DSF—98/36
INFN—NA—IV—98/36

Pontecorvo neutrino oscillations !

Salvatore Esposito 2

Dipartimento di Scienze Fisiche, Universita di Napoli “Federico IT”
and
Istituto Nazionale di Fisica Nucleare, Sezione di Napoli
Mostra d’Oltremare Pad. 20, I-80125 Napoli Italy

Abstract

The theory of neutrino oscillations for Dirac, Majorana and Dirac-Majorana
neutrinos is reviewed, illustrating the contribution of B. Pontecorvo and fur-
ther generalizations.

1 Introduction

The existence of neutrino oscillations was postulated for the first time in 1957 by

B. Pontecorvo [1] following the idea of a mixing between the K° and K’ mesons.
He assumed that v and 7 emitted in the processes p — net v and n — pe™ 7,
respectively, are not identical and that the leptonic number is not a conserved
quantity; thus the reactions p — net 7 and n — pe~ v can take place as well,
although with a lower probability. Then, if in vacuum a v can transform itself
into a 7, in general the weak interaction states v, 7 are linear combinations of
the two mass eigenstates vy, v9, and neutrinos results to be Majorana particles.

More than 10 years later, Gribov and Pontecorvo [2] introduced flavour os-
cillations for Majorana neutrinos, developing quantitatively the standard theory
of neutrino oscillations, which was later generalized to cover the case of Dirac
neutrinos [3].

The problem on the carpet is that of neutrino mass and the related one
of lepton number conservation (both individual (L., L,, L.) and total (L)). If
neutrinos are massless, the conservation of all lepton numbers (L., L,, L., L) is
allowed, according to the Glashow-Weinberg-Salam theory, due to the invariance
of the electroweak lagrangian for un arbitrary (global) phase transformation of
the matter field. Instead, if neutrino have a non-vanishing mass and are of the
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Dirac type (particle states different from the antiparticle ones), so that to the
e.w. lagrangian the following mass term is added :

ﬁg = —ZVZ/R M% v, + h.c. (])
0T

with [,I' = e, u,7 and MP, in general, a complex non diagonal 3x3 matrix,
individual lepton number is no longer conserved (L% is not invariant for v; —
e'®y;), while the total lepton number is still conserved (L2 is invariant for v; —
e®y;). However, if neutrinos are massive Majorana particles (particle states
coincide whith antiparticles ones), so that the mass term is

1 .
ﬁ% = — 3 277'R ]V[%I v, + h.c. (2)
IXG

with MM in general, a symmetric 3x3 matrix, no lepton number is conserved
(LM is not invariant for every (global) phase transformation). Note that, while
the term (2) does not require additional neutrino states besides those present
in the Standard Model, the term (1) involves right-handed neutrino states (and
related antiparticles) not present in tha S.M. but predicted in many GUTs (see
for example [4]).

The phenomenological consequences of eq. (1) or (2) are very intriguing.

For istance, if MP and MM are non diagonal (in analogy to what happens
with the quark mass matrix), neutrino flavour oscillations are predicted [2], [3].
But, furthermore, many other processes involving charged lepton, which violate
lepton number conservation, are allowed. For example, with Dirac neutrinos, the
decays u — ey, p — 3e, 7 — en” and the conversion u-e in presence of nuclei,
such as u~ + 77 — e~ + T, can be realized, while with Majorana neutrinos
neutrinoless double beta decay (Z,A) — (Z+42,A) 4+ 2¢~ and reaction p~ + Ti
— et + Ca can also occur.

More in general, one can consider a lagrangian mass term whith both Dirac
and Majorana terms

1 . 1,
_L:ZM = ZvllR MZIDZ vy, + 5 Zﬁl/R Mllll vy, -l— 5 ZVIIR MZQII VIR + h.C.
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(3)

involving vy, and v, as well as v and v predicted in many GUTs. This scenario,

from a theoretical point of view, allows to give a very small mass to neutrinos in a

very natural way through the so-called “see-saw” mechanism [5]. The mass eigen-

states coming from (3) are in general Majorana states, and the phenomenology

previous described in the discussion of eq. (2) applies in this case as well. How-

ever, as we will show later, in this case also active - sterile neutrino - antineutrino
oscilaltions can take place.

In the following section, we will review the theory of flavour oscillations for

Dirac and Majorana neutrinos both in the vacuum case and for propagation in a



medium. In section 3 we will instead discuss the case of Dirac-Majorana neutrinos
and re-derive the Pontecorvo oscillation formula. Finally, our conclusions will
follow.

