6 <56>	22 <50>	0.10	0.82	2ry vertex (favored)

* probability to find an IP larger than the observed one

 π^0 mass 120 ± 20 ± 35 MeV

Variabili cinematiche

Variabile	Valore
kink (mrad)	41 ± 2
decay length (µm)	1335 ± 35
P daughter (GeV/c)	12 +6 ₋₃
Pt (MeV/c)	470 ⁺²³⁰ -120
missing Pt (MeV/c)	570 + ³²⁰ - ₁₇₀
φ (deg)	173 ± 2

Interpretazione dell'evento

La massa invariante del sistema ($\pi \gamma \gamma$) è 640 ⁺¹²⁵₋₈₀ ⁺¹⁰⁰₋₉₀ MeV consistente con la p (770 MeV con Γ = 145 MeV) che è presente nel 25% dei decadimenti del τ

$$\begin{array}{c} \nu_{\tau} \, \mathrm{N} \rightarrow \tau \, \mathrm{X} \\ \tau \rightarrow \rho \, \nu_{\tau} \\ \rho \rightarrow \pi \, \pi^{0} \end{array}$$

Su una statistica analizzata del 35% dei primi due anni di presa dati (2008 e 2009) dove era previsto 0.54 ± 0.13 eventi abbiamo osservato 1 evento con fondo di 0.045 (evidenza a 2.01 σ).

Conclusioni

Importante laboratorio di microscopia automatica a Napoli

Primi studi dell'evento di neutrino tau: analisi topologica e cinematica. Analisi del mattone contenente l'interazione e di quelli a valle.

Evento osservato mostra caratteristiche topologiche e cinematiche del τ . L'evento supera tutte le selezioni previste dall'analisi.

Si prevede di completare l'analisi del campione dei primi due anni a fine 2010.

La presa dati dell'esperimento continuerà fino al 2012

Si attendono ~ 10 eventi di neutrino tau.