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Motivation

o Frustration effects arise when a system "cannot decide” which
phase to flow into. They often lead to the emergence of novel
phases, with unconventional properties, such as non-Fermi
liquid phases [two-channel Kondo effect], spin liquids, etc.;

e Using the properties of Majorana fermions coupled to a
Luttinger liquid to design a junction where the system
"switches” between conventional phases by passing through a
(partially stable) new, unconventional phase.



Plan of the presentation

Junction between a single Luttinger liquid and a
topological superconductor;

e Junction between two Luttinger liquid and a topological
superconductors: description;

e Phase diagram, "trivial” fixed points, nontrivial fixed
point;

e Detecting the NTFP in a transport experiment;

e The g-theorem and the junction phase diagram;

e Conclusions and further developments.



[1] Single Luttinger liquid - topological superconductor

o Effective low-energy description of the topological superconductor:
two localized Majorana fermions 7/,7 at the two endpoints [For
instance, a spinless quantum wire with p-wave pairing and open
boundary conditions [A Yu Kitaev Phys.-Usp. 44, 131 (2001)]. This
can be realized, for instance, in a semiconducting quantum wire
with strong spin-orbit interaction embedded into a superconducting
quantum interference device [R. M. Lutchyn, J. D. Sau, and S. Das
Sarma, PRL 105, 077001 (2010)], or simply in proximity to a
"standard” s-wave superconductor [Y. Oreg, G. Refael, and F. von
Oppen, PRL 105 177002 (2010)].
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[1] Single Luttinger liquid - topological superconductor

e Sub-gap scattering processes < effective boundary interaction
Hamiltonian

He = Vg'(0)¢(0) + Ap{t(0)dxp(0) + h.c.}
+ t9[1(0) — »'(0)]

e Scaling dimensions [noninteracting case]
dy, = 1 [marginal]; da, = 2 [irrelevant]; d; = 1/2 [relevant].
All the low-energy physics is determined by the term  t



[1] Single Luttinger liquid - topological superconductor

e Relevance of t = resonant (sub-gap) Andreev backscattering at the
Fermi level (in the p/h-basis)

S(EzO;t;éO)z[ef);ﬁ e(;ﬁ] ;S(E:o;tZO)Z{f Oa}

e Physical interpretation: resonant backscattering in the p — h-channel
[K. T. Law, P. A. Lee, and T. K. Ng, PRL 103, 237001 (2009)]
Normal Andreev t
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[At the Fermi level the resonance in the e — h Andreev scattering
processes with |A| = 1 is assured by the "natural” condition
th=th=t]




[1] Single Luttinger liquid - topological superconductor

e Adding interaction in the normal wire = standard bosonization
recipe: "bulk” Hamiltonian, boundary fermionic field

Ho=5 [ axIK(O0) + K0P, 6(0) ~ ire/ )
0

K <1 for a repulsive interaction
e Boundary interaction Hamiltonian

Hp ~ Vndx$(0) + Ap cos[2/7$(0)] + 2iFT cos[\/7¢(0)]

® Scaling dimensions [interacting case]: dj;, = 1 [marginall;
dx, = 2/K [irrelevant]; d; = 1/(2K) [relevant, for K > 1/2].



[1] Single Luttinger liquid - topological superconductor

e Phase diagram for a generic Luttinger parameter K [L. Fidkowski, J.
Alicea, N. Lindner, R. M. Lutchyn, and M. P. A. Fisher, PRB 85,
245121 (2012)]
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[1] Single Luttinger liquid - topological superconductor

e Fixed point dc conductance

G(V) = 0, (N)
Gv) = 2 ()

e Nonlinear corrections to the dc conductance

V| 2tk
262 V| m2HaK
G(V) = Z“v (V< V)




[1] Single Luttinger liquid - topological superconductor

e Analysis of the A-fixed point
t 1 1 .
Hy =2t (d'd — > cos[vmo(0)] , (d = 5(7 +il))

o cos[/7®(0)] pinned at +1, residual boundary interaction given by
VNwT(O)w(O) = leading boundary perturbation

Hg ~ 2% cos[2/m0(0)]

The scaling dimension is d; . = 2K, which motivates the exponent
in the subleading power-law dependence of G(V) on V [C. L. Kane,
M. P. A. Fisher, PRB 46, 15233 (1992)].