2 Flavour transitions

2.1 Vacuum oscillations

Let us consider Dirac neutrinos described by the mass term in (1); for the sake
of simplicity, we will discuss only the two-flavour case, [, I’ = €, u. We can then
rewrite eq. (1) in the simple compact form

—L,, =T7Mv (4)
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Note that we have dropped out the superscript D, since the following will hold
(mutatis mutandis) also for Majorana neutrinos described by the term in (2).
This is because we will limit ourselves to the ultrarelativistic case, and flavour
oscillations do not distinguish between Dirac or Majorana mass terms (at least
in the two-flavour case, neglecting CP violating effects; see ref. [6]). We have
also suppressed the chirality indices R, I and grouped right-handed and left-
handed spinors in the usual Dirac bispinors. In the ultrarelativistic limit, this is
unambiguous, since chirality transitions (in vacuum) are suppressed (for these,
see for example [7], [8]) and flavour transitions between (sterile) right-handed
states or (active) left-handed ones proceed in the same way.
Now, in the flavour eigenstate basis the evolution equation is given by

with

i%VZHV (6)

where, in the ultrarelativistic limit, the hamiltonian is

M2

with & being the neutrino momentum. We can now solve eq. (6) diagonalizing
the hamiltonian by means of a unitary matrix U, UUT = 1;

d
zEUTu: UtHU UTw (8)
implies p
i%vm = H,v, . (9)



Then, the mass eigenstates basis is defined by
Vm = Ulw (10)
H, = UTHU (11)

where the mixing matrix U, in the simple two-flavour case, can be parametrized

as
U = ( cos 6 smH) ' (12)

—sinf cos#

By requiring H,,, and then

UTMU::(ml 0) , (13)

0 mo

to be diagonal, we can deduce the expression of the mixing angle  in terms of

the mass parameters:

2mey,

tan 26 = (14)
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The time evolution of the flavour states is now given; for example we have

lve(t) > = <c052 g e+ 2) 4 gin? Ge_i(k"'%)t) |ve(0) > +

m2 o m?
+ sin 0 cos 6 (— emihta)t 4 e_z(k"'ﬁ)t) v, (0) > . (15)

From this we see, for example, that even if we start with a pure v. beam, at
later times we nevertheless have also a v, component in the same beam. The
transition probability for these flavour oscillations is given by

2 .2 Ly [ Am?

P(ve »v,) = [<vulve(t) > = sin” 26 sin i t (16)
with Am? = m3 — m?. If 2 ~ t is the source-detector distance, the transition
probability can be written as

P(ve = v,) = sin® 26 sin® ki (17)
)
where
Lo = 27 -2F 248< k ) LeV? (18)
T T Am T I M) \am2 ) "

is the oscillation length (in vacuum) over which the phenomenon of flavour tran-
sition v, — v, occurs. From (18) it is easy to see the range of the parameter
Am? that can be probed by a given experiment. For example, for k ~ 1 MeV,
Lo ~ 10" m (typical Sun - Earth distance) corresponds to Am? ~ 10711 eV?
while for £ ~ 10 GeV, Ly ~ 10 K'm (typical distance crossed by atmosperic neu-
trinos in the Earth atmosphere) corresponds to a Am? ~ 1eV?.



2.2 Matter oscillations

Let us now discuss what happens to flavour oscillations when neutrinos propagate
in a given dense medium.

In general, the evolution equation (6) still holds but the hamiltonian will contain
a term describing neutrino interactions with the particles in the medium,

2

M
H =k — / 1¢
+ oV, (19)

where V' is an effective potential experienced by neutrinos during their travel in
matter [9], which is obviously diagonal in the flavour eigenstate (weak interaction

eigenstate) basis,
V 0
/ = Ve . 2
‘ ( 0 V) (20)

Sterile states experience no effective potential (due to lack of weak interaction);
for the active left-handed neutrino states we have [9]

DN | —

‘/1/05 = \/§GF (Ne -

Vo — _ @
vy \/5

for normal media, while for magnetized matter [10]

Nn) (21)

N, (22)

vE = v (23)
B _ o €Gp (37*N.)'/ kB
vy o= V) - 7 - - (24)

for a degenerate Fermi gas, and

3eGp N, k-B

B _ 0

Vo, = V,. — WG _mg I (25)
5 o  3¢Grp N. kB

Vl/'u - VyH + 4\/5 mz k (26)

for a classical plasma. Here G'r is the Fermi coupling constant, B is the applied
magnetic field and N.,N,, are the electron and neutron number density of the
medium, respectively. The solution of the evolution equation can be obtained
in a way analogous to the one envisaged in the previous subsection, but now
introducing the matter mass eigenstate basis:

