
INSTITUTE OF PHYSICS PUBLISHING EUROPEAN JOURNAL OF PHYSICS

Eur. J. Phys. 27 (2006) 1147–1156 doi:10.1088/0143-0807/27/5/014

A peculiar lecture by Ettore Majorana

S Esposito
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Abstract
We give, for the first time, the English translation of a manuscript by Ettore
Majorana, which probably corresponds to the text for a seminar lecture
delivered at the University of Naples in 1938, where he lectured on theoretical
physics. Some passages reveal a physical interpretation of quantum mechanics
which anticipates for several years the Feynman approach in terms of path
integrals, independent of the underlying mathematical formulation.

From January to March 1938, Ettore Majorana delivered his only lectures on quantum
mechanics at the University of Naples, where he obtained a position as a full-time professor of
theoretical physics, a few months before he mysteriously disappeared. Although the scientific
personality of such a physicist is widely recognized, here we only mention that Majorana
obtained that position in the 1937 Italian national competition for three full professorships for
‘great and well-deserved fame’, independent of the competition itself, upon recommendation
of the judging committee chaired by Enrico Fermi [1].

The interest in the course on theoretical physics, delivered by Ettore Majorana at the
University of Naples in 1938, has been recently revived by the discovery of the Moreno paper
[2], which is a faithful transcription of the lecture notes prepared by Majorana himself made
by the student Eugenio Moreno1. Such a paper, in fact, includes some previously unknown
lecture notes, whose original manuscripts seem to be missing. The handwritten notes by
Majorana were reproduced some years ago [3] along with some papers initially interpreted as
the notes prepared for a forthcoming lecture that, however, Majorana never delivered due to
his mysterious disappearance.

Here, however, we do not focus on the university lecture notes (delivered to students)
but, rather just on the last mentioned spare papers that cannot be considered as notes for
academic lectures, even for an advanced course such as that by Majorana. This is testified
mainly by an accurate analysis of the scientific content present in those notes, referring to

1 This document is owned by the Moreno family in Naples and, at the moment, is kept by the present author.

0143-0807/06/051147+10$30.00 c© 2006 IOP Publishing Ltd Printed in the UK 1147

http://dx.doi.org/10.1088/0143-0807/27/5/014
mailto:Salvatore.Esposito@na.infn.it
http://stacks.iop.org/EJP/27/1147


1148 S Esposito

advanced topics not at all related to those treated by Majorana in his last lectures, where he
only introduced the foundations of wave mechanics and its probabilistic interpretation. In
contrast, some accurate knowledge of particular arguments (such as the theory of molecular
bonding) is required, and these cannot be regarded as direct applications of the novel formalism
just introduced. On the other hand, the style adopted by Majorana in writing these notes is
completely different from that used for the lectures addressed to the students, where the
mathematical expression of physical concepts plays a relevant role. Rather, its conversational
form is closer to that generally employed in the inaugural lecture, which was mainly addressed
to the academic staff of the University of Naples [2]. In particular, even though not the whole
set of topics (i.e. the applications) reported at the beginning of the considered manuscript
was effectively discussed, the closing sentence is quite imperative and typical of a general
conference: “Quantum Mechanics opens the road to the logic unification of all the sciences
having the inorganic world as a common object of study”.

Although no firm documentary credits exist at present, for the sake of definiteness we
regard the considered notes as prepared (by Majorana for his own personal use) for a general
seminar or conference held at the University of Naples, likely at the end of January 1938, soon
after the arrival of Majorana in Naples. This seminar was probably solicited by the Director
of the Institute of Physics, Antonio Carrelli, who worked in that period on some experimental
topics related to molecular physics, since the main theme of that conference appears exactly
to be the theoretical interpretation of the molecular bonding in the framework of quantum
mechanics.

The present scientific interest in that dissertation, however, is not just related to the theory
of molecular bonding, but rather it is more centred on the interpretation given by Majorana
about some topics of the novel, for that time, quantum theory (namely, the concept of quantum
state), although direct applications of this theory to a particular case (that is, precisely, the
molecular bonding) are considered. An accurate reading of the manuscript, in fact, not
only discloses a peculiar cleverness of the author in treating a pivotal argument of the novel
mechanics, but, keeping in mind that it was written in 1938, also reveals a net advance of at
least ten years in the use made of that topic. The last point, however, is quite common for
Majorana, and as only one example we refer here to the case of the Thomas–Fermi atomic
model [4] (see, however, also [5]).

