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Abstract. We compare the de Broglie - Bohm theory for non-relativistic, scalar matter particles
with the Majorana-Römer theory of electrodynamics, pointing out the impressive common pecu-
liarities and the role of the spin in both theories. A novel insight into photon wave mechanics is
envisaged.

1. Introduction

Modern Quantum Mechanics was born with the observation of Heisenberg [1] that

in atomic (and subatomic) systems there are directly observable quantities, such

as emission frequencies, intensities and so on, as well as non directly observable

quantities such as, for example, the position coordinates of an electron in an atom

at a given time instant. The later fruitful developments of the quantum formalism

was then devoted to connect observable quantities between them without the use of

a model, differently to what happened in the framework of old quantum mechanics

where specific geometrical and mechanical models were investigated to deduce the

values of the observable quantities from a substantially non observable underlying

structure.

We now know that quantum phenomena are completely described by a complex-

valued state function ψ satisfying the Schrödinger equation. The probabilistic in-

terpretation of it was first suggested by Born [2] and, in the light of Heisenberg

uncertainty principle, is a pillar of quantum mechanics itself.

All the known experiments show that the probabilistic interpretation of the wave

function is indeed the correct one (see any textbook on quantum mechanics, for
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example [3]) and here we do not question on this. However, experimental results

do not force us, as well, to consider the wave function ψ as “a mere repository

of information on probabilities” [4]; it can have a more powerful role in quantum

mechanics. It is certainly curious the fact that the correct theory which describes

satisfactorily quantum phenomena is based on the concept of the complex-valued

wave function ψ, only the squared modulus of which has a direct physical meaning.

Although the situation is completely different, nevertheless the criticism reported at

the beginning may be here applied as well: can a successful theory be based on a

partially non observable quantity such as the wave function ψ?

The work of L. de Broglie, D. Bohm and others devoted to give an answer to

this question is now well settled (for a recent excellent review see [4], [5]) and the

emerging picture is the following: a coherent description of quantum phenomena ex-

ists in which the wave function ψ is an objectively realistic complex-valued quantity

whose probabilistic interpretation remains but is not the only information which ψ

carries. The experimental predictions of the de Broglie - Bohm theory are com-

pletely equivalent to those of usual quantum mechanics [4], so the choice of a given

formulation rather than the other is, in a sense, a matter of taste. However, it has to

be pointed out that the de Broglie - Bohm formulation of quantum mechanics is not

free from some “peculiarities” which, even if they do not mine the coherence of the

theory, make it not completely appealing. Very recent works [6], [7] (see also [8]) on

this subject have, however, provided a natural explanation of these “peculiarities”.

Furthermore, the probabilistic interpretation is now seen as a consequence of the

theory, rather than a starting point.

Open problems in the de Broglie - Bohm theory remains, especially for the gener-

alization to include the relativity principle and the formulation for the gauge fields.

In this respect, at least for the present author point of view, the intuition of E. Ma-

jorana is fundamental. As we will show, the Majorana - Römer description of the

electromagnetic field [9], [10], [11], [12], is a key starting point for a causal quantum-
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mechanical formulation of photon propagation which is, furthermore, completely

gauge invariant. In the Majorana - Römer theory, the photon wave function is a

completely observable quantity.

2. The motion of matter particles

In this section we review the main features of the causal theory of quantum phe-

nomena (for further details see [4]) and some recent developments [7].

2.1. Introduction of the quantum potential

As we remembered in the introduction, a quantum elementary system is described

by a complex wave field ψ(x, t) which, in the non-relativistic limit, satisfies the

Schrödinger equation

ih̄
∂ψ

∂t
= Hψ (1)

where H is the hamiltonian operator

H = − h̄2 ∇2

2m
+ U (2)

U being the (external) potential experienced by the system of mass m (in this paper

we use units in which c = 1). The complex equation (1) can be equivalently written

as two real equations for the modulus R and the phase S of the function ψ = ReiS/h̄:

∂S

∂t
+

(∇S)2

2m
− h̄2

2m

∇2R

R
+ U = 0 (3)

∂R2

∂t
+ ∇·

(

1

m
R2 ∇S

)

= 0 (4)

The last equation is usually referred to as the continuity equation for the probability

density R2 = |ψ|2. Instead, we note that Eq. (3) has the form of an Hamilton-

Jacobi equation for the characteristic function S of a system described by an effective

potential

V = U + Q = U − h̄2

2m

∇2R

R
(5)
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The term Q is called the “quantum potential”; it is the only non-classical term

(i.e. proportional to the (squared) Planck constant) entering in the set of equations

(3),(4).

