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• Current observational data strongly support a flat and accelerating Universe with Current observational data strongly support a flat and accelerating Universe with 
HHoo~67-73Km/sec/Mpc and T~67-73Km/sec/Mpc and Too~1~144 Gyr.  Gyr. 

• The mystery of dark energy poses a challenge of such magnitude that, as stated by The mystery of dark energy poses a challenge of such magnitude that, as stated by 
the Dark Energy Task Force (DETF –advising DOE, NASA and NSF), ‘’the Dark Energy Task Force (DETF –advising DOE, NASA and NSF), ‘’Nothing short Nothing short 
of a revolution in our understanding of fundamental physics will be required to of a revolution in our understanding of fundamental physics will be required to 
achieve a full understanding of the cosmic acceleration’’ achieve a full understanding of the cosmic acceleration’’ (Albrecht et al. 2006). (Albrecht et al. 2006). 

THE CURRENT COSMOLOGICAL STATUSTHE CURRENT COSMOLOGICAL STATUS

  We live in a very exciting period for the We live in a very exciting period for the 
advancement of our knowledge for the Cosmos.advancement of our knowledge for the Cosmos.
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  COSMOLOGICAL OBSERVATIONS & SPACETIMECOSMOLOGICAL OBSERVATIONS & SPACETIME  

      HubbleHubble  diagram diagram ((SNIa)SNIa)    Ω Ωmm + Ω + ΩΛΛ  

      Temperature fluctuations of the CMB Temperature fluctuations of the CMB    spatial geometry spatial geometry ΩΩκκ

      Large-Scale Structure Large-Scale Structure   Ω Ωm m (independent from dark energy)(independent from dark energy)

      Extragalactic sources (galaxies, AGNs, GRBs, HII, LBGs ) Extragalactic sources (galaxies, AGNs, GRBs, HII, LBGs ) 
      at large redshifts at large redshifts     Ω Ωmm + Ω + ΩΛΛ  

        Growth data + gravitational lensing Growth data + gravitational lensing  to check gravity on to check gravity on 
      cosmological scalescosmological scales

        

S. Perlmutter, A. Reiss & B. S. Perlmutter, A. Reiss & B. 
Schmidt: Nobel Prize 2011Schmidt: Nobel Prize 2011  



  The Friedmann-Lemaitre-Robertosn-Walker (FRLW) spacetimeThe Friedmann-Lemaitre-Robertosn-Walker (FRLW) spacetime  

ds2=−c2 dt2+α2  t [ dr 2

1−Kr2
+r 2 dϑ2sin 2θdϕ2 ]

The analysis of the CMB data (Planck: Ade et al. 2013; Spergel The analysis of the CMB data (Planck: Ade et al. 2013; Spergel 
et al. 2013) points a spatially flat (K=0) FRW metric.et al. 2013) points a spatially flat (K=0) FRW metric.

Assuming that the Universe is homogeneous and isotropic (Cosmological principle)Assuming that the Universe is homogeneous and isotropic (Cosmological principle)  

The scale The scale 
factorfactor

Spatial part of the metricSpatial part of the metric

H  t ≡
ȧ  t 
a  t 

The expansion The expansion 
rate of the rate of the 
Universe, Hubble Universe, Hubble 
function function 

Time partTime part
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CMB temperature anisotropies provide a standard ruler.
They were produced about 400,000 
years after the Big Bang,and should 
be most prominent at a physical 
size of 400,000 light years across.
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Evidence of cosmic accelerationEvidence of cosmic acceleration

Change GravityChange Gravity..  
GR is not validGR is not valid at  at 

Cosmological Cosmological 
scales. Modify the scales. Modify the 
‘’law of gravity’’‘’law of gravity’’

Observationally assuming a Observationally assuming a 
matter dominated Universe we matter dominated Universe we 

have:have:

Change the cosmic Change the cosmic 
fluid. We add a fluid. We add a 
‘’dark energy’’‘’dark energy’’

or

S. Perlmutter, A. Reiss & B. S. Perlmutter, A. Reiss & B. 
Schmidt: Nobel Prize 2011Schmidt: Nobel Prize 2011  
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HUBBLE DATA – EXPANSION RATE



Artistic view of a universe filled by a turbulent sea of dark energy
                                         R. Caldwell (2005)