This point was already noted some years ago by N Cabibbo (in [3]), who saw in the
Majorana manuscript a vague and approximate anticipation of the idea underlying the Feynman
interpretation of quantum mechanics in terms of path integrals [6]. A more analytic study,
conducted on the critical edition of that paper [7] which was not available at that time, reveals
instead some intriguing surprises which we will here focus on.

In the present work we report, for the first time, an English translation (from the Italian) of
the mentioned notes. These are contained into a manuscript (kept at the Domus Galilaeana in
Pisa) which has been reproduced in an anastatic reprint from the original handwritten paper in
[3], and whose importance has been discovered only very recently [8]. Although a historical
interest is, without doubt, behind the presentation of an unpublished paper by Majorana, in
the present case our aim is also to present the powerful didactic method used by the author
on the given subject. Even after a very long time, in fact, his peculiar presentation of given
quantum-mechanical problems could be very useful to people now teaching those topics (or
some others related to them) and, based upon personal experience, the Majorana paper could
also be of some direct benefit to (and easily understood by) students.

Since the text considered is written in a very simple and clear form (a feature which is very
common in the Majorana works [5]), in the following we will only stress on few interesting
points.
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The starting point in Majorana’s paper is to search for a meaningful and clear formulation
of the concept of quantum state. This is achieved by considering some sets of ‘solutions
that differ for the initial conditions’ which, in the Feynman language of 1948 [6], correspond
precisely to the different integration paths. In fact, the different initial conditions are, in any
case, always referred to the same initial time, while the determined quantum state corresponds
to a fixed end time.

Moreover, the crucial point in the Feynman formulation of quantum mechanics, namely
that of considering not only the paths corresponding to classical trajectories, but all the possible
paths joining the initial point with the end one, is introduced in the Majorana manuscript after
a discussion on an interesting example of the harmonic oscillator. Quite explicitly, in fact, the
author points out that the wavefunction “corresponds in quantum mechanics to any possible
state of the electron”. Such a reference, which only superficially could be interpreted, in
the common acceptation, that all the information on the physical systems is contained in the
wavefunction, should instead be considered in the meaning given by Feynman, according to
the comprehensive discussion made by Majorana on the concept of state.

Finally, we also stress the key role played by the symmetry properties of the physical
system in the Majorana analysis; a feature which is, again, quite common in papers of this
author.

Summing up, it is without doubt that no trace can be found of the formalism underlying the
Feynman path-integral approach to quantum mechanics in the Majorana manuscript (contrary
to what happens for a paper by Dirac in 1933 [9], probably known to Majorana). Nevertheless,
it is very interesting that the main physical items, about the novel way of interpreting the theory
of quanta, were realized well in advance by Majorana. And this is particularly impressive if
we take into account that, in the known historical path, the interpretation of the formalism has
only followed the mathematical development of the formalism itself.

Furthermore, in the Majorana paper, several interesting applications to atomic and
molecular systems are present as well, where known results are deduced or reinterpreted
according to the novel point of view. The search for such applications, however, will be left
to the reader, who will benefit from the reading of the complete text by Majorana reported in
the following2.

The text by Majorana

On the meaning of quantum state

The internal energy of a closed system (atom, molecule, etc) can take, according to quantum
mechanics, discrete values belonging to a set E0, E1, E2, . . . composed of the so-called energy
‘eigenvalues’. To each given value of the energy we can associate a ‘quantum state’, which
is a state where the system may remain indefinitely without external perturbations. As an
example of these perturbations, we can in general consider the coupling of the system with the
radiation field, by means of which the system may loose energy in the form of electromagnetic
radiation, jumping from an energy level Ek to a lower one Ei < Ek . Only when the internal
energy takes the minimum value E0, it cannot be further decreased by means of radiation; in
this case the system is said to be in its ‘ground state’ from which it cannot be removed without
sufficiently strong external influences, such as the scattering with fast particles or with light
quanta of large frequency.

2 The original manuscript by Majorana, as it can be seen from [3], reports (at the beginning) a sort of table of contents
which, however, is only partially followed by the author. For the sake of ease, we have preferred to divide the whole
text in some sections, according to the reported table of contents.
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What is the corresponding concept of quantum state in classical mechanics? An answer
is primarily required to such a question, in order to have a correct representation of the
results obtained in our field by quantum mechanics, without entering, however, in the complex
computational methods adopted by this.

