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No acceleration in the Einstein frame

Observed acceleration is a genuine modified gravity effect
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___What is GR?

’ onsistenfilorentz invariant)theory of

,W eld ar1c energies
Weinberg '65

Modify GR in the infrared

It is the or

There must be extra light degrees of freedom
(Brans-Dicke, f(R), Pauli-Fierz massive gravity, DGP, ...)

one extra scalar @
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screening mechanism
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almost GR scalar-tensor

1/ A I'pluto R I{()_1
10* cm 1028 cm

Vainshtein screening . .

self-interactions suppress the scalar at short scales
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How can it be possible?

The Big Bang paradigm assumes (at least) the null energy condition (NEC)

T/WTL“TLV > () in FRW spacetime reduces to H P -+ D Z () ;{

— —

 NEC=H,p<0 |

H = —47G(p + p)
p=—3H(p +p)

NEC satisfied by matter, radiation
NEC saturated by a cosmological constant

Is there a form of matter that violates it?



Can we violate the NEC?

Usually NEC are unstable:

= +2(00) V()  d=o(t) = (ptp) =+




Can we violate the NEC?

Usually NEC are unstable:

= +2(00) V()  d=o(t) = (p+p) = FF

No-go theorem
L":F(¢178¢1782¢17“°) ]:177N

There are no stable NEC-violating EFT
if we can neglect HD terms

Dubovsky, Gregoire, Nicolis, Rattazzi ‘06

®They are irrelevant at low energies. When they are important ;F’f
®They describe new pathological ghost-like degrees of freedom

Buft...
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every EFT can be UV completed
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Emphasis not on radicalness instead on consistency as a quantum EFT
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Consistent a microscopic
oW energy EFTs S-matrix satisfying
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If EFT is the low energy limit of a theory

with standard S-matrix properties (unitarity, 4 C S
analiticity, Froissart bound) then L= 0ym0¥m + -7 (0,m0"m)" + ...
2 —» 2 forward scattering amplitude cannot

go to zero faster than cs? with ¢>0

If EFT is the low energy limit of a local,

Lorentz invariant theory then
c
2 M £ 4 = O, \2
The correction to the light cone around non- L = OumoTEt A4 (OuTOm)" '+ ...

trivial backgrounds must always go in the
subluminal direction

1) Compatible with
a microscopic
i S-matrix satisfying
77(37) usual analyticity
conditions

2) No superluminal propagation

Adams, Arkani-Hamed, Dubovsky, Nicolis, Rattazzi ‘06
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The Galileon
"The ornithorhynchus of EFT”

A weird animal: a HD theory with only 2nd order e.o.m.
As its four legged analogue, it evades the standard preconceptions...
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Scalar theories with higher derivatives

Usually they describe new pathological ghost-like degrees of freedom

_(8¢)2 i ]\;2 (

$)? = —(0¢)° + (Ox)° + M*x°

Is there a HD lagrangian that gives 2 derivatives EOM?

5;” = F(0,0,m)  Avoids new ghost-like d.o.f. g o 2
:
m(xr) = m(x) +c +b,2"]  The Galileon
; s, SRR e . T Nicolis, Rattazzi, ET ‘08
LRy
There are D operators in D dimensions
L®) = (0m)*On
LW = (6m)*[(Or)? — 6,0,0"9"]
L) = (0m)?[(Or)? — 300,08, 709" 1 + 28,8, m0" 9w 7]




Scalar theories with higher derivatives

Usually they describe new pathological ghost-like degrees of freedom

_(8¢)2 i ]\;2 (

$)? = —(0¢)° + (Ox)° + M*x°

Is there a HD lagrangian that gives 2 derivatives EOM?

0L
O

= F(0,0,m)  Avoids new ghost-like d.o.f. g o 2

") = 7(@) T ot Bt

1
L= ~ = _— — ——— — — — — S S ————— —

The Galileon
Nicolis, Rattazzi, ET ‘08

(2) 2
L (Om) 8m(82ﬂ')n
L3 = (9r)20On
LW = (67)?[(Or)? - 6,0,040" 7]
£®) = (0m)*[(On)? — 300,8,18"8"m + 20,8,10" 910" D]




Interesting regime

When classical non-linearities are large. Is it within EFT?