It is then tempting (and natural) to explore the possibility that the Schrödinger

theory can be regarded as a classical theory in which an “effective” (quantum) term

is introduced; classical mechanics would then be obtained in the limit in which this

quantum term become inoperative. Let us investigate to what extent this programme

can be realized and what are the consequences in the interpretation of quantum

phenomena.

2.2. Particle properties

Regarding Eq. (3) as a (classical) Hamilton-Jacobi equation for a particle driven by

an effective potential V in (5), we have to identify the particle momentum field with

p = ∇S (6)

Note that we are assuming that the vector field v = p/m (the velocity field) defines

at each point of space at each instant the tangent to a possible particle trajectory

passing through that point. The trajectories are then orthogonal to the surfaces S =

constant and are given by the differential equation

m
dx

dt
= p(x(t), t) (7)

with p given in (6). We observe that, even if S is a multivalued function (being a

phase, it keeps invariant the wave function ψ for S → S + 2πn with n an arbitrary

integer number), p is a well defined single-valued quantity as well as the solution

x(t) of (7) 1.

1 The phase function S can have, in general, jump discontinuities, but we have to require that
the wave function ψ has to be continuous. This implies that eventual jumps in S must occur
in nodal points of ψ (defined by ψ = 0) where S is undefined. Then the momentum field p is
irrotational except, in general, in nodal points [4].
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We can further identify the total energy field of the particle with

H = − ∂S

∂t
(8)

which, from (3), results to be the sum of the kinetic energy p2/2m and the total

(classical plus quantum) potential energy.

Other particle properties can be defined accordingly; for example, the angular mo-

mentum field is given by

L = x×∇S (9)

We finally observe that Eq. (3) (deduced from the Schrödinger equation) and Eq.

(7) (postulated to be valid in the present context) can be summarized in the “law

of motion”

dp

dt
= −∇V ≡ −∇ (U + Q) (10)

taking the form of a Newton equation in which a “quantum force” −∇Q is added

to the classical force −∇U .

2.3. Initial conditions

In classical mechanics, the motion of a particle is univocally determined from the

equations of motion once the initial conditions on its position x(t = 0) = x0 and

velocity ẋ(t = 0) = v0 are given.

Conversely, in conventional quantum mechanics, since a physical system is described

by the wave function ψ(x, t) obeying the Schrödinger equation (which is a first order

in time differential equation), the state of the system is univocally determined (from

the probabilistic point of view) when the initial wave function ψ(x, 0) = ψ0(x) is

given for all x. In this framework, precisely known (initial) conditions on particle

position and velocity are not allowed; we can only assign the probability that the

particle passes for a given point or has a given velocity at a given time instant.

In the context of causal theory of quantum motion the situation changes. For the
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univocal determination of the motion we have to specify the initial wave function

ψ(x, 0) = ψ0(x) (11)

(or, equivalently, R(x, 0) = R0(x), S(x, 0) = S0(x)) but this is not enough. In fact,

the specification of the initial position

x(0) = x0 (12)

is also required in order to obtain univocally the solution of the equation (7). This

is indeed possible in the present framework, differently from the case of conventional

quantum mechanics, since we have here assumed that a particle does follow a defi-

nite trajectory (we return later on the probabilistic interpretation). Note that the

specification of the initial velocity is not required, since it is uniquely given by

ẋ(0) =
1

m
∇S0(x)

∣

∣

∣

∣

x=x0

(13)

2.4. Introduction of the probability

In the previous subsections we have seen as, starting from Eq. (3), it is possible

to construct (at least mathematically) a causal theory of quantum motion. This is,

however, only half of the story, since we have not yet considered Eq. (4) which is, in

a sense, the other half of the Schrödinger equation, and we also have not discussed

at all the probabilistic interpretation of quantum phenomena which is, nevertheless,

experimentally well settled. As it is well known, the two points are strictly related

and will be now briefly considered (however, for a general discussion, we refer to

[4]).

