Spectroscopic studies of neutron rich
nuclei above **Sn
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Nuclear Shell Model - 1

HY“=(H,+V P =Ey"

" Model Space . \d e T,
@, H,®=E|®,

" Effective Interaction Heff — PHO P+PV Q)

Wave operator Q: ¥ =Q¥;=QPyP"

" Direct Methods ( “Andreozzi-Lee-Suzuki”, F. Andreozzi,

Phys. Rev. C, 1996)
" Perturbative methods( Brillouin e Wigner ; Rayleigh e

Schrodinger)




Nuclear Shell Model - 2

}

Heffq)a = Ea (pa

Model Space, v nucleons

Problem : even the effective
Hamiltonian can be very large

1165, N ~ 107
130Xe, N ~ 10°
128X, N ~ 1010




Hamiltonian matrix diagonalization - 1

- The solution of the eigenvalue problem requires the
diagonalization of the many-body Hamiltonian H in a space of
very large dimensions

« Standard diagonalization methods are really time-consuming:
their complexity is proportional to N

 In most cases, only a few (very often one) eigenstates of a
given J and T are needed.

« The non zero matrix elements of H grow only linearly with N

« Adaptive diagonalization algorithms which efficiently identify
the relevant pieces of H are more suitable




Hamiltonian matrix diagonalization - 2

Two very successful approaches :

e Lanczos (Arnoldi) algorithm for finding the extremal
eigenvalues of a symmetric (Hermitean) matrix (see,
for instance, E. Caurier et al. Rev. Mod. Phys. 77,
427 (2005) for a review);

e Stochastic method : Shell Model Monte-Carlo

(SMMC) S. E. Koonin, D.J. Dean, and K.Langanke, Phys.
Repts. 278, 2 (1997).




Hamiltonian matrix diagonalization - 3

Another possibility: truncation methods

* Quantum Monte-Carlo Diagonalization (QMCD)(T.
Otsuka et al., Prog. Part. Nucl Phys. 46, 319 (2001))
which samples the relevant basis states stochastically

e Density Matrix Renormalization Group (J. Dukelsky
and S. Pittel, Rep. Prog. Phys. 67, 513 (2004)),
borrowed from condensed matter physics (S. R. White
PRL 69, 2863 (1992))




Direct diagonalization: Lanczos

: Construction of an orthonormal basis which
renders H tridiagonal

1) Choice of a pivot (normalized) state |1>
2) Action of H on |1>
la>=H|1>=|1>H, +|2'>
AR>=0 2> =[2> <22
3) Construction of H,
H, = <1|H[1> =<1|a>
H, = <1|H|2> = <a|2> = <2'|2'>




Direct diagonalization: Lanczos




Direct diagonalization: Lanczos




Stochastic SM Monte-Carlo (SMMC)




Stochastic SM Monte-Carlo (SMMC)

* Preliminary operation
e H=2¢ O + 2V A" A, (A= (a ®a),)

-~ 3g,0,+31V,0,0,  (0,=3c(a ®a),)
* Linearization (Hubbard-Stratonovich)
* Easy for a =1 (Gaussian identity)

Exp(-BH) = [do e -®BIVIe?)2 g —pn
h= (¢ +sVo)O

* |In the general case

[0,0,] 20 - € a+0p 2 g% g fOp




Stochastic SM Monte-Carlo (SMMC)

* In the general case
*Split B into N time slices of length A = /N
- U=U, ..U ..U= [e ¥

n

** For each slice n perform a linearization
(Hubbard-Stratonovich) using auxiliary fields O,

-~ <A>=(1/[Doc W,) [Do W, A,
Do =T111do, do*, (AB|V,|/2T)
W =g -V ATry,
A,=(TrU,A)/ TrU,
U=U, .U U U= e

n




Stochastic SM Monte-Carlo (SMMC)

« Dimension D of integrals: N.2N (exceeds 10°)

* Tools for evaluating the integrals: Montecarlo
Recast =—>

i) <A> = [dPc P, A,
P. =W,/ [d°c W, = probability weight (fdPc P ,=1)
P.20

) o, (s=1,...S) be a set of randomly chosen S fields of weight
P

i) <A>=[d°c P, A,=(1/S) Z A,
<A> itself is a random variable — Its average yields the
required value.