‘’‘’Dark Energy’’Dark Energy’’ introduces a New Physics  introduces a New Physics 



THE DYNAMICS OF THE UNIVERSE 

 
Friedmann equations: 

 

DE regime w>-1DE regime w>-1  

Modified Gravity or DM Modified Gravity or DM 
DE interactionsDE interactions w<-1 w<-1

ΛΛ-vacuum w=-1-vacuum w=-1  

  Equation of State Equation of State 
      parameter      parameter

  In the matter dominated era In the matter dominated era 
and for spatially flat models and for spatially flat models 
we get:we get:



The cosmological parameters

Scale factor – Density Parameters :

Note that for w=-1 or X(α)=1 we get the usual Λ cosmology. Performing a 
Cosmo-Statistics we can but constraints on the cosmological parameters  

mQr =1



Planck 
results 

Ade et al. 
2013



Planck Results: Ade al al. (2013-arXiv:1303.5080 )Planck Results: Ade al al. (2013-arXiv:1303.5080 )

m=0 .315±0 .017 H 0=67. 3±1. 2 Km/ s /Mpc

σ 8=0 . 829±0 .012 b h
2
=0 .02207±0 .00033

Y p=0 . 2477±0 . 00012 z dec=1090. 43±0 .54

z eq=3386±69

ns=0 . 9603±0. 0073N=50−60

N eff=3.30±0 . 27

w=
Pde
ρde

=−1.09±0 . 17If we include dark energy then 
Planck+WMAP+SNIa



Planck versus InflationPlanck versus Inflation



An alternative approach to cosmic acceleration is An alternative approach to cosmic acceleration is 
to change gravity ‘’geometrical dark energy’’to change gravity ‘’geometrical dark energy’’

Here we alter general relativity by modifying Here we alter general relativity by modifying 
the usual Einstein’s field equationsthe usual Einstein’s field equations

  The alternative-gravity theories have to satisfy the following criteria:The alternative-gravity theories have to satisfy the following criteria:

• For systems such as the solar system or galaxies, the alternative For systems such as the solar system or galaxies, the alternative 
gravity must be very close to general relativitygravity must be very close to general relativity  

• At cosmological scales we must haveAt cosmological scales we must have  ggMRMR<g<gGRGR  which implies that the which implies that the 
cosmic acceleration is due to the weak gravity nature. The dark energy cosmic acceleration is due to the weak gravity nature. The dark energy 
reflects on the physics of gravity (geometrical dark energy)reflects on the physics of gravity (geometrical dark energy)

Dark Energy as a modification of gravity?Dark Energy as a modification of gravity?



Tests of Gravity
by R. Caldwell 2005

local acceleration of bodies of different composition 
Eot-Wash: Baessler et al, PRL 83 (1999) 3585

Lunar laser ranging
Williams et al, PRL 93 (2004) 261101

Nordtvedt effect: observations of the acceleration of bodies with 
different gravitational binding energies tests the Strong 
Equivalence Principle

Mass definitions:

Locally Einstein’s General Relativity
is the standard model of gravitation



1. Define the modified Einstein-Hilbert action 1. Define the modified Einstein-Hilbert action 
(S) in which we include all the ingredients (S) in which we include all the ingredients 
(modified gravity, scalar fields, matter etc).(modified gravity, scalar fields, matter etc).

2. Varying the action (2. Varying the action (δδS=0)S=0) in order to obtain  in order to obtain 
the modified Einstein’s field equations as well the modified Einstein’s field equations as well 
as the Klein Gordon equation (if a scalar field is as the Klein Gordon equation (if a scalar field is 
present).present).

The main steps are: The main steps are: 

3. Using the FRW metric we derive the so called 3. Using the FRW metric we derive the so called 
Friedmann equations (equations of motion) Friedmann equations (equations of motion) 
which describe the cosmic dynamics of the which describe the cosmic dynamics of the 
Universe.Universe.