In classical mechanics the motion of a system composed of N mass points is entirely
determined when the coordinates q1 · · · q3N of all the points are known as a function of time:

qi = qi(t). (1)

Equation (1) gives the dynamical equations where all the internal and external forces acting
on the system are present, and they can always be chosen in such a way that at a given instant
all the coordinates qi(0) and their time derivatives q̇i (0) take arbitrarily fixed values. Thus the
general solution of the equations of motion must depend on 2 · 3N arbitrary constants.

For a system with atomic dimensions, the classical representation no longer holds and two
successive modifications have been proposed. The first one, due to Bohr and Sommerfeld and
which has provided very useful results, has been completely abandoned afterwards with the
emergence of the novel quantum mechanics, which has been the only one to give an extremely
general formalism, fully confirmed by the experiences on the study of the elementary processes.
According to the old theory of Bohr–Sommerfeld, classical mechanics still holds in describing
the atom, so that the motion of an electron, for example, around the hydrogen nucleus is still
described by a solution (1) of the equations of classical mechanics; however, if we consider
periodic motions, such as the revolution of an electron around the nucleus, not all the solutions
of the classical equations are realized in nature, but only a discrete infinity of those satisfying
the so-called Sommerfeld conditions, that is, certain cabalistic-like integral relations. For
example, in every periodic motion in one dimension the integral of the double of the kinetic
energy over period τ ,∫ τ

0
2T (t) dt = nh,

must be an integer multiple of the Planck constant (h = 6.55 × 10−27). The combination of
classical mechanics with a principle which is unrelated with it, such as that of the quantized
orbits, appears so hybrid that the complete failure of that theory occurred in the last decade
should not be surprising, irrespective of several favourable experimental tests which were
supposed to be conclusive.

The novel quantum mechanics, primarily due to Heisenberg, is substantially more closed
to the classical conceptions than the old one. According to the Heisenberg theory, a quantum
state corresponds not to a strangely privileged solution of the classical equations but rather
to a set of solutions which differ for the initial conditions and even for the energy, i.e.
what is meant as precisely defined energy for the quantum state corresponds to a sort
of average over the infinite classical orbits belonging to that state. Thus the quantum
states come to be the minimal statistical sets of classical motions, slightly different from
each other, accessible to the observations. These minimal statistical sets cannot be further
partitioned due to the uncertainty principle, introduced by Heisenberg himself, which forbids
the precise simultaneous measurement of the position and the velocity of a particle, which is
the determination of its orbit.

A harmonic oscillator with frequency ν can oscillate classically with arbitrary amplitude
and phase, with its energy given by

E = 2π2mν2A2
0,

where m is its mass and A0 the maximum elongation. According to quantum mechanics the
possible values for E are, as is well known, E0 = 1

2hν,E = 3
2hν, . . . En = (

n + 1
2

)
hν . . . ;
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in this case, we can say that the ground state with energy E0 = 1
2hν corresponds roughly to

all the classical oscillations with energy between 0 and hν, the first excited state with energy
E0 = 3

2hν corresponds to the classical solutions with energy between hν and 2 ·hν, and so on.
Obviously, the correspondence between quantum states and sets of classical solutions is only
approximate, since the equations describing the quantum dynamics are in general independent
of the corresponding classical equations, but denote a real modification of the mechanical
laws, as well as a constraint on the feasibility of a given observation; however, it is better
founded than the representation of the quantum states in terms of quantized orbits, and can be
usefully employed in qualitative studies.

Symmetry properties of a system in classical and quantum mechanics

Systems showing some symmetry property deserve a particular study. For these systems, due
to symmetry considerations alone, from one particular solution of the classical equations of
motion qi = qi(t) we can deduce, in general, some other different ones q ′

i = q ′
i (t). For

example, if the system contains two or more electrons or, in general, two or more identical
particles, from one given solution we can obtain another solution, which in general will be
different from the previous one, just by changing the coordinates of two particles. Analogously,
if we consider an electron moving in the field of two identical nuclei or atoms (denoted as A

and B in the figure), starting from an allowed orbit qi = qi(t) described around A with a given
law of motion, we can deduce another orbit q ′

i = q ′
i (t) described by the electron around the

nucleus or atom B by a reflection with respect to the centre O of the line AB.