U = UTw (27)
H, = U'HU (28)



where the effective mixing matrix in matter U has the same form as in (12) but
with an effective mixing angle given by

Am?2 _:
Am? in 9
sin 26,, = 2k °11 . (29)

\/(AQ—TZ2 cos 20 +V,, — VZ,M>2 + (AQ—”,zz sin 20)2

The transition probability for flavour oscillations in a constant density medium
has the same form of (17),

P (Ve = v,) = sin? 20, sin® Z—x (30)

m

but now the oscillation length in matter is

sin 26,

) Y sin 26

(31)

Note that the amplitude of the transition probability, given by sin? 26,,, can
reach a maximum even if the vacuum mixing angle # is small. This is the case if
the following resonance condition [9]

2

W cos 20 = V]_/

-V (32)

m e
is satisfied. This relation depend only on the difference between the two effective
potentials, and it can be realized by neutrinos or antineutrinos but not by both,
due to the fact that Vi — —V,, [11]. As a matter of example, for solar neutrinos
with Am? ~ 107" eV? the resonance condition (32) is satisfied when the density

reaches the value p ~ 10 gem™3.

3 Oscillations of Dirac-Majorana neutrinos

For Dirac-Majorana neutrinos described by the mass term in (3), not only flavour
oscillations but also other types of transitions, as active-sterile neutrino-antineutrino
oscillations, can take place. For illustrative purposes, let us consider one flavour
at a time (i.e. suppose that the mass matrices in (3) are diagonal in the flavour
basis) and take equal Majorana masses for the left-handed and right-handed ne-
utrino, assuming a minimal choice for the mass parameters. In this case we have

_,CnDlM:%(V—L’E)(mD mM)(Vg):ﬁMy (33)

my  mp vy

where we have restored the subscripts D, M and L to avoid confusion. The
evolution equation for this neutrino system is again given by (6), (7) but with



the mass matrix M in (33). A straigthforward calculus now leads to the following
survival probability for a v7, against vy, — I/g transitions:

o Mp My
4k

This expression is known as the Pontecorvo oscillation formula. It was proposed
in 1957 as the first neutrino oscillation formula [1]; since neutrinos are chiral
particles (differently from K° mesons) the only allowed antineutrino state in
which a vy, can oscillate (without suppression factors) is a sterile (under weak
interactions) Vf, but this was not yet realized in 1957.

Note that both mp and mar have to be non zero for having non vanishing AL = 2
(active-sterile) neutrino-antineutrino transitions.

Differently to what happens for flavour oscillations, for neutrinos propagating
in a medium no resonance condition exists for this type of transitions. In fact, the
amplitude of oscillations is already at a maximum in vacuum, and the interaction
with the medium can only alter the oscillation length. Matter oscillation can
be studied analogously to the flavour transition case by means of the effecitve
potential in (21)-(26). For the transition probability in matter the result (in the
ultrarelativistic limit) is [7]

P (I/L — yg) = sin2 1D TM <1 - K> t (35)

P(vp —»vy) = 1 — sin t . (34)

4k 2k

where V is the appropriate effective potential.

The corrections due to matter interaction are quite insignificant, because of the
very smallness of the effective potential with respect to neutrino momentum in
normal situations. Nevertheless, they can be important for relic neutrinos [12]
propagating in very dense stars, as in the study developed in [13] (however, for
the last case, relation (35) would not apply because of the non relativistic propa-
gation; the right expression obtained relaxing the assumption of ultrarelativistic
propagation can be found in [7]).

4 Outlook

In this talk, the theory of neutrino oscillations has been reviewed, illustrating the
contribution of B. Pontecorvo and further generalizations. We have considered
flavour oscillations in vacuum as well as in matter for Dirac and Majorana neu-
trinos which violates the individual lepton numbers but preserve the total one
L. We have then focused on the AL = 2 oscillations of Dirac-Majorana neutri-
nos converting an active neutrino state into a sterile antineutrino one (without
flavour change). Differently to what happens for flavour transitions, for which
the presence of a dense medium can induce a resonant enhancement of the oscil-
lations, matter corrections to the AL, = 2 transition are unimportant in many
relevant situations. However this is not the case, in general, for flavour changing
AL = 2 transitions (such as, for example, v.;, — I/ML), which are now currently

under study [8].
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