SCALAR TENSOR THEORIESSCALAR TENSOR THEORIES
 These are probably the simplest example of modified gravity models 

and as such one of the most intensely studied alternatives to General 
Relativity. The general Einstein-Hilbert action is 

Is a general Is a general 
function of the function of the 
scalar field and the scalar field and the 
Ricci scalarRicci scalar

The above general action includes a wide The above general action includes a wide 
variety of theories. Indeed some of these variety of theories. Indeed some of these 
are:are:

S=
1

8πG ∫ d 4 x−g [ 1
2
f φ,R−

1
2
ς φ  ∇ φ 2 ]+Sm+S r

Is a function of Is a function of 
the scalar field the scalar field 
(inflaton, (inflaton, 
dilaton string dilaton string 
theory etc)theory etc)

Are the matter-Are the matter-
radiation actions that radiation actions that 
depend on the metric depend on the metric 
and matter fieldsand matter fields

For more details see Fujiii & Maeda 2003; Amendola & Tsujikawa 2010; Capozziello & For more details see Fujiii & Maeda 2003; Amendola & Tsujikawa 2010; Capozziello & 
de Laurentis 2011 (and references therein) de Laurentis 2011 (and references therein) 



GENERAL RELATIVITYGENERAL RELATIVITY
 GR is a particular case of the scalar tensor theories. 

Varying the action we have the Einstein’s equations  

The energy momentum The energy momentum 
tensortensor

f φ,R =R−2Λ
ς φ =0

G μν≡R μν−
1
2
Rg μν+Λg μν=8πGN T μν

∇ μG ν
μ
=∇ μT ν

μ
=0

T ν
μ=diag −ρ,P,P,P 

ρ=ρm+ρr P=Pm+P r

The Bianchi identities The Bianchi identities 
insure the covariance of insure the covariance of 
the theory the theory 

ρΛ=
Λ

8πGN
=ρΛ0

ΛΛ is the Einstein’s cosmological constant is the Einstein’s cosmological constant



For For 
dust dust 

This is the This is the Λ Λ CosmologyCosmology

From (00)-From (00)-
componentscomponents

For the spatially flat FRW metric we get the Friedmann equations of motionFor the spatially flat FRW metric we get the Friedmann equations of motion

H 2=
8πGN

3  ρm+ρ r+ρΛ 

From (ii)-From (ii)-
componentscomponents

3H22 Ḣ=−8πGN  Pm+Pr− ρΛ 

Bianchi identities Bianchi identities 
assuming no assuming no 
interactions  interactions  

ρ̇m3H ρm+Pm=0

ρ̇r3H ρ r+P r =0

Pm=0 ρm=ρm0 a
−3

For radiation For radiation P r=ρr /3 ρr=ρr0 a
−4

E 2 a =
H 2

a 

H 0
2

=ma
−3r a

−4Λ

m=8πGN ρm/3H0
2

Λ=8πGN ρΛ/3H0
2

r=8πGN ρr /3H0
2



The scalar field dark energy models The scalar field dark energy models 

These dark energy models adhere to General Relativity. 
The corresponding Einstein-Hilbert action includes: 

The scalar field dark includes a The scalar field dark includes a 
wide variety of theories wide variety of theories 
depending on  depending on  

S=
1

8πG ∫ d 4 x−g [ 1
2
f φ,R−

1
2
ς φ  ∇ φ 2 ]+Sm+S r

f φ,R =R−2V φ

For a homogeneous scalar field  For a homogeneous scalar field  
∇ φ 2=φ̇2

 t 

The dark energy The dark energy 
equation of state equation of state 
parameter  parameter  

w=

1
2
ζ φ̇2

−V φ 

1
2
ζ φ̇2+V φ 

V φ 

ζ φ 



I) f(R) gravity models I) f(R) gravity models 

Varying the action we derive the modified Einstein field equations. Varying the action we derive the modified Einstein field equations. 
In the context of FRW geometry (spatially flat) the Friedmann In the context of FRW geometry (spatially flat) the Friedmann 
equations become:equations become:

3f RH
2−

f RR− f

2
3Hf RR Ṙ=16 πG  ρm+ρr 

−2f R Ḣ=16πG  ρm4ρr /3  f̈ R−H ḟ R

R=g μν Rμν=6 2H2
Ḣ 

Notice that the concordance Notice that the concordance ΛΛ-cosmology can be found for -cosmology can be found for f  R =R−2Λ

f φ,R =f  R  ς φ =0



The effective Newton’s constant depends also from scale. The effective Newton’s constant depends also from scale. 

k=1/ λ≈0 . 1hMpc−1

Obviously the concordance Obviously the concordance ΛΛ cosmology admits  General  cosmology admits  General 
Relativity   Relativity   f  R =R−2Λ