IV) To estimate the uncertainties we invoke the Central limit
theorem

0* <A> — (1/8) I d°o Pc (Ao -<A> )2 = (1/82) Zs (As -<A> )2




Stochastic SM Monte-Carlo (SMMC)




Stochastic SM Monte-Carlo (SMMC)

* |t computes the g.s. expectation values of A
* |t gives information on the dynamical response
R(1) = <A'(t) A(0)> = [e™ S(E) dE
(Laplace transform of the)
Strength function |
S(E) = (1/2)ze|<f|Ali>| 5 (E- E, + E)

* it yields the energy-weighted moments of S
m,= (L2)ze¥|<f|Ali>|* (E - E)’
* For collective states (exhausting most of the strength)
It estimates the centroid of the response




Stochastic SM Monte-Carlo (SMMC)




Quantum Monte-Carlo Diagonalization
(QMCD)

|t states a bridge between SMMC and direct
diagonalization: It searches stochastically the basis
states using the previous method

« Split B into N time slices of length AB = 3/N
- U=U, ..U U= Tle ¥

* For each slice n perform a linearization (Hubbard-
Stratonovich) using auxiliary fields o,

- U= IDO' e - 02)r|ne - Bhy
. Do = NMdo, do*. (AB|V.|/2m)




Quantum Monte-Carlo Diagonalization
(QMCD)

1) Generates stochastically a set of auxiliary fields
o ={0,..0,..0,} obtaining the QMC basis states

®(o) [ I e -4 P(0) (1)
for different sets . W(0) is a Slater determinat.

) Diagonalize H in the space spanned by the states so
generated.

i) Suppose now that one has generated the basis states
D,... D
Iv)Using Eg. (1) one generates an additional basis state @ , =
®(o) and diagonalize H in the space spanned by
D.. DD
V) If the diagonalization lowers apﬁreciably the energy
eigenvalue, ®(o) is adopted, otherwise Is discarded.

The iteration stops until convergence toward a given set of
lowest eigenvalues is attained.




Quantum Monte-Carlo Diagonalization
(QMCD)

1) Generates stochastically a set of auxiliary fields
o ={0,..0...0,} obtaining the QMC basis states

®(0) U I e - Y(O) (1)
for different sets a. W(0) is a Slater determinant.

) Diagonalize H in the space spanned by the states so
generated.

i) Suppose now that one has generated the basis states
D,... D,
Iv)Using Eg. (1) one generates an additional basis state @ , =
®(o) and diagonalize H in the space spanned by
D,... DD,
v) If the diagonalization lowers apﬂreciably the energy
eigenvalue, ®(0) is adopted, otherwise is discarded.

The iteration stops until convergence toward a given set of
lowest eigenvalues is attained.




Quantum Monte-Carlo Diagonalization
(QMCD)

 The states are to be ortogonalized
« M (and J) projection Is needed

« Redundancy is to be removed

* On the other hand it has the advantages of
SM : It allows an explicit study of the wave
functions while reducing drastically the
dimensions of standard SM.




Focus on : direct methods for finding
extremal eigenvalues - 1

Symmetric/Hermitian eigenvalue problem:

Ax = \Mx, A=A M=M >0.

Direct, iterative methods are generally based on the
minimization of the Rayleigh quotient:

"A
i) A

The idea Is to find a sequence of vectors x for which :

p(Xi+1) < p(X)

The hope is that the corresponding sequence of p converges
to kl, and by consequence x to the first eigenvector




Focus on : direct methods for finding
extremal eigenvalues - 2

Convergence has been shown for almost all the starting vectors
(see B. N. Parlett & W. Kahan, "On the convergence of a practical
QR algorithm. (With discussion)," Information Processing, 68 and J.
H. Wilkinson, "Global convergence of tridiagonal QR algorithm with
origin shifts," Linear Algebra and Appl, 1)

lteration are based on the definition of a “search direction” :

Xﬁ.;—l—l = Xk + 5A:PA:

Where the parameter is variationally determined :

.-O(KI.:—I—I) — IIl{;lIll,O(){k T (gpﬁ.:)




Generalized Optimal Relaxation Method
(ORM) - 1

A generalization of the ORM consist in diagonalizing the
Hamiltonian in the space spanned by X and the basis vector e

<X’I¢‘H‘X-‘I’G> <XR‘H‘B;§,> _ )\1 bi
(ei|H|xx) (ei|Hle;) b; ay
It IS a “generalization” for two main reasons :

1) Convergence is assured by the ; ;
weak separation property of the 1 < }-1 < }\2
matrix eigenvalues :

2) It can include / A0 0 by
maore 0 }\2 0 bg?;
eigenvalues: 0 0 M\ b

\bh: bZi b:ar.:; A




Generalized Optimal Relaxation Method
(ORM) - 2

Its convergence properties can be assessed against the Lanczos
algorithm (ARPACK package) using a finite difference matrix
deduced from Laplace equation :

