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Abstract

The resonant transition effects MSW and NSFP for three flavour Ma-
jorana neutrinos in a supernova are considered. In this scenario, the de-
formed thermal neutrino distributions are obtained for different choices of
the electron-tau mixing angle.

Among the mechanisms proposed to explain the solar neutrino problem, cer-
tainly, the most promising solution is provided by the resonant oscillation mech-
anism, the Mikheyev-Smirnov-Wolfenstein effect (MSW) [1], which is the most
natural and seems to have the correct energy dependence. Nevertheless, one can
imagine the superposition of a Neutrino Spin-Flavour Precession (NSFP) mech-
anism too [2, 3]. This effect is relevant when a strong transverse magnetic field is
present and if the magnetic dipole moments of neutrinos are large enough. Such
conditions can occur in a supernova and for these reasons, recently, the resonant
neutrino oscillations in a supernova, for three-flavour Majorana neutrinos, have
been considered [4].

For three flavour Majorana neutrinos the light degrees of freedom weakly in-
teracting can be denoted by νeL , νµL , ντL (νeR , νµR , ντR for antineutrinos).2

In presence of a transverse magnetic dipole moment a neutrino can flip its
spin and thus change its chirality. This kind of transitions are called Neutrino
Spin–Flavour Precessions (NSFP) [2], and their probability can be relevant in
presence of huge transverse magnetic field and for large off-diagonal dipole mag-
netic moment.

In analogy with MSW, even the NSFP can receive a resonant enhancement
from the presence of a dense medium [2], and this is for example the case of stellar
matter or the extreme condition of a supernova.

1To be published in the Proceedings of the 8th Lomonosov Conference, 25 - 30 August,
Moscow, 1997.

2For simplicity, hereafter we will omit the indication of chirality being clear that it is left-
handed for neutrinos and right-handed for antineutrinos.
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Denoting with ν ≡ (νe , νµ , ντ ), and analogously ν ≡ (νe , νµ , ντ ), the
unitary mixing matrix for ν and ν can be written as [5]

U =







CϕCω CϕSω Sϕ
−CψSω − SψSϕCω CψCω − SψSϕSω SψCϕ
SψSω − CψSϕCω −SψCω − CψSϕSω CψCϕ






, (1)

where for simplicity CP violation terms have been neglected.
The evolution equation for neutrino wave functions travelling along the radial

coordinate r ' ct is

i
d

dr

(

ν
ν

)

= H

(

ν
ν

)

=

(

H0 B⊥M
−B⊥M H0

)(

ν
ν

)

. (2)

The symmetric matrix H0 is the 3×3 hermitian effective Hamiltonian ruling the
resonant flavour transition in the flavour basis. It reads

H0 =
1

2E
U







m2
1 0 0

0 m2
2 0

0 0 m2
3






U † +







N1(r) 0 0
0 N2(r) 0
0 0 N2(r)






, (3)

where N1(r) =
√

2GF (Ne − Nn/2), N2(r) = −GFNn/
√

2, and Ne, Nn being
the electron and neutron number density, respectively. The Hamiltonian for
antineutrinos, H0, is obtained from H0 by replacing N1(r), N2(r) → −N1(r), −
N2(r). The quantity M is the matrix of magnetic dipole moments

M =







0 µeµ µeτ
−µeµ 0 µµτ
−µeτ −µµτ 0






. (4)

The resonant conditions for transformations νe ↔ νµ , ντ and for νe ↔ νµ , ντ
can be obtained by requiring the approaching of two different eigenvalues of H
in Eq.(2). For small mixing angles this essentially coincides with the condition
of having coincident diagonal elements, namely, neglecting second order terms in
Sω,Sψ and Sφ

N1(rs) −N2(rs) = 2∆ (νe ↔ νµ ) , (5)

N1(rs) −N2(rs) = ∆ − Λ (νe ↔ ντ ) , (6)

N1(rs) +N2(rs) = 2∆ (νe ↔ νµ ) , (7)

N1(rs) +N2(rs) = ∆ − Λ (νe ↔ ντ ) , (8)

where ∆ = (m2
2 −m2

1)/4E and Λ = (m2
1 +m2

2 − 2m2
3)/4E. In the same way, the

resonant conditions for νe ↔ νµ , ντ and for νe ↔ νµ , ντ are obtained from
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the charge conjugate transitions (5)-(8) by changing sign in the corresponding
r.h.s. . Note that rs denotes the value of coordinate r for which each resonant
condition is verified.

Once that neutrino parameters, namely ψ, ϕ, ω, ∆ and Λ, are fixed one can
study the occurrence of resonant conditions (5)–(8) and charged conjugate ones,
by using the particular density profile for electrons and neutrons, contained in
N1(r) and N2(r).

In Ref.[6] the above description for neutrino dynamics in presence of matter
has been used in order to explain the solar neutrino problem. The authors assume
there for simplicity that flavour mixing occurs in the e–µ sector only. As a
result of their analysis, it is shown that for a small value of the mixing angle
θeµ = ω, νe ↔ νµ transitions are sufficient to account for the solar neutrino
problem. In this case the predictions strongly depend on the magnetic field
configurations even if a best fit is achieved for the so-called LIN2 [6] solar magnetic
field parametrization. Typical values of neutrino parameters able to reproduce
the data are ∆m2

eµ '
(

10−8 ÷ 10−7
)

eV 2 and sin (2θeµ) <∼ 0.2 ÷ 0.3 [6].
The neutrino flux dynamics contained in Eq.(2) can be also applied to the

case of a supernova. In this case, the mass density ranges from ∼ 10−5g/cm3 in
the external envelope up to ∼ 1015g/cm3 in the dense core, with the following
density profile

ρ ' ρ0

(

R0

r

)3

, (9)

with ρ0 ' 3.5×1010g/cm3, and R0 ' 1.02×107cm denoting the radius of the
neutrinosphere. Note that, the electron fraction number Ye outside the neutri-
nosphere can be assumed almost constant and fixed at the value Ye = 0.42 .

As far as the transverse magnetic field is concerned, one can safely assume
the simple expression

B⊥(r) ' B0

(

RB
r

)2

, (10)

where r denotes the radial coordinate, and the constant B0R
2

B ' 1024Gauss cm2.
In first approximation neutrinos are emitted from neutrinosphere with a

Fermi-Dirac distribution

n0

να
(E) '

0.5546

T 3
α

E2

[

1 + exp

(

E

Tα

)]−1

, (11)

with the different flavours equally populated. The index α in Eq.(11) denotes the
particular neutrino species. Due to their different interactions, the temperature
of νe and νµ , ντ neutrinosphere result Te ' 3 MeV and Tµ = Tτ ' 6 MeV .
As far as the νe distribution is concerned, it is characterized by Tē ' 4 MeV ,
whereas for νµ and ντ we have Tµ̄ = Tτ̄ ' 6 MeV .
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Assuming that the solar neutrino problem is solved in terms of νe → νµ
NSFP, as explained in Ref.[6], from Eq.s(5)–(8) we see that in a supernova (for
Ye = 0.42 outside the neutrinosphere) four resonance conditions can be fulfilled.
With decreasing density, and for τ neutrinos more massive than µ ones, we first
encounter the region for e–τ resonance transitions, and then that for e–µ ones.
In order we have: νe ↔ ντ , νe ↔ ντ , νe ↔ νµ and νe ↔ νµ .

To deduce the total transition probabilities, it is important to establish if the
different resonance regions overlap, namely if the resonance widths are larger than
their separation in r. In many GUT models it is natural to expectmνµ << mντ ,
thus in this paper we make this assumption. As a consequence, the resonance
regions involving e–τ flavours and those involving e–µ flavours are well sepa-
rated between them. For example, for 10 MeV neutrinos with mνµ ' 10−3 eV
and mντ ' 10 eV we have the e–τ resonances around the region of density
≈ 108 g/cm3 (deep in the supernova). On the contrary, the resonances e–µ is
in the external envelope of supernova (≈ 1 g/cm3). For supernova neutrinos
(E ≈ 0÷ 50 MeV ), assuming (9) and (10), it is easy to see that for a wide range
of models there is non overlapping. Thus, each resonance can be considered
independently from the others.

For the MSW resonance the survival probability reads [5, 7]

Pαβ (να → να) =
1

2
+

(

1

2
− exp

{

−
π

2
γαβFαβ

})

cos 2θαβ cos 2θmαβ , (12)

where the adiabaticity parameter γαβ and θmαβ are given by

γαβ =
∆m2

αβLρ sin2 2θαβ

2E cos 2θαβ

∣

∣

∣

∣

∣

res
, tan 2θmαβ =

2∆m2

αβ sin 2θαβ

2
√

2EGFNe − ∆m2

αβ cos 2θαβ
.

(13)
For NSFP transitions one has [7]

Pᾱβ (να → να) =
1

2
+

(

1

2
− exp

{

−
π

2
γᾱβFαβ

})

cos 2θαβ cos 2θmᾱβ , (14)

γᾱβ =
8Eµ2

αβB
2

⊥Lρ

∆m2

αβ

∣

∣

∣

∣

∣

res
, tan 2θmᾱβ =

4EµαβB⊥

2
√

2EGF (Ne −Nn) − ∆m2

αβ cos 2θαβ
.