Geff a,k 

G N

=
1
f R

14 k 2 f RR /a
2 f R

13 k 2 f RR/ a
2 f R

Geff a,k =GN

For more details see: Sotiriou & Faraoni 2008; Amendola & Tsujikawa 2010; For more details see: Sotiriou & Faraoni 2008; Amendola & Tsujikawa 2010; 
Capozziello & de Laurentis 2011 (and references therein) Capozziello & de Laurentis 2011 (and references therein) 



In the literature we usually use either the Hu & Sawicki model:In the literature we usually use either the Hu & Sawicki model:

f  R =R−m2 c1 R /m2 
n

1+c2  R/m
2 n

f  R =R−c1m
2 [1− 1

1+R2 /m4 n ]

or the Starobinsky model:or the Starobinsky model:

In Basilakos, Nesseris & Perivolaropoulos (Phys. Rev. D. 2013) we prove that the f(R) In Basilakos, Nesseris & Perivolaropoulos (Phys. Rev. D. 2013) we prove that the f(R) 
models can be written as perturbations around the models can be written as perturbations around the ΛΛ cosmology  cosmology 



II) Generalized Brans-Dicke TheoriesII) Generalized Brans-Dicke Theories

Varying the action (based on a spatially flat FRW) we haveVarying the action (based on a spatially flat FRW) we have

rmFHUFQ
G

FH ρρφ
π

++−+−= ˙˙ 3)61(
2

1

8

3 22
2

)(2)(),( φφφ URFRf −= )()61()( 2 φφς FQ−=

F

F
Q φ,−≡

[ ] 0)2/(3)61( ,
2 =++++− QFRUFFHFQ φφφφ ˙˙˙˙̇



The effective Newton’s constant becomes  The effective Newton’s constant becomes  

32ωBD=
1

2Q2

Using the Solar System constrain namely at very small scales Using the Solar System constrain namely at very small scales 
the modified gravity tends to General Relativity we have the modified gravity tends to General Relativity we have 

ωBD4 .3×104

Geff a 

G N
=

1
F 0

42ωBD

32ωBD

∣Q∣2. 4×10−3

For more details see: Nojiri et al. 2005; Damour & Nordvedt 1993; Fujii & Maeda 2003; For more details see: Nojiri et al. 2005; Damour & Nordvedt 1993; Fujii & Maeda 2003; 
Nesseris & Perivolaropoulos 2006; Amendola & Tsujikawa 2010 (and references Nesseris & Perivolaropoulos 2006; Amendola & Tsujikawa 2010 (and references 

therein) therein) 



III) Gauss-Bonnet gravityIII) Gauss-Bonnet gravity

Varying the action (based on a spatially flat FRW) we haveVarying the action (based on a spatially flat FRW) we have

3H2

8πG
=

1
2
φ̇2+V φ 24 g ,φH

3 φ̇+ρm+ρr

f φ,R =R−2V φ−2g φ  RGB
2 ς φ =1

RGB
2 =R2−4R μν R

μν+RμναβR
μναβ

φ̈3Hφ+V ,φ24 g ,φH
2 H 2 Ḣ =0

Gauss-Bonnet termGauss-Bonnet term

g φ = g0 / λ e
λφA particular form is usedA particular form is used

For more details see: Nojiri et al. 2005; Carter & Neupane 2006; Amendola et al. 2006; For more details see: Nojiri et al. 2005; Carter & Neupane 2006; Amendola et al. 2006; 
Amendola & Tsujikawa 2010; Capozziello et al. 2013 (and references therein) Amendola & Tsujikawa 2010; Capozziello et al. 2013 (and references therein) 



IV) The braneworld - Dvali, Gabadadze & Porati IV) The braneworld - Dvali, Gabadadze & Porati 
(DGP) gravity (DGP) gravity 

ds2=−n2
 τ,y dτ 2+α2 τ,y  γ ijdx

idx j+dy2

g AB

S=
1

16 πGeff
∫ d 5 X −g R

1
16 πGN

∫ d 4 x −g R−∫ d 5 X − g  Lm Lr 

Is the metric in Is the metric in 
the 5D branethe 5D brane

g μν Is the usual 4D metric which is Is the usual 4D metric which is 
embedded into the 5D brane. embedded into the 5D brane. 
This space is maximally This space is maximally 
symmetric with a constant symmetric with a constant 
curvature K(=0, flat).curvature K(=0, flat).