160

Its main advantage is o
that it can be used on
normal machines for

performing Large 100 |
Scale Shell Model _ |
calculations

120

1 1
10 12

(n)”

6
-logllr



Generalized Optimal Relaxation Method
(ORM) - 3

The algorithm is based on the diagonalization of a
matrix, which in practice can be avoided

A similarity tansformation allows to determine the v+1
eigenvalues by solving the dispersion relation
(Sampling condition)

AN=2DN=2_ |N- N =Zb/(a—A A\)
which is of the type f(z) =z, fulfilling the condition
1 — d/dz(f) >0

It is of easler and faster solution (Newton method of
derivatives)

=1v




Generalized Optimal Relaxation Method
(ORM) - 4

We have then derived the endowed sampling criterion. The leading
term in the difference of two eigenvalues is given by:

|< X,V H =12 T ( Q; — )

Since the method induces a space decomposition :

We start with an exact diagonalization in M, and then sample the
subspaces connected by the Hamiltonian with increasingly smaller

thresholds:




Generalized Optimal Relaxation Method

(ORM) - 4
+ 36
5 )
A AN A AN A -
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Generalized Optimal Relaxation Method

(ORM) - 5
30 ! ! | ! [ ' I ' [ ' [ ' I
i 136
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Collectivity in nuclei - 1

Historically, two models constitute the main examples of
collectivity in nuclei, being supported by strong experimental
evidences:

 (Harmonic Quadrupole) vibrator model

 (Rigid) rotor model

Of course, they do not exhaust all the possible collective
pictures of nuclel, but rather represent two “extremal”
situations, as can be simply understood in term of semi-
classical models



Vibrations about a spherical shape

Vibrations are characterized by a multipole quantum
number A In surface parametrization:

+2
R®,d) =RO(1 +§ zAaAmL(e,qb ))
P

A=0:. compression (high energy)
A=1: translation (not an intrinsic excitation)
A=2: quadrupole vibration




Vibrations about a spheroidal shape

The vibration of a shape with
axial symmetry is

characterized by &,

Quadrupole oscillations:
U=0: along the axis of
symmetry (5)
(== 1. spurious rotation

U=+ 2. perpendicular to
axis of symmetry (y)




Rigid Rotor

Hamiltonian of quantum
mechanical rotor in terms of
‘rotational’ angular momentum R:

A 2 2 2 2 2 3 2
iR L]
1 2 3 i =1
*Nuclei have an additional
Intrinsic part H,, with ‘intrinsic’
angular momentum J.

| 43
*The total angular momentum is [
I=R+J. |




Collectivity between two closed shells

Evolution of nuclear structure
(as a function of nucleon number)

2+

R4/2 < 2 R4/2 ~ 2.0
Magic BLE S
(sph. vib.)

4+

2+
R 3N

R4/2 =~ 333

Mid-shell
(ellipsoidal)

2+

R4/2 o

Magic




The Interacting Boson Model (IBM)

 Nuclear collective excitations are described interms of N s
and d bosons.

« Spectrum generating algebra for the nucleus is U(6). All
physical observables (hamiltonian, transition operators,...) are
expressed in terms of the generators of U(6).

« Formally, nuclear structure is reduced to solving the problem
of N interacting s and d bosons.

« Rotational invariant hamiltonian with up to N-body interactions
(usually up to 2):

+ + ~ (L)
. HIBM _E n +£dnd +z Uljk/(b Xb (Q Xb) .
IjklJ

« Finding exactly-solvable form of the Hamiltonian is equivalent
to enumerate the U(6) sub-models:

U(6) > G>S0(3)




Symmetry Triangle

— o
Fsoft s 4t
O(6) 1.43
A
0 ——
. K=0
2}, _—
9 a* 2* 0* Deformed 333 4+
2 1.43
1 + 9+ ]_‘:_ - id
] 0_‘]_ 0"’
R4_‘,'2 — 2
u(5) SU(3)
Vibrator Prolate Rotor

Most nuclei do not exhibit the idealized symmetries but

rather lie in transitional regions.




Mixed-symmetry states - 1

Proton neutron mixed-symmetry states can be correctly understood

In the framework of the proton-neutron version of the Interacting
Boson Model, or IBM-2.

An alternate, semi-quantitative way to introduce them is
using the so-called Q-phonon scheme, introduced by Otsuka

In the '90 (roughly speaking, only d-bosons are taken into
account).

Q-phonon scheme has the advantage of being more intuitively
related to the physics of the system, even if it assumes a good
F-spin quantum number. F-spin is a bosonic analogous to isospin,
and is used to distinguish between proton and neutron bosons.