A O B

The exchange operations between two identical particles, reflection with respect to one point or
the others corresponding to any symmetry property, keep their meaning in quantum mechanics.
Thus it is possible to deduce from a state S another one S ′, corresponding to the same known
value of the energy, if in the mentioned two examples we exchange two identical particles
between them and reflect the system with respect to point O. However, differently from what
happens in classical mechanics for the single solutions of the dynamical equations, in general,
it is no longer true that S ′ will be distinct from S. We can realize this easily by representing S ′

with a set of classical solutions, as seen above; it then suffices that S includes, for any given
solution, even the other one obtained from that solution by applying a symmetry property of
the motions of the systems, in order that S ′ results to be identical to S.

In several cases, if the system satisfies sufficiently complex symmetry properties, it is
instead possible to obtain, by symmetry on a given quantum state, other different states but
with the same energy. In this case the system is said to be degenerate, i.e. it has many states
with the same energy, exactly due to its symmetry properties. The study of degenerate systems
and of the conditions under which degeneration can take place will bring us too far and, in
any case, it is difficult to make such a study in terms of only classical analogies. Then we
will leave it completely aside and limit our attention to problems without degeneration. This
condition is always satisfied if the symmetry of the mechanical system allows only a so simple
transformation that its square, that is, the transformation applied twice, reduces to the identity
transformation. For example, by a double reflection of a system of mass points with respect
to a plane, a line or a point, we necessarily recover the same initial arrangement; analogously,
the system remains unaltered by changing twice two identical particles. In all these cases
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we have only simple quantum states, i.e. associated with every possible value of the energy
is only one quantum state. It follows that all the quantum states of a system containing two
identical particles are symmetric with respect to the two particles, remaining unaltered under
their exchange. Thus the states of an electron orbiting around two identical nuclei A and B are
symmetric with respect to the middle point O of AB, or remain unaltered by reflection in O,
and analogously for other similar cases. Under given assumptions, which are verified in the
very simple problems that we will consider, we can say that every quantum state possesses all
the symmetry properties of the constraints of the system.

Resonance forces between states that cannot be symmetrized for small perturbations and
spectroscopic consequences. Theory of homeopolar valence according to the method of
bounding electrons. Properties of the symmetrized states that are not obtained from
non-symmetrized ones with a weak perturbation

Let us consider an electron moving in the field of two hydrogen nuclei or protons. The system
composed of the two protons and the electron has a net resulting charge of +e and constitutes
the simplest possible molecule, that is, the positively ionized hydrogen molecule. In such a
system the protons are able to move as well as the electron, but due to the large mass difference
between them (mass ratio 1840:1) the mean velocity of the protons is much lower than that of
the electron, and the motion of this can be studied with great accuracy by assuming that the
protons are at rest at a given mutual distance. This distance is determined, by stability reasons,
in such a way that the total energy of the molecule, that at a first approximation, is given by the
sum of the mutual potential energy of the two protons and the energy of the electron moving
in the field of the first ones, and is different for different electron quantum states, and is at a
minimum.

The mutual potential energy of the protons is given by e2

r
if r is their distance, while the

binding energy of the electron in its ground state is a negative function E(r) of r that does not
have a simple analytic expression, but it can be obtained from quantum mechanics with an
arbitrary large accuracy. The equilibrium distance r0 is then determined by the condition that
the total energy is at a minimum:

W(r0) = e2

r0
+ E(r0).

The curve W(r) has a behaviour like that shown in the figure, if we assume that zero energy
corresponds to the molecule which is dissociated into a neutral hydrogen atom and an ionized
atom at an infinite distance. The equilibrium distance

r

W

r0

has been theoretically evaluated by Burrau [10] finding r0 = 1.05 × 10−8 cm and, for the
corresponding energy, W(r0) = −2.75 eV. Both these results have been fully confirmed by
observations on the spectrum emitted by the neutral or ionized molecule, which indirectly
depends on them.
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What is the origin of the force F = + dW
dr

that tends to get close to the two hydrogen
nuclei when they are at a distance larger than r0? The answer given by quantum mechanics is
surprising since it seems to show that, in addition to certain polarization forces which can be
foreseen by classical mechanics, a predominant role is played by a completely novel kind of
forces, the so-called resonance forces.

