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Motivation

• Frustration effects arise when a system ”cannot decide” which
phase to flow into. They often lead to the emergence of novel
phases, with unconventional properties, such as non-Fermi
liquid phases [two-channel Kondo effect], spin liquids, etc.;

• Using the properties of Majorana fermions coupled to a
Luttinger liquid to design a junction where the system
”switches” between conventional phases by passing through a
(partially stable) new, unconventional phase.



Plan of the presentation

• Junction between a single Luttinger liquid and a
topological superconductor;

• Junction between two Luttinger liquid and a topological
superconductors: description;

• Phase diagram, ”trivial” fixed points, nontrivial fixed
point;

• Detecting the NTFP in a transport experiment;

• The g-theorem and the junction phase diagram;

• Conclusions and further developments.



[1] Single Luttinger liquid - topological superconductor

• Effective low-energy description of the topological superconductor:

two localized Majorana fermions γ
′
, γ at the two endpoints [For

instance, a spinless quantum wire with p-wave pairing and open

boundary conditions [A Yu Kitaev Phys.-Usp. 44, 131 (2001)]. This

can be realized, for instance, in a semiconducting quantum wire

with strong spin-orbit interaction embedded into a superconducting

quantum interference device [R. M. Lutchyn, J. D. Sau, and S. Das

Sarma, PRL 105, 077001 (2010)], or simply in proximity to a

”standard” s-wave superconductor [Y. Oreg, G. Refael, and F. von

Oppen, PRL 105 177002 (2010)].
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[1] Single Luttinger liquid - topological superconductor

• Sub-gap scattering processes ⇐ effective boundary interaction

Hamiltonian

HB = VBψ
†(0)ψ(0) + ∆B{ψ(0)∂xψ(0) + h.c.}

+ tγ[ψ(0)− ψ†(0)]

• Scaling dimensions [noninteracting case]
dVB

= 1 [marginal]; d∆B
= 2 [irrelevant]; dt = 1/2 [relevant].

All the low-energy physics is determined by the term ∝ t



[1] Single Luttinger liquid - topological superconductor

• Relevance of t ⇒ resonant (sub-gap) Andreev backscattering at the

Fermi level (in the p/h-basis)

S(E = 0; t 6= 0) =

[
0 e iβ

e−iβ 0

]
;S(E = 0; t = 0) =

[
e iα 0
0 e iα

]
• Physical interpretation: resonant backscattering in the p− h-channel

[K. T. Law, P. A. Lee, and T. K. Ng, PRL 103, 237001 (2009)]
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[At the Fermi level the resonance in the e → h Andreev scattering

processes with |A| = 1 is assured by the ”natural” condition

t1 = t2 = t ]



[1] Single Luttinger liquid - topological superconductor

• Adding interaction in the normal wire ⇒ standard bosonization

recipe: ”bulk” Hamiltonian, boundary fermionic field

H0 =
u

2

∫ ∞

0
dx [K (∂xφ)

2 + K−1(∂xθ)
2] , ψ(0) ∼ iΓe i

√
πφ(0)

K < 1 for a repulsive interaction

• Boundary interaction Hamiltonian

HB ∼ ṼN∂xφ(0) + ∆̃B cos[2
√
πφ(0)] + 2i t̃γΓ cos[

√
πφ(0)]

• Scaling dimensions [interacting case]: dṼB
= 1 [marginal];

d∆̃B
= 2/K [irrelevant]; dt̃ = 1/(2K ) [relevant, for K > 1/2].



[1] Single Luttinger liquid - topological superconductor

• Phase diagram for a generic Luttinger parameter K [L. Fidkowski, J.

Alicea, N. Lindner, R. M. Lutchyn, and M. P. A. Fisher, PRB 85,

245121 (2012)]

0 1/2 1 K

Perfect Andreev Reflection

Perfect Normal Reflection



[1] Single Luttinger liquid - topological superconductor

• Fixed point dc conductance

G (V ) = 0 , (N)

G (V ) =
2e2

h
, (A)

• Nonlinear corrections to the dc conductance

G (V ) =

∣∣∣∣ VV∗

∣∣∣∣−2+ 1
K

, (V � V∗)

G (V ) =
2e2

h
−

∣∣∣∣ VV∗

∣∣∣∣−2+4K

, (V � V∗)