(15)
Note that for both the adiabatic parameters γαβ and γᾱβ of Eq.(13) and (15),

the adiabatic condition reads: γαβ , γᾱβ >> 1.
The non adiabatic correction factor Fαβ of Eq.s(12) and (14), neglecting non

adiabatic effects induced by the magnetic field with respect to those due to den-
sity, is given by [5]

Fαβ '
(

1 − tan2(θαβ)
)

{

1 +
1

3

[

log
(

1 − tan2(θαβ)
)
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+ 1 −
1 + tan2(θαβ)

tan2(θαβ)
log

(

1 + tan2(θαβ)
)

]}

. (16)

In terms of survival or transition probabilities the outcoming neutrino distribu-
tions result

nνe
= P (νe → νe )n0

νe
+ [1 − P (νe → νe ) − P (νe → νe )]n0

νx

+ P (νe → νe )n0

νe
,

nνµ
+ nντ

= [1 − P (νe → νe )]n0
νe

+ [1 − P (νe → νe ) − P (νe → νe )]n0

νe

+ [P (νe → νe ) + P (νe → νe ) + P (νe → νe )]n0
νx

,

nνe
= P (νe → νe )n0

νe
+ [1 − P (νe → νe )]n0

νx
, (17)

where n0
νµ

= n0
ντ

= n0
νx

. Note that to obtain the above expression we have only
used the unitarity and the observation that P (νe → νe ) is vanishing (up to the
first order in the mixing angle).

The survival probabilities P (νe → νe ) and P (νe → νe ) can be written as
products of the single survival probabilities at the resonances, namely

P (νe → νe ) ' Peτ (νe → νe )Peµ (νe → νe ) , (18)

P (νe → νe ) ' Pēτ (νe → νe )Pēµ (νe → νe ) . (19)

while the transition probability P (νe → νe ) takes the expression

P (νe → νe ) ' Pēτ (νe → νe ) [1 − Pēµ (νe → νe )] [1 − Peµ (νe → νe )]

+ Peµ (νe → νe ) [1 − Pēτ (νe → νe )] [1 − Peτ (νe → νe )] .(20)

According to the above results (17), the deformed thermal neutrino spectra are
obtained once that neutrino parameters are fixed.

For the electron–muon sector, since we are interested in the situation in which
e.m. properties of neutrinos play an essential role, the relevant parameters can be
fixed assuming the NSFP explanation [6] for solar neutrino problem. In this case,
the deficit in the solar neutrino flux is mainly due to the conversion νe → νµ ,
being assumed Majorana neutrinos, which is the natural choice occurring in GUT
theories where a see-saw mechanism is at work.

In the NSFP framework, the values for neutrino parameters able to reproduce
the data are ∆m2

eµ ' 10−8 eV 2 and sin (2θeµ) ' 0.2 and µeµ ' 10−11µB [6].
Concerning the parameters for the electron–tau sector, they are less con-

strained. However, we can fix ∆m2
eτ ' m2

ντ
' 25 eV 2 in order to be able to

identify ντ has the hot component of dark matter [8], whereas, for the transi-
tion magnetic moment we can assume µeτ to be of the same order of µeµ, since,
typically, the enhancement to the electromagnetic properties is due to physics be-
yond the electroweak interactions, which hardly distinguishes between τ–leptons
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and µ–leptons. Hence, the only remaining parameters is θeτ , for which we will
choose three indicative values, namely, 10−1, 10−4 and 10−8. Values in this range
are for example predicted by SUSY GUT theories [9], where one could expect
in principle an enhancement of the neutrino electromagnetic properties. In ref.
[10] the bound θeτ ≤ 10−3 for ∆m2

eτ = 1 ÷ 100eV 2 has been obtained from an
analysis of heavy elements nucleosynthesis in supernovae, assuming adiabaticity
of mixing processes. They also consider a particular site for rapid neutron cap-
ture processes. We have nevertheless also considered the case of a large mixing
angle θeτ ∼ 10−1 in view of the uncertainties which still affect the description of
supernova explosion dynamics.

In Figures 1–3, we show the deformed neutrino distributions for νe, the sum of
νµ and ντ , and νe distributions, respectively, versus their initial distributions.
In all figures, the solid line represents the initial distribution and the predictions
for the outcoming neutrino distributions are obtained for the above three values
of θeτ [4].

The MSW νe ↔ ντ conversion becomes less and less efficient as θeτ decreases,
as can be seen by the other two lines in Figures 1 and 2. For the other values of
θeτ , in fact, γeτ << 1. However, as one can see from the dashed-dotted line of
Figure 1, corresponding to the extremely small value θeτ = 10−8, a conversion of
νe in other kind of neutrinos still remains. In fact, in this case the only conversions
remaining are the NSFP as one can see by observing the antineutrinos spectra of
Figure 3. Note that since we have fixed µeµ ∼ µeτ ∼ 10−11 µB , all the deformed
antineutrino distributions are almost coincident, because, in this case, they are
almost independent of the on neutrino mixing angles.
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Fig. 1
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Fig. 2

Figure 2: The energy spectra for nνµ
+ nντ

, with the same notation of Figure 1 [4].

Fig. 3

Figure 3: The energy spectra for nνe
, with the same notation of Figure 1 [4].
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