 In the context of a DGP cosmological model the ‘’accelerated’’ 
expansion of the universe can be explained by a modification of the 
gravitational interaction in which gravity becomes weak at 
cosmological scales owing to the fact that our 4D brane survives into 
an extra dimensional manifold.



Also the components from the scalar curvature of the brane are Also the components from the scalar curvature of the brane are 

G AB≡ RAB−
1
2
R g AB=8πGeff T AB U AB 

U 00=−
3

8πGN
 ȧ

2

a2+K
n2

a2 δ  y 

The 5D Einstein equations are given by The 5D Einstein equations are given by 

T B
A brane =δ  y diag −ρm ,Pm ,Pm ,Pm ,0 

U ij=−
1

8πGN [ a
2

n2 − ȧ
2

a2
2

ȧ
a
ṅ
n
−2

ä
a −K ]γij δ  y 



The Friedmann equation (for flat K=0) becomesThe Friedmann equation (for flat K=0) becomes

E 2 a =
H 2 a 

H 0
2 =ma

−32bw2 bwma
−3bw

Geff a 

G N

=
24m

2
a 

33m
2
a 

bw=
1−m

2

4

m a =
ma

−3

E 2 a 



V) Finsler – Randers Geometry V) Finsler – Randers Geometry 
The Finslerian geomtery extends the usual Riemannian The Finslerian geomtery extends the usual Riemannian 
geometry. Note that the Riemannian geometry is also a geometry. Note that the Riemannian geometry is also a 
Finslerian. Generally a Finsler space is derived from a Finslerian. Generally a Finsler space is derived from a 
generating function F(x,y) on a tangent bundle on a manifold M generating function F(x,y) on a tangent bundle on a manifold M 
(Randers 1941, Goenner & Bogoslovsky 1999; Stavrinos & (Randers 1941, Goenner & Bogoslovsky 1999; Stavrinos & 
Diakogiannis 2004; Kouretsis et al. 2009; Skakala & Visser Diakogiannis 2004; Kouretsis et al. 2009; Skakala & Visser 
2011; Vacaru 20122011; Vacaru 2012 F :TM ℜ

Particular attention has been paid on the so called Finsler-Particular attention has been paid on the so called Finsler-
Randers cosmological model. Randers cosmological model. 

F  x,y =σ  x,y +u μ x  y
μ σ  x,y = g μν y μ yν

g μν=Fg μν /σu μ=u0 ,0,0,0  u0=2C000

Cartan Cartan 
tensortensor

Is a weak Is a weak 
primordial vector primordial vector 
field field 



The Friedmann equation (for flat K=0) becomesThe Friedmann equation (for flat K=0) becomes

E 2 a =
H 2 a 

H 0
2 =ma

−32Z2zma
−3z

z=
1−m 

2

4
=bw

R μν−
1
2
R g μν=8πGN T μν

z=
u̇0

2

4H0
2

In Basilakos & Stavrinos (2013) we prove that the Finsler-Randers model is In Basilakos & Stavrinos (2013) we prove that the Finsler-Randers model is 
cosmologically equivalent with that of the DGP gravity, despite the fact that the two cosmologically equivalent with that of the DGP gravity, despite the fact that the two 

models have a completely different geometrical origin.models have a completely different geometrical origin.



Conclusions - Future workConclusions - Future work
Testing gravity on cosmological scales is one of the main Testing gravity on cosmological scales is one of the main 

problems in cosmologyproblems in cosmology

We compare the above models with expansion data in order to put We compare the above models with expansion data in order to put 
constrains on the free parameters of the models. constrains on the free parameters of the models. 

Then we have to compare the models against growth data in order Then we have to compare the models against growth data in order 
to check possible departures from GRto check possible departures from GR

How many of the above geometrical models can provide exactly How many of the above geometrical models can provide exactly 
the same Hubble function?  the same Hubble function?  

Of course there are also other geometrical models which explain Of course there are also other geometrical models which explain 
cosmic acceleration such as [f(T), massive gravity etc]cosmic acceleration such as [f(T), massive gravity etc]
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