The introduction of the probability in the causal theory of quantum motion

represents our ignorance of the precise initial state of the particle: in no way it

impinges on the underlying dynamical process in which the particle is involved. It is

assumed that |ψ(x, t)|2 d3x = R2(x, t)d3x is the probability that a particle described

by the field ψ(x, t) lies between the points x and x + dx at time t. Note that we
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are dealing with the probability that a particle actually is at a precise location at

time t, differently from the case of conventional quantum mechanics in which the

probability of finding a particle in the volume d3x at time t is involved. Then,

here, this postulate is introduced to select, from all the possible motions implied

by the Schrödinger equation and Eq. (7), those that are compatible with an initial

distribution R2(x, 0) = R2
0(x). Since the function R2(x, t) satisfies the continuity

equation (4), if the probability density at t = 0 is given by R2(x, 0) = R2
0(x) then,

at any time t, R2(x, t) determines univocally the probability distribution.

Besides the very different framework in which operates, the causal theory of quan-

tum motion, constructed upon the basic postulates featured in this section, leads

exactly to the same experimental predictions of conventional quantum mechanics

(we do not discuss this point; see [4]).

2.5. The spin as the source of the quantum behaviour

Very recently, a new picture is emerged in the framework of the causal theory of

quantum motion [6], [7]. It has been shown that the quantum effects present in

the Schrödinger equation are due to the presence of a peculiar spatial direction

associated with the particle that, assuming the isotropy of space, can be identified

with the spin of the particle itself. Then, the motion of a quantum particle results

to be composed of an “external” (drift) motion, described by the velocity field

vB =
1

m
∇S , (14)

and an “internal” one (featured by the presence of spin), driven by vS×s, where vS

is given by

vS =
h̄

2m

1

R2
∇R2 (15)

and s is the spin direction of the particle. In this framework, the quantum potential

is completely determined from the velocity field vS of the internal motion:

Q = −1

2
mvS

2 − h̄

2
∇·vS . (16)
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The classical limit is recovered when the internal motion is negligible with respect

to the drift one which is entirely ruled by classical mechanics.

The probabilistic interpretation, peculiar of all quantum phenomena, has a natural

assessment too. In fact, assuming that initial conditions can be assigned only on the

drift motion (which is, in some sense, the mean motion of the particle), this requires

necessarily a probabilistic formulation of quantum mechanics. In this view, the

internal motion is responsible both of the quantum effects (described, properly, by

the Hamilton-Jacobi equation (3)) and of the quantum probabilistic interpretation

of them (which is allowed by the continuity equation (4).

Also, some difficulties suffered by the de Broglie - Bohm theory, related to “unusual”

properties of the quantum potential, can be simply solved in the novel picture (for

further details see [7]).

3. The motion of gauge particles

In the previous section we have given an account of the de Broglie - Bohm quantum

theory of motion, in which the wave function acquires a direct (and fundamental)

physical meaning. The discussion has dealt with only matter particles, described

by the Schrödinger equation (for non relativistic motion). Here we will consider the

motion of gauge particles, treating the case of electromagnetism.

In quantum electrodynamics, photons are described by the electromagnetic potential

Aµ: the equations of motion, the coupling with matter particles and so on always

involve the 4-vector potential Aµ. The situation is, then, very similar to that of

ordinary quantum mechanics: the fundamental quantity describing photons has not

a direct physical meaning since it is not gauge invariant.

The starting problem can be cast as follows: what is the “wave function” for the

gauge particles? The potential Aµ, even being the reference quantity in quantum

electrodynamics cannot be regarded as a wave function, since it does not possess the

basic features of such a quantity. In fact, for example, a probabilistic interpretation

of it has no sense.
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It has been suggested [10], [9], [11] that the quantity E − iB can describe alterna-

tively the propagation of photons, and here we will show that this is achieved in the

same way in which the Schrödinger wave function ψ = ReiS/h̄ describes the motion

of matter particles in the de Broglie - Bohm theory.

With this choice, the physical meaning of the photon wave function is acquired ab

initio, and we will point out the impressive similarities of the present formulation of

electrodynamics with the de Broglie - Bohm theory.

Although electromagnetism is Lorentz invariant, for the sake of simplicity we will

use a formalism which is not manifestly invariant. The covariant Majorana - Römer

formulation of electromagnetism in a general context is developed in [12].

3.1. Wave mechanics of photons

Let us indicate with E and B the electric and magnetic field, respectively, and con-

sider the complex valued quantity [9], [10], [11], [12]

ψ =
1√
2

(E − iB) (17)

In terms of ψ the Maxwell equations of vacuum electromagnetism then write

∇·ψ = 0 (18)

∂ψ

∂t
= i∇×ψ (19)

The first relation can be regarded as a constraint on the field ψ. Instead, the

second one can take an impressive form by introducing the following set of hermitian

matrices

α1 =





0 0 0
0 0 i
0 −i 0



 α2 =





0 0 −i
0 0 0
i 0 0



 α3 =





0 i 0
−i 0 0
0 0 0



 (20)

satisfying the commutation relation

[αi , αj ] = −i εijk αk (21)
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In fact, Eq. (19) can be written as

i
∂ψ

∂t
= H ψ (22)

or, carrying off the components,

i
∂ψi

∂t
= Hij ψj = −i (αk)ij ∇k ψj (23)

It has, then, the form of a Schrödinger - Dirac equation. This leads us to explore

the possibility of considering the field ψ as the wave function for photons. We have,

thus, to require for ψ a probabilistic interpretation.

First of all, let us note that ψ∗·ψ = 1

2

(

E2 + B2
)

is directly proportional to the

probability density function for a photon. In fact, if we have a beam of n equal

photons each of them with energy ε (given by the Planck relation), since 1

2
(E2 +B2)

is the energy density of the electromagnetic field, then 1

nε
1

2
(E2 +B2) dS dt gives the

probability that each photon has to be detected (or lies, according to the de Broglie

- Bohm point of view) in the area dS at the time dt. (The generalization to photons

of different energies (i.e. of different frequencies) is obtained with the aid of the

superposition principle).

Secondly, by left-multiplying Eq, (23) by ψ∗

i and right-multiplying by ψi the

conjugate equation of (23), summing the two relations, the result is the following

continuity equation (Poynting theorem):

∂ρ

∂t
+ ∇·J = 0 (24)

where

ρ = ψ∗·ψ J = ψ∗ αψ (25)

We then see that such a field can be effectively considered as the wave function for

the photon. The quantity ψ∗·ψ is proportional to the probability density for this

particle, while we observe that the probability current J has the same form of the

Dirac current, with the α matrices in (20).
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The wave function so defined does not suffer for the criticism of sect. 1, since it

is constructed with the electric and magnetic fields which are observable quantities.

It is then desirable to see if this formulation of electrodynamics (as photon wave

mechanics) has some relation with the de Broglie - Bohm causal quantum theory of

motion of matter particles discussed in the previous sections. In the following, we

will see the important role played by the conservation equations in this connection.

3.2. A “quantum potential” for photons

The electromagnetic field (in vacuum) is described by the set of equations (23)

plus the constraint relation (18). Here we will consider another set of fundamental

equations derived from those which express the conservation laws for energy density,

momentum density and angular momentum density, respectively.

We have already met the conservation law for energy density in equation (24), ρ

and J being exactly the energy density and momentum density of the electromagnetic

field, respectively. Their expressions in terms of E , B are the following:

ρ =
1

2

(

E2 + B2
)

J = E×B (26)

Then, by left-multiplying Eq. (23) by ψ∗ α and right-multiplying the conjugate

equation of (23) by αψ, summing the resulting expressions, after little algebra we

obtain the conservation law for momentum density:

∂J

∂t
= −∇ρ + ∇j

(

ψ∗ ψj + ψ∗

j ψ
)

(27)

The term in the RHS is more conventionally written as the divergence of the Maxwell

stress tensor Tij :

∂j Tij = ∂j

(

Ei Ej + Bi Bj − 1

2
δij

(

E2 + B2
)

)

(28)

Finally, the conservation law for angular momentum density follows from (27) by

vector multiplying this equation by the position vector x:

∂L

∂t
= −x×∇ρ + ∇j

(

(x×ψ∗) ψj + ψ∗

j (x×ψ)
)

(29)
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with the angular momentum density given by

Li = (x×J)i = i xj

(

ψ∗

i ψj − ψ∗

j ψi

)

(30)

What have to do these conservation equations with a de Broglie - Bohm -like

formulation of wave mechanics for photons?

As we have seen, the equation (24) has been crucial for the interpretation of ψ as a

wave function.

Let us now consider Eq. (27); it is the local form, for the electromagnetic field, of the

Newton equation, J being the momentum density. Since we are considering the case

of free photons in vacuum, the term in the RHS would be considered the “quantum

force” (density) for the electromagnetic field, analogous to the term derived from

the quantum potential present in Eq. (10) for matter particles.

A corresponding interpretation of Eq. (29) can be given as well, too.

Obviously, differently from the Schrödinger case, for the electromagnetic case no

Planck constant is present: matter particle wave mechanics has a quantum origin,

while photon wave mechanics is described classically. Nevertheless, the description

of the motion of both types of particles can exhibit analogies, some of which are here

studied adopting a de Broglie - Bohm -like point of view.

However, some considerations are in order.

The equation (27) (and (29)) involves local field quantities, while equation (10) is

written for particle quantities; more properly, referring to photons, Eq. (27) would

be integrated over a given finite volume to obtain more similar quantities. Then,

we note that the quantum force (density) -like term in Eq. (27) is made of two

terms. The first one involves a scalar quantity (the energy density ρ), while in the

second one the vector nature of the field ψ is explicit. Thus, differently from the case

discussed in the previous sections, the quantum force (density) -like term for photons

contains an explicit reference to the spin of the considered particle. In other words,

while the first term in the RHS of Eq. (27) is very similar to the one describing the
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“internal motion” of Schrödinger particles, the second term is peculiar for vector

gauge bosons and can be present only for these particles.

3.3. The (mean) motion of a photon

The analogy between the present formulation of electrodynamics and the de Broglie

- Bohm theory of quantum motion is still incomplete, since we have not addressed

the problem of photon motion (in particular, that of photon trajectories) in its

completeness, namely the validity of a relation like that in Eq. (7) (generalized to

the relativistic case) for the photon. This is still an open problem; in particular,

the issue of a position operator for photons has been the subject of intensive studies

[13], [14], [15]. It has been demonstrated [13] that it is possible to define position

operators (and localized states) only for massive and scalar massless particles, but

not for massless particles with non vanishing spin 2.This is related to the structure

of the Poincaré group [15] and hence it is a general result. While here we don’t

question this important result (according to the de Broglie - Bohm point of view, we

are dealing with the motion of photons and not with their localizability in space),

we want to discuss a peculiar relation that, on one hand, seems to confirm the choice

of ψ = E − iB as the photon wave function, and, on the other hand, makes more

close the relation between electromagnetism and Schrödinger wave mechanics. In

the previous subsections we have already addressed the fact that the conservation

equations (24), (27), (29) involve local field quantities, not particle properties. We

now consider an integrated relation.

As well known, the integration over the whole space of the Eqs. (24), (27), (29)

yields the conservation laws for the energy, momentum and angular momentum of

the electromagnetic field respectively, i.e.

dE

dt
= 0

dP
dt

= 0
dL
dt

= 0 (31)

2 As pointed out in [15], even for massive particles the localization is not perfect, because it is not
relativistically invariant. However, the departures from strict localization are only exponentially
small, and in the non relativistic limit the localization is restored.
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where

E =

∫

ρ d3x =

∫

ψ∗ ψ d3x (32)

P =

∫

J d3x =

∫

ψ∗ αψ d3x (33)

L =

∫

x×J d3x = i

∫

xj

(

ψ∗ ψj − ψ∗

j ψ
)

d3x (34)

However, there is a last conservation equation not derivable from (31) (see, for

example, [16]). It follows from the conservation of the relativistic angular momentum

tensor Mαβγ = θαβxγ − θαγxβ (with θµν = gµαFαβF
βν + 1

4
gµνFαβF

αβ the

energy-momentum tensor), that is

∂αM
αβγ = 0 (35)

If for both β, γ we choose spatial indices, we re-obtain Eq. (29). Instead, let us

consider the case in which β = 0 and γ = i = 1, 2, 3; we then have

(

∂ρ

∂t
+ ∇j Jj

)

xi =

(

∂Ji

∂t
− ∇j Tij

)

t (36)

Integrating this relation, with a little algebra we arrive at the final result

dX
dt

=
P
E

(37)

with

X =

∫

ψ∗ xψ d3x
∫

ψ∗ ψ d3x
(38)

Allowing ψ to be the photon wave function, we recognize in (38) the expression for

the mean position of the photon, while

V =
P
E

=

∫

ψ∗ αψ d3x
∫

ψ∗ ψ d3x
(39)

is its mean velocity. The obtained result (37) is then the Ehrenfest theorem for

the photon. Although it does not individuate the complete photon trajectory, as

Eq, (7) does for the Schrödinger particle, nevertheless it gives us information on

the mean motion of the photon. With the identification of ψ in (17) as the photon
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wave function, the relation (37) (and its interpretation) is an important result of the

present formulation towards a comprehensive understanding of the quantum motion

of both matter and gauge particles.
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