[2] Two-Luttinger liquid - topological superconductor

e Contact two one-dimensional normal channels with the
superconductor: this may either be realized as a " T"-junction with
two actual wires, or by interfacing two channels with the topological
superconductor (?) [l. Affleck and D. Giuliano, J. Stat. Mech.
(2013) P06011]
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e Coupling to the Majorana fermion

2
He =~ [1(0) — v[(0)]
j=1




[2] Two-Luttinger liquid - topological superconductor

e Noninteracting case = one-channel case

’ tl t2
V) = ————Y1+ ———1»
NGRS B+t
/ t:
Yy = 1+ — et (1)

to
[0 | 2 [0 | 2
tf +1 tf + 1

e Interacting case with "rotational symmetry” between the channles
= one-channel case




[2] Two-Luttinger liquid - topological superconductor

e T-junction (no inter-channel interaction)
2 us 00
o= Y0 2 [ a0 + K 0x0)
j=1 =70

2
Hy = 2/"}/2 UDCOS[\/%(Z)j(O)]

Jj=1
e Phase diagram <= e-expansion and renormalization group equations

[ Set dj = 5 with dj =1 —¢;, (0 < ¢ < 1), then write RG
equations to leading nontrivial order in the ¢;'s]



[2] Two-Luttinger liquid - topological superconductor

e To construct the B-functions for the t;'s, we use the O.P.E.
approach in "deformed” conformal field theories: we expand the
partition functions in powers of the t;’s and require that a small
change in the short-[imaginary time] cutoff 7 is reabsorbed by
redefining the t;'s. In general, it is enough knowing two-point
O.P.E.'s [J.L. Cardy, Scaling and Renormalization in Statistic
Physics, Cambridge University Press, 1996.]. Here, the first
nonlinear contribution arises from three-point O.P.E.’s

3 1 1 1
Oj(m) || m2 |5 T3 | 23 |
T[] Oi(ru)] ~ =
[111;[1 j(ru)l 4 1713723 T13723 T13713
2 1
111 |x
T AT o) ox(ml ~ 3 | 2| o)
u=1



[2] Two-Luttinger liquid - topological superconductor
e Renormalization group equations
d?]_ - - =2 d?z
=t —4HE,
din(D/Do) ~ ™ "2 iIn(D/Dy)

o Phase diagram stable [A] @ [N], [N] ® [A] FP’s, unstable
[N] ® [N], [A] ® [A] FP's, partially stable NTCP

b)

= &f — 4T

a)

Fiiure: a' ei = eil b' ei ﬁei .



[3] Phase diagram

® Set e =€ =€, dj =1 — € = unstable N ® N-fixed point
Assume t1(D = Dy) > to(D = Dp) and take A® N as " putative”
fixed point

e At strong t;, cos[/m¢1(0)] is "pinned” at & = £1 and v
"entangles” with Iy, so that the ground state |G),, is determined by
(v+ial1)[G)a =0

o As ¢1(0) is pinned, the bosonized operators at A ® N are built
according to the bosonization rules 1/;(0) oc e*/V701(0),
1(0) o< e V72(0)

e Construct the various operators allowed by symmetry at the
A ® N-fixed point



[3] Phase diagram

e Intra-wire normal backscattering
Hiy = Vip] (0)491(0) ~ V; cos[2v/261(0)], [div = 2Ky > 1],
irrelevant

e Inter-wire normal backscattering
Hiw = Viwbi(0)12(0) + h.c. ~ Vi cos[y/m61(0)]e"V™O) 4 h.c.
[div = (K1 4+ 1/K3)/2 > 1], irrelevant

e Inter-wire pairing
Hip = Aptp1(0)2(0) 4 h.c. ~ Ag cos[\/mh1(0)]eV™©) + hec. ,
[div = (K1 4+ 1/K3)/2 > 1], irrelevant



[3] Phase diagram

e Coupling to channel-2 is Hy o I, cos[y/m¢2(0)]. This looks like
dr =1/(2K3) < 1 = relevant 77

e Correct approach to the problem = Schrieffer-Wolff transformation
using 7I2|G)11 o [G) 41

e Second-order SW transformation = H, o %j cos[2y/mp2(0)],
[d2 = 2/K, > 1], irrelevant

e Conclusion: A® N and N ® A are both stable. The transition
between the two of them cannot pass through N ® N (which is

unstable in any direction). Thus, it may either pass through a A® A
fixed point, or through a novel (partially stable) NTCP