Mixed-symmetry states - 2

Symmetric States

In,v> =Q¢ |0>=(Q,+Q)[0>

Signature:

M(E2) 0 Q, (An=1))

symmetry preserving

(AF=0)
1E2

Sym

n=3

n=2

MS States
In, v>,; = (Q, - Q)Q, + Q) ™ |0>
Signhature

M(M1) O J,-J, (An=0)

symmetry changing (AF=1)
M1 n=2
- ~
MS

Sym




Mixed-symmetry states - 3

n=2

(2" s

(2" s
n=1

(27)s




Experimental evidence of MSS

=50
Sn Z =|50
Cd
Pd
NP et al. (2001)]
Ru 96| T orce et. al (2006)
Nb >  Yates (2005) |
Mo 94 |e6]
Sr =238

V.Werner et al.(2002)
C.Fransen et al.{20035)

|

F

04 .;.T_ Expt. B(E2) (W)

Expt <M1= ()
N Pietralla, C Fransen et al.| Phys Rev Lett. 83, 1303 (1999).
N Pietralla, C Fransen et al | Phys Rev Lett. 84, 3775 (2000).
C Fransen, N.Pietralla et al , Phys. Rev.C 67, 024307 (2003).



MSS as Scissors excitations

Collective displacement
modes between neutrons and
protons:

— Linear displacement (giant
dipole resonance):

R-R_ [/ E1 excitation.

— Angular displacement (scissors
resonance):

L-L_[]M1 excitation.

N. Lo ludice & F. Palumbo, Phys. Rev. Lett. 41 (1978) 1532
F. lachello, Phys. Rev. Lett. 53 (1984) 1427
D. Bohle et al., Phys. Lett. B 137 (1984) 27




Collectivity and Shell Model

Large scale Shell Model calculations have been used for probing
the collectivity of medium-heavy nuclei below and above the
double shell-closure corresponding to ***Sn (Z=50, N=82)

As we will see, signature for proton-neutron mixed-
symmetry states has been correctly reproduced for isotopes
described in terms of neutron holes, whether it seems to
disappear moving towards the neutron drip line.




Calculation detalls - 1

Single proton-particle and neutron-hole energies (in MeV); We
used the levels of ***Xe as neutron single-hole energies, while for
the protons, we took the single-particle energies adopted in a
previous work for studying ***Xe

(ﬂ !'r_,’ ):r ngﬂ 13’?;2 3s 1/{2 2d3;3 lh| 1/2
€p 0.00 0.2 2.2 2.3 2.9

)" Qdyp)™' Bsip)™t (hup)™t (lgip)™' Qdsp)™
€, 0.00 ().2885 (0.5266 1.1315 1.2604




Calculation detalls - 2

Single proton- and neutron-particle energies (in MeV); We used
the levels of ***Sn for the neutrons and those of 133Sb for
protons, with minor modifications for reproducing energy spectra
and transition strength of ***Sn and ***Te

(nlj), L g7/2 2ds) 2d5) iy 3512

‘. 0.00 0.96 2.71 2.80 3.5
(mlj),  2fip 3p32 lhep  3pip 2fspp linp
€, 0.00 0.85 1.56 1.66 2.00 2.11

Moreover, these optimizations have also required a scaling
by factors 1.1 and 1.2, respectively, of the J ™= 0"
proton-proton and neutron-neutron pairing-like components
of the two-body potential.




Te and Xe Isotopes towards drip lines - 1

— SM - Te
- Exp|
—
(a)
L NN BN BN BN BLEN BLAN BE

126 128 130 132 134 136 138 140

126 128 130 132 134 136
A

138 140

—_— Xe
- SM —_—
- ExP
1.0 =
—_—
0.5 - ==
(c)
0.0 T 1 1
132 134 136 138 140
) —a—SM
30 - —o— EXx
20 =
10 =
(d)
0 | ] o | " | " |
132 134 136 138 140
A




Te and Xe Isotopes towards drip lines - 2

] Te —u—SM

(a)
_.--—-"'\

—py

ot
N
[ . [ 1

'

126 128 130 132 134 136 138 140
—a— SM
—o— Exp

(b)

o
o

| 1
126 128 130 132 134 136 138 140
A

30 -
20 -

10 -

Xe

—a— SM
—e—Exp

(c)

+ -
£,B(E2; 2--> 27 )

)

+
1
=
D
|

i Onls

5 B(M1; 2
=
%
|

&
o

L ] 'I' ]
132 134 136 138 140

(d)

l L ' L] L] l L] l L
132 134 136 138 140




MSS : a nice example

/ .