[1] Single Luttinger liquid - topological superconductor

• Analysis of the A-fixed point

Ht = 2t

(
d†d − 1

2

)
cos[

√
πφ(0)] , (d =

1

2
(γ + iΓ))

• cos[
√
πφ(0)] pinned at ±1, residual boundary interaction given by

ṼNψ
†(0)ψ(0) ⇒ leading boundary perturbation

H̃B ∼ 2t̄ cos[2
√
πθ(0)]

The scaling dimension is dH̃B
= 2K , which motivates the exponent

in the subleading power-law dependence of G (V ) on V [C. L. Kane,

M. P. A. Fisher, PRB 46, 15233 (1992)].



[2] Two-Luttinger liquid - topological superconductor

• Contact two one-dimensional normal channels with the

superconductor: this may either be realized as a ”T”-junction with

two actual wires, or by interfacing two channels with the topological

superconductor (?) [I. Affleck and D. Giuliano, J. Stat. Mech.

(2013) P06011]
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• Coupling to the Majorana fermion

Ht = γ

2∑
j=1

tj [ψj(0)− ψ†
j (0)]



[2] Two-Luttinger liquid - topological superconductor

• Noninteracting case ⇒ one-channel case

ψ
′
1 =

t1√
t21 + t22

ψ1 +
t2√

t21 + t22

ψ2

ψ
′
2 = − t2√

t21 + t22

ψ1 +
t2√

t21 + t22

ψ2 (1)

• Interacting case with ”rotational symmetry” between the channles

⇒ one-channel case



[2] Two-Luttinger liquid - topological superconductor

• T-junction (no inter-channel interaction)

H0 =
2∑

j=1

uj
2

∫ ∞

0
dx [Kj(∂xφj)

2 + K−1
j (∂X θj)

2]

HM = 2iγ
2∑

j=1

tjΓj cos[
√
πφj(0)]

• Phase diagram ⇐ ε-expansion and renormalization group equations

[ Set dj =
1

2Kj
with dj = 1− εj , (0 < εj � 1), then write RG

equations to leading nontrivial order in the εj ’s]



[2] Two-Luttinger liquid - topological superconductor

• To construct the β-functions for the tj ’s, we use the O.P.E.

approach in ”deformed” conformal field theories: we expand the

partition functions in powers of the tj ’s and require that a small

change in the short-[imaginary time] cutoff τ0 is reabsorbed by

redefining the tj ’s. In general, it is enough knowing two-point

O.P.E.’s [J.L. Cardy, Scaling and Renormalization in Statistic

Physics, Cambridge University Press, 1996.]. Here, the first

nonlinear contribution arises from three-point O.P.E.’s

Tτ [
3∏

u=1

Oj(τu)] ∼
Oj(τ1)

4

[∣∣∣∣ τ12
τ13τ23

∣∣∣∣ 1
Kj

+

∣∣∣∣ τ13
τ13τ23

∣∣∣∣ 1
Kj

+

∣∣∣∣ τ23
τ13τ13

∣∣∣∣ 1
Kj

]

Tτ [(
2∏

u=1

O1(τu))O2(τ3)] ∼
1

2

∣∣∣∣ 1

τ12

∣∣∣∣ 1
K1

O2(τ3)



[2] Two-Luttinger liquid - topological superconductor

• Renormalization group equations

dt̄1
d ln(D/D0)

= ε1t̄1 − 4t̄1t̄
2
2 ,

dt̄2
d ln(D/D0)

= ε2t̄2 − 4t̄2t̄
2
1

• Phase diagram stable [A]⊗ [N], [N]⊗ [A] FP’s, unstable

[N]⊗ [N], [A]⊗ [A] FP’s, partially stable NTCP
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Figure: a) ε1 = ε2, b) ε1 6= ε2 .



[3] Phase diagram

• Set ε1 = ε2 = ε, dj = 1− ε ⇒ unstable N ⊗ N-fixed point

Assume t1(D = D0) > t2(D = D0) and take A⊗ N as ”putative”

fixed point

• At strong t1, cos[
√
πφ1(0)] is ”pinned” at α = ±1 and γ

”entangles” with Γ1, so that the ground state |G 〉α is determined by

(γ + iαΓ1) |G 〉α = 0

• As φ1(0) is pinned, the bosonized operators at A⊗ N are built

according to the bosonization rules ψ1(0) ∝ e±i
√
πθ1(0),

ψ2(0) ∝ e i
√
πφ2(0)

• