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Outline

• Gravitational collapse (perfect fluid, spherical symmetry):

- Introduction 

- Causal horizons: event/apparent horizon, cosmological horizon

- Barotropic equation of state: BH formation and critical collapse 

- Non barotropic equation of state: virialized structure

• Conclusions: summary & future



Background model

• The most general spherical symmetric form of the metric, to describe a 
deviation from the uniform background, can be written as, 

• This defines a, b, and R being functions of the comoving coordinate r the 
often called cosmic time t and involves a choice of the time slicing to keep 
the metric diagonal (gauge choice). The radius R is the circumferential 
radial coordinate.

• The unperturbed solution, describing an expanding homogeneous universe, 
is given by the FRW metric: K = ±1, 0 is the curvature parameter,         is the 
scale factor, and  R  =        r  is the circumferential radial coordinate. 

• In case of BH formation it is more convenient to use a null slicing (r,u):

ds2 = −a2 dt2 + b2 dr2 + R2dΩ2

ds2 = −f2 du2 − 2fb dr du + R2dΩf du = a dt− b dr

ã(t)
ã(t)

ds2 = −dt2 + ã(t)[
dr2

1−Kr2
+ r2dΩ2]



COSMIC TIME NULL TIME
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Equation of State

• Barotropic fluid (no rest mass density):                         with 

- radiation dominated era:

- matter dominated era:                  

• Polytropic fluid:                               

- If the fluid is adiabatic (no entropy change):                        (constant)

rest mass density

specific internal energy (velocity dispersion)

w = 1/3

adiabatic index - particle degree of freedom

w = 0

p = we w ∈ [0, 1]

p = K(s)ργ

K(s) = K

RADIATION

DUST

energy density: pressure:e = ρ(1 + �)

(γ = 4/3)

p = (γ − 1)ρ�

(γ = 1)

(γ = 5/3, 4/3, 2)



Radial null ray 

• Along a radial null ray                                                                       

                                        

with the plus for outgoing and the minus for incoming.

• For changes in R along a worldline:                                                  

•                                                                      along a radial null ray

• Introducing the radial component of 4-velocity U and the Lorentz factor Γ
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• For a general perfect fluid, the G00 and G11 components of the Einstein field 
equations are                                                                    

                                        

• It is convenient to define                                                              to write  

• The last is a constraint equation with M being the mass inside radius R. The  
second one describes adiabatic expansion or contraction of the fluid. 

(G0
0) 4πR2eRr = (R + RU2 −RΓ2)r/2

(G1
1) 4πR2apU = −(R + RU2 −RΓ2)t/2
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Γ2 = 1 + U2 − 2M

R
and

Calculation of Γ



• A black hole apparent horizon (event horizon in the static case) is the 
asymptotic location of the outermost trapped surface for outgoing light-rays 
whereas the cosmological horizon is the innermost trapped surface for 
incoming light rays.

• Apparent horizon :

• Cosmological horizon :                                 

•                                       inserted into

Horizons within a moving medium
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The horizon condition is independent of the 
slicing and holds also within a non-vacuum 
moving medium



• In the early universe large amplitude perturbations of the metric  can 
collapse into Primordial Black Holes (PBHs) [Zeldovich & Novikov (1967); 
Hawking (1971)] characterized by a wide range of masses (from the Planck 
mass to 10⁶ M⊙ for PBHs formed at the Nucleosynthesis). 

• Historically the Hawking evaporation effect (1974) has been inspired by the 
idea of PBH formation because PBHs small as particles could form in the 
Early Universe and will have non negligible quantum effects. PBHs smaller 
than 1015 grams would evaporate by now via Hawking evaporation, becoming 
possible sources of Gamma Ray Burst, Cosmic Rays, evaporation remnants 
as cold dark matter.

• The threshold amplitude  δc ∼ cs
2  measured at horizon crossing time Carr 

(1975), tells if a perturbation can collapse into Primordial Black Holes or 
disperse into the surrounding medium. This has been confirmed by full 
relativistic numerical simulations Nadezin, Novikov & Polnarev (1978), 
and more recently by Niemeyer & Jedamzik (1998, 1999); Musco, Miller & 
Rezzolla (2005)] suggesting that critical collapse (scaling law)  might apply 
in the early universe, in particular during the radiation dominated era 

PBH History

w = 1/3



Detection of PBHs 

• These PBHs could collide with stars (Zhilyaev 2007):

- So small that there would be hardly any “direct” interaction with 
stellar matter.

- Interaction via dynamical friction.

- potentially observable flashes in X-rays and ϒ-rays.

- for smaller PBHs the signal is too weak while for larger PBH the 
event rate is too low.

PBHs cosmological seeds of SBHs?

• PBHs ∼ 105 solar masses during nucleosyinthesis. 

• The softening of the equations of state could enhance the collapse 
(radiation transport of neutrinos)?

• formation mechanism to investigate.



Structure formation
• Non linear gravitational collapse  ⇒  structure formation

• Barotropic fluid                            Primordial Black Hole (PBH) formation.  
Initial conditions: small super horizon perturbations re-entering the horizon 
in the radiation dominated era. 

• In the matter era the universe is dominated by CDM particles where the 
pressure is characterized by random motions (velocity dispersion) that gives  
virialization.

• In a spherically symmetric Fluid approach baryoinc matter is characterized 
by a Mawellian distribution. Non-barotropic equation of state for CDM  
needs non-Maxwellian velocity dispersion implying non isotropic pressure.

• Structure formation is a non relativistic problem that in cosmology is usually 
studied in 3D using  N-body simulations. For relativistic collapse spherical 
symmetry is very useful. Initial conditions: 

1. Linear cosmological perturbations (early universe).

2. Perturbations of static solutions.

p = we ⇒



Initial conditions

• In the early universe we can consider small cosmological perturbations of the 
density as the origin of the future structure observed in the universe coming 
from quantum fluctuations inflated onto supra-horizon scale. 

• Cosmological perturbations re-enter the horizon again as the Universe 
continues to expand – become causally connected – can collapse.

• Cosmological perturbations may start as a mixture of growing and decaying 
components, but the decaying components soon become small, leaving just the 
growing ones. 

• In the linear regime, pure growing adiabatic mode can be described as: 
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BH formation: setting the problem

• Spherical symmetry

• Barotropic equation of state:

• Initial conditions: linear supra-horizon perturbation               of a FRW universe:  

ds2 = −a2 dt2 + b2 dr2 + R2dΩ2
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• Defining the scale of the cosmological perturbations as R0 and the 
cosmological horizon scale as RH  := 1/Hb  . In the linear regime of supra horizon 
growing modes we can construct a small parameter   (t) << 1 as:

• First order perturbations in    are given by:

• In the linear regime, when       << 1, K(r) r2
 = 1−Γ2 is a time independent curvature 

profile  because pressure gradients are negligible, and can be used as the only 
independent source of perturbations.
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M =
4
3
πebR(1 + �M̃)

�

�

�

Quasi homogeneous solution

H
2
b

=
8π

3
eb =:

�
1

RH

�2



• Solution of Einstein equations to the first order in  (Polnarev & Musco 
2007):

• Constraints:                                     and
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• The perturbation amplitude δ can be measured by the mass excess inside 
the over dense region. 

• The simplest curvature profile is given by a Gaussian profile of K(r) which 
gives a Mexican Hat profile for the energy density e:
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• Gaussian Curvature - Mexican hat energy density perturbation: the 
amplitude Δ of the Gaussian profile of K(r) gives a measure of the central 
peak of the Mexican hat energy density profile ē(r) that integrated on the 
3D spherical volume gives the perturbation amplitude δ.
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• Simulations are performed using a Lagrangian spherically symmetric GR 
hydro code with an adaptive grid (AMR). 

• We set initial conditions using a cosmic 
time coordinate t.

• We transfer those onto a null foliation 
of the space time, then evolved using an 
observer time coordinate u.

• The formation of a PBH is seen by a 
distant external observer ( the 
singularity is hidden by the asymptotic 
formation of the apparent horizon). 

Numerical Results: the method



Critical Collapse  

• Universality with respect to initial data: generic initial data parameterized by 
one parameter δ have only two possible end states: 

1. Give rise to a black hole formation if (δ > δc).

2. Dispersion to infinity of the mass energy if (δ < δc).

• Scale invariance of the critical solution (δ=δc): it is possible to rescale the 
solution (self similarity)

• Black Hole mass scaling: near the threshold, black holes with arbitrarily small 
masses can be created, and the black hole mass scales as

• The critical exponent γ is universal with respect to initial data, independent of 
the particular 1-parameter family, depends only on the equation of state.

MBH ∝ (δ − δc)γ

gµν(τ, xi) = e−2τ g̃µν(xi)

γ = 1/λ



Numerical Results: BH formation  



The collapse shows the presence of a very strong wind during the collapse that 
blows out a lot of material (solid line) which creates a deep evacuated region around 
the BH  (dashed line). This region is then refilled very gently after a large number of  
dynamical time scales.  

Numerical Results:  relativistic wind 



Numerical Results: no-BH formation  



Numerical Results: perturbation bounce  



Numerical Results: intermediate state 



Numerical Results: scaling law and threshold    

MBH = K(δ − δc)γMH



Self similar equations   

The Einstein + fluid equations can be written in a self similar form, using the self 
similar variables                                                   , function of                     
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ξ = R/(tc − t)

Numerical Results: self similarity ( U )



Numerical Results: self similarity (Φ,Ω)

ξ = R/(tc − t)



Φ+(ξ, τ)− Φ�(ξ) ∝ (δ − δc)eλ0τψ0(ξ)

Φ−(ξ, τ)− Φ�(ξ) ∝ eλ1τψ1(ξ)

τ = − ln[(tc − t)/tH ]

1/λ0 = 0.356 = γ

Numerical Results: growing and decaying modes   
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Numerical Results: virialization 
(no shock treatment)
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Numerical Results: virialization 
(artificial viscosity)
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Conclusions  

• Starting with self similar solutions (FRW universe)...

• ... introducing a linear perturbation that is able to collapse, at the end of the 
non linear evolution, a collapsing self similar solution arises.

CRITICAL SOLUTION FOR PBH FORMATION

REFERENCE: I Musco & J.C. Miller, CQG 30 (2013) 145009 
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