Let us suppose the distance r to be large with respect to the radius of the neutral hydrogen
atom (∼0.5 × 10−8 cm). Then the electron undergoes the action of either of the two protons,
and around each of them can classically describe closed orbits. The system composed of
an electron and a nucleus around which it orbits forms a neutral hydrogen atom, so that our
molecule turns out to be essentially composed of one neutral atom and one proton at a certain
distance from the first. The neutral hydrogen atom in its ground state has a charge distribution
with spherical symmetry, classically meaning that all the orientations of the electronic orbit
are equally possible, and the negative charge density exponentially decreases with the distance
in such a way that the atomic radius can practically be considered as finite; it follows that no
electric field is generated outside a neutral hydrogen atom, and thus no action can be exerted
on a proton at a distance r which is large compared to the atomic dimensions. However, the
neutral atom can be polarized under the action of the external proton and acquire an electric
moment along the proton–neutral atom direction, and from the interaction of this electric
moment with the non-uniform field generated by the proton comes out an attractive force
which tends to combine the atom and the ion in a molecular system.

The polarization forces, which can be easily predicted with classical arguments, can
give origin by themselves to molecular compounds that, however, are characterized by a
pronounced fleetingness. More stable compounds can only be obtained if other forces are
considered in addition to the polarization ones. In the polar molecules, composed of two
ions of different sign charge, such forces are essentially given by the electrostatic attraction
between the ions; for example, the HCl molecule is kept together essentially by the mutual
attraction between the H+ positive ion and the Cl− negative one. However, in a molecule
composed of two neutral atoms, or by a neutral atom and an ionized one, as in the case of the
molecular ion H+

2, the chemical affinity is essentially driven by the phenomenon of resonance,
according to the meaning assumed by this word in the novel mechanics, which has no parallel
in classical mechanics.

When we study, from the quantum mechanics point of view, the motion of the electron in
the field of the two protons, assumed to be fixed at a very large mutual distance r, at the first
approximation we can determine the energy levels by assuming that the electron should move
around the proton in A (or B) and neglecting the influence of the other proton in B (or A),
which exerts a weak perturbative action due to its distance. For the lowest energy eigenvalue
E0 we thus obtain a state S corresponding to the formation of a neutral atom in its ground state
consisting of the electron and the nucleus A, and a state S ′ corresponding to a neutral atom
composed of the electron and the nucleus B. Now if we take into account the perturbation
that is exerted, in both cases, on the neutral atom by the positive ion, we again find, as long
as the perturbation is small, not two eigenvalues equal to E0 but two eigenvalues E1 and E2

which are slightly different from E0 and both close to this value; however, the quantum states
corresponding to them, denoted as T1 and T2, are not separately close to S and S ′, since, due
to the fact that the potential field where the electron moves is symmetric with respect to the
middle point of AB, the same symmetry must be shown, for what stated above, by the effective
states T1 and T2 of the electron, while it is not separately shown by S and S ′.

According to the model representation of the quantum states introduced above, S consists
of a set of electronic orbits around A, and analogously S ′ consists of a set of orbits around
B, while the true quantum states of the system T1 and T2 each correspond, at the first
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approximation for very large r, for one half to the orbits in S and for the other half to
those in S ′. The computations prove that for sufficiently large nuclear distances the mean
value of the perturbed eigenvalue E1 and E2 coincides closely to the single unperturbed value
E0, while their difference is not negligible and has a conclusive importance in the present as
well as in infinite other analogous cases of the study of the chemical reactions. We can thus
suppose that E1 < E0 but E2 > E0, and then T1 will be the ground state of the electron, while
T2 will correspond to the excited state with a slightly higher energy.

The electron in the T1 state, as well as in the T2 state, spends half of its time around the
nucleus A and the other half around the nucleus B. We can also estimate the mean frequency
of the periodic transit of the electron from A to B and vice versa, or of the neutral or ionized
state exchange between the two atoms, thus finding

ν = E2 − E1

h
where h is the Planck constant. For large values of r, E2 − E1 decreases according to an
exponential-like curve and thus the exchange frequency rapidly tends to zero, meaning that
the electron which was initially placed around A remains here for an increasingly larger time,
as expected from a classical point of view.

If the electron is in state T1, that is, in its ground state, its energy (E1) is lower than that it
would have without the mentioned exchange effect between nuclei A and B. This occurrence
originates a novel kind of attractive forces among the nuclei, in addition to the polarization
forces considered above, and is exactly the dominant cause of the molecular bonding.