Non-linearities become important at a scale rs where

C

|l




e M
~1 = rs~

Non-linearities become important at a scale rs where to
Mp) My,

All the other terms are suppressed by extra-powers of

We can compute classical non-linearities without knowing the UV compl



The Galileon

Non renormalization theorem | ., porrati, Rattazzi ‘03

Loops of quantum fields with interactions £3) £4) £(5) generate terms
involving at least 2 derivatives on the external legs.
In particular galilean terms are not renormalized

(9m)% + 15 (0m)°0im + 75 (9m)2(8°m)? + 15 ()2 (8°m)°
s

2 (0Pm)?
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The Galileon

Non renormalization theorem | ., porrati, Rattazzi ‘03

Loops of quantum fields with interactions £3) £4) £(5) generate terms
involving at least 2 derivatives on the external legs.
In particular galilean terms are not renormalized

02 M

W[

. T A
Classical non-linearities important e =157 (MP1A3)

All the other operators are suppressed by extra powers of



Interesting regime

When classical non-linearities are large. Is it within EFT?

Galilean invariance protects the structure of the Lagrangian
2
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Interesting regime

When classical non-linearities are large. Is it within EFT?

Galilean invariance protects the structure of the Lagrangian

D)
- a
X vl

Stable spherically symmeftric Vainshtein-like solutions

around compact objects & gy
Nicolis, Rattazzi, ET '0O8

Stable self-accelerating dS solutions A = (Hgl\fpl)l/3



Superluminality

Fluctuations are exactly luminal about the “de Sitter” background because of SO(4,1)

About a generic deformation, perturbations will propagate on the light cone of the
effective metric

5012
IAB

the Galileon cubic interaction increases the velocity in some directions while
decreases it in others

G, 0,0, Vimg ~ 0

Any small deformation will have superluminal perturbations
(measurable W|1-h|n 'I-he EFT) NiCO“S, RG""I'GZZi, ET '09



Superluminality

Fluctuations are exactly luminal about the “de Sitter” background because of SO(4,1)

About a generic deformation, perturbations will propagate on the light cone of the
effective metric

5012
|A3

the Galileon cubic interaction increases the velocity in some directions while
decreases it in others

G, 0,0, Vimg ~ 0

Any small deformation will have superluminal perturbations

(measurable within the EFT) Nicolis. Rattazzi. ET ‘09

The UV completion cannot be a Lorentz-invariant local QFT
Adams, Arkani-Hamed, Dubovsky, Nicolis, Rattazzi '06
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The conformal Galileon

Nicolis, Rattazzi, ET ‘08
Promote galilean transformation + Poincaré to conformal group SO(4,2)
m(x) = w(Ax) + log A

m(x) — w(cx? — 2(ct)z) — 2¢,z"

it plays the role of the dilaton g, = 62'"77,“,
x(om)? + Lz (om)*
2A3
;
—00 <t <0 Hy = %

m(z) = mas(t) + ¢(x)
Stable luminal fluctuations
Nicolis, Rattazzi, ET ‘09

Conservation+
scale invariance




Galilean Genesis

Creminelli, Nicolis, ET ‘10
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Minkowski  Genesis |Reheating Radiation dom




Galilean Genesis

Creminelli, Nicolis, ET ‘10

4 il o e R 2 4
/d :E\/ig[f e~" (Om) + 43 7 (Om) (Om) } + Sen

Conformal Galileon minimally coupled to gravity

ds® =Pt e T —(

Solve Friedmanns equations for H perturbatively

Minkowski  Genesis |Reheating Radiation dom

It solves
Horizon & Flatness problems
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Scalar perturbations

7t perturbations are not scale invariant
always irrelevant at cosmological scales

Any coupling to T has to go
through the fictitious meftric
s

e~ — E— = e ——m— ——— e —— *

‘ A spec’ra’ror massless scalar field o behave as in de Sitter V

I’rs spectrum is scale invariant because of ’rhe dS symmefry



Scalar perturbations

7t perturbations are not scale invariant
always irrelevant at cosmological scales

Any coupling to T has to go
through the fictitious meftric
s

e — E— = —_— — = — — *

‘ A spec’ra’ror massless scalar field o behave as in de Sitter ]‘

I’rs spectrum is scale invariant because of ’rhe dS symmefry

Conversion of o fluctuations analogous to “second field” mechanism in inflation

Low GWSs: perturbations produced

| : g
- Typical signatures il 6 ik

|

Large local non-Gaussianities  Blue GWs: contraction orbLEC

— = === = = = — == —=
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Consistent
oW energy EFTs

— Effective Field Theory in cosmological evolution (large
non-linear backgrounds)

— Goldstone bosons for spacetime symmetries

- Quantum effects and non-renormalization theorems

- Consistency conditions for a UV completion
(superluminality, analiticity, ....)