Tellurium isotopes - 1

MG (E2))
IMP(E2))

Ryv/is(E2) =

MG(E2) = (2FIIM(E2) + M, (ED)IJ;)




Tel I u ri u m X i —= Jy B(E2) Kivirs

. Exp |
Isotopes - 2 a0 ma] s
25 — 07 0.15%3 0.11 17.23
2 s 0t 0.3672 0.0
2 s 0t 0.042 0.236
2 s 0F 0.29+2 0.121 4.20
30 2 Te 27 — 07 19777 18.4 0.35
: 126Te 2 ot 0034713 0.008 285
(a) 2 ! 12
g | —n 2 s of 0.013 1.74
] o EXP 2 s 0t 051" 0.031 3.02
10 - 2t s 0F 0.202 0.175 16.52
o 2+ s 0F 0011+ 0.069 0.00
= A9 0Te 27 — 0F 15.175 13.55 0.23
é 30 - i 18 2F - 0F < 0.0137  0.02 3.37
& Te 2 0F 0.028 0.002 2.43
g 28 =0 0.391] 0.37 14.8
N 10 2 —0f 0.47%3 0.002 3.0
o 2 s 0t 0.018+ 0.05 141
o ST RTe 2+ s 0F 10(1) 9.26 0.025
s 0t 0.5(1) 0.03 4.83
; c 130 : —
20 - {} Te 27 = 0F 0.002 2.71
i 2 s 0t 0.213 3.96
10 < “
S B T D B e R D. Bianco, N. Lo ludice, F. Andreozzi, A.
L :ETM v?'“ & R Porrino, F. Knapp, Phys. Rev. C 86, 044325
¢ (2012)




. . X J— J; BiE2) Ryvirg
[ellurium Isotopes - 3 T
S r R S e 45+ 23.2 0.53
2+ — 2t 0.0011] 0.12 1.25
/Fp i fa 0.00 0.004 3.16
2 — 2 ¢ 18 By 0.02 1.29
¢ S g 0.95%] 0.13 6.22
28T 2 2F 27710 2104 0.44
4 126 0.25%;
034 T€ 2oyt 23974 377 0.58
- () 0.42%3
0.2 = o B b 00381} 0.20 0.71
o N 36.413,
s pREHEr s g 0307} 0.00 2.5
N'_|= 0.0 = E?ﬂ:‘
- 3oy 0.491 0.80 2.94
= 128 & | T
= 03=- Te 0.1173
'|'N1- - ”“'TE 2+ ., ot - -}1+I 340 027
A 0.2 = 3 = - s ’ s
; . % < 0,073
o 014k (b) 2t 2t 344 0.003 0.82
i - o e RE-
- ot |
2 PR 3.4 1034 0.33
- 027+
25— 2 1673 5.18 0.38
02913
2 - 2f 4.513 034 230
036"
L2 R A 0-20 1.522 021
1.6 2.0 2.4 2.8 2higat 0.494 0.62
E(MeV) 27— 27 0.149 0.126
e gt 6.134 0.10




Tellurium isotopes - 4

134']"& 1315-']"&

B(E2) (W.u.)
3.94 11.54
0.75 0.058
0.83 0.52
1.11 0.52
0.05 0.01
0.11 0.03
0.32 7.15
0.39 0.02
4.69 0.07
0.02 0.09
0.02 0.07

B(M1) (113,)
0.00 0.04
0.00 0.24
0.00 0.19
0.00 0.02
0.00 0.17




Tellurium Isotopes - 5

.=1.X

B(E2)

EXP

SM

R.z(E2)
SM

- SM
- EXp

@

)

w
(=]

Fa— -

&

e}
o

+
,21-::-01

-
L=

B(E2

—a—SM
—— SM1
—o— Exp

A

126 128 130 132 134 136 138 140

(b)

0 +=r-—r-r-rrrrr-rereeer
126 128 130 132 134 136 138 140

l.‘n—tsn

e TC

l#JTc

1.42(25)

0.89(17)

5.60(64)

4.3

2.04
5.87(87)

[.71
[.71
(.86
3.94
4.55
2.05
[1.54
16.44
14.75
12,88
12.46
19.82
28.73
29.66
2291
25.17
28.06

44

14

D. Bianco, N. Lo ludice, F. Andreozzi, A.

Porrino, F. Knapp, Phys. Rev. C 88,
024303 (2013)



Conclusions

e |t is extremely important to verify the reliability of our SM
predictions by new independent theoretical investigations.

e [t is even more crucial to test them by new extensive and
conclusive experiments, especially since the original value of
the B(E2; 2* - 0") in ***Te has undergone several revisions.

e This need of new experimental data is even more urgent for
Xenon isotopes, since the transition measurement currently
available above N=84 are not conclusive.
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