The resonance forces, as stated, have no analogy in classical mechanics. However, as
long as the analogy leading to the correspondence between a quantum state and a statistical
set of classical motions can hold, the two states T1 and T2, where the resonance forces have
opposite sign too, each are composed identically of half of both the original unperturbed
states S and S ′. This, however, is true only at a certain approximation, that is, exactly at the
approximation where we can neglect the resonance forces. For an exact computation taking
into account the resonance forces, we must necessarily use quantum mechanics, and thus find
a qualitative difference in the structure of the two quantum states that manifest itself mainly
in the intermediate region between A and B through which a periodic transit of the electron
between one atom and the other takes place, according to a mechanism that cannot be described
by classical mechanics. Such a qualitative difference is purely formal in nature and we can
deal with it only by introducing the wavefunction ψ(x, y, z) that, as known, corresponds in
quantum mechanics to any possible state of the electron. The modulus of the square of ψ ,
which can also be a complex quantity, gives the probability that the electron lies in the volume
unit around a generic point x, y, z. The wavefunction ψ must then satisfy a linear differential
equation and thus we can always multiply ψ in any point by a fixed real or complex number
of modulus 1; this constraint is required by the normalization condition∫

|ψ2| dx dy dz = 1

which is necessary for the mentioned physical interpretation of |ψ2|. The multiplication of ψ

by a constant of modulus 1 leaves unaltered the spatial distribution of the electronic charge,
and has in general no physical meaning. Now we will formally define the reflection of a
quantum state with respect to the middle point O between the two nuclei A and B directly on
the wavefunction ψ , by setting

ψ(x, y, z) = ψ ′(−x,−y,−z)

in a coordinate frame with the origin in O. If ψ should represent a symmetric quantum state,
and thus invariant by reflection in O, the reflected wavefunction ψ ′ must have the same physical
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meaning of ψ and thus differ from ψ , for what stated, for a real or complex constant factor
of modulus 1. Moreover, such a constant factor has to be ±1, since its square must give the
unity, due to the fact that by a further reflection of ψ ′ with respect to the point O we again
obtain the initial wavefunction ψ .

For all the states of the system we then must have

ψ(x, y, z) = ±ψ(−x,−y,−z)

where the + sign holds for a part of them, and the − one for the others. The formal difference
between the T1 and T2 states considered above consists precisely in the fact that, in the previous
equation, the upper sign holds for T1 while the lower one for T2. The symmetry with respect to
one point and, in general, any symmetry property, determines a formal splitting of the state of
the system into two or more sectors; an important property of this splitting is that no transition
between different sectors can be induced by external perturbations respecting the symmetries
shown by the constraints of the system. Thus in systems containing two electrons, we have
two kinds of non-combinable states which are determined by the fact that the wavefunction,
which now depends on the coordinates of both the electrons, remains unaltered or changes its
sign by exchanging the two identical particles. In the special case of the helium atom, this
gives rise to the well-known spectroscopic appearance of two distinct elements: parahelium
and orthohelium.

The theory of the chemical affinity between the neutral hydrogen atom and the ionized
one, which we have considered until now, can be extended to the study of the neutral hydrogen
molecule and, more generally, of all the molecules resulting from two equal neutral atoms.
Instead of only one electron moving around two fixed protons, for the neutral hydrogen
molecule we should consider two electrons moving in the same field, neglecting at the first
approximation their mutual repulsion. The stability of the molecule can then be understood
by assuming that each of the two electrons lies in the T1 state, corresponding to attractive
resonance forces. According to F Hund we can state that the hydrogen molecule is kept
together by two ‘bounding’ electrons. However, the interaction between the two electrons
is so large as to leave only a qualitative explanation for the schematic theory by Hund, but
in principle we could predict exactly all the properties of the hydrogen molecule, by solving
with a sufficient precision the equations introduced by quantum mechanics. In this way,
with appropriate mathematical methods, we can effectively determine the chemical affinity
between two neutral hydrogen atoms with only theoretical considerations, and the theoretical
value agrees with the experimental one, given the precision of the computation imposed by
practical reasons.

For molecules different from the hydrogen one, the theory of the chemical affinity is
considerably more complex, due both to the larger number of electrons to be considered and
to the Pauli principle, forbidding the simultaneous presence of more than two electrons in
the same state; however, the different theories of the chemical affinity proposed in the past
few years, each of which has an applicability range more or less large, practically consist in
the search for approximated computation methods for a mathematical problem that is exactly
determined in itself, and not in the enunciation of novel physical principles.

Then it is possible to bring the theory of the valence saturations back to more general
principles of physics. Quantum mechanics opens the road to the logic unification of all the
sciences having the inorganic world as a common object of study.
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