[3] Phase diagram

e Ruling out the A® A option = A ® A fully unstable (analysis of the
operators allowed by symmetry)

e Assuming t;(Dg) = to(Dp) might lead to a " putative” fixed point,
with cos[y/7$;(0)] pinned at «; and with groundstate |G)aga such
that [’)’ + %(01r1 + (Ygrg)} ‘G>A®A =0

\f
e Intra-channel backscattering

Hii o 07y Vit (0)455(0) o 374 Vi j cos[2/70;(0)],
[dv = 2K > 1], irrelevant

e Inter-channel backscattering
Huyr o< Viwh! (0)162(0) + h.c. oc Vi cos[y/m(61(0) — 62(0))],
[dw = K], relevant if K <1

e Inter-channel pairing
Hp o< Ag1p1(0)1h2(0) + h.c. oc A cos[y/m(61(0) + 62(0))],
[dg = K], relevant if K <1



[3] Phase diagram

e OQur results may be generalized to the case of nonzero inter-channel

bulk interaction [¢(0) (o) = (¢(0)1 + ¢(6)2)/V2]

Ho= > % /o dx [Ka(0x92)? + K} H(9x01)7]

A=p,0

e Renormalization Group equations [v = (2K,) ™! — (2K, )}

dE]_ - - =2 df2 —_ - =2
JE R — t— tt _— — th— it
din(D/Dg) ~ " Fwnt;, din(D/Dy) ~ 2% F)h
4
0
Fov)
-2
0 1 1.78



[3] Phase diagram

e Conclusion: the A ® A-fixed point comes out to be unstable, just
as the N ® N-fixed point. A "minimal” hypothesis leads to the
necessary existence of a NTCP at intermediate couplings
t1e = b X /e



[4] Detecting the NTFP: transport measurement

e Apply a voltage bias V; to channel-j and measure the (linear)
conductance tensor G; j, defined by /; = Z?:l Gj.iVi

e For small ("bare") t;'s, Gj; can be computed perturbatively in
the t;i's. If we neglect the inter-wire interactions, then G; ; is
purely diagonal, and

e _ _ 141
Gjj= ;(27”3')2 , (t =t;(D/Do) ~ *)

o As the scale D/Dy — 0, we obtain

e? _ A72e? ¢
Gij — —(2nt.)% = J
IN] h( L, ) h Fv)




[4] Detecting the NTFP: transport measurement

e a) Expected behavior of G ; if the system flows towards the A®@ N
fixed point

e b) Expected behavior of G;j; if the system flows towards the NTFP

a)G b)G

26| A ﬁ 2¢%h | A B c
J “

1 1 wH Ve
w/D wl/b




[5] g-theorem and phase diagram

e "In a given boundary interaction problem, it is possible to define a
function g which always decreases under renormalization between
two different boundary fixed points (associated with the same
boundary critical point)” [l. Affleck, A. W. W. Ludwig, PRL 67, 161
(1991); PRB 48, 7297 (1992)]

e g is the "boundary analog” of Zamolodchikov's c-function in
conformal field theories, which is proportional to the coefficient in
the linear specific heat, and decreases under renormalization
between two different bulk critical points.

e g is identified with the " groundstate degeneracy” associated with
the impurity. More precisely, g is related to the scale-independent
contribution to the entanglement entropy associated with the
boundary interaction [P. Calabrese, J. Cardy, J.Stat.Mech.0406:
P06002 (2004).



[5] g-theorem and phase diagram

e The recipe for computing the g-function at the " conformal”
boundary fixed points

e System on a segment of length ¢ with conformally invariant
boundary conditions A and B at its endpoints: partition function

Zaglu/(T)] =) expl-x4pu/(£T)]

e Take the limit u/({T) — 0

Zag[u/(T)] = u/eT)—0 8AEB emtTe/bu



[5] g-theorem and phase diagram

Result for gnon
1
gnen = 2(K1Ka)4

Result for gagn

gaon = V2(Ka/ K1)

Result for gaga
1
gawa = 4/(KaKy)4

Result for gntep [e-expansion 4+ dimensional regularization]
21%(ef + &)
F(v)

ENTFP = NN [1 -



[6] Conclusions and further developments

e Having more than one normal channel connected to a topological
superconductor opens the way to novel physics

e Frustration mechanism: similar to two-channel Kondo effect, but
the NTCP has a different nature, which still need to be explored

e Extension to multi-(normal) channel junctions
e Experimental realization of our system

e Fingerprints of the frustration physics in dc Josephson current
measurements

e Nonlinear conductance: " Kane-Fisher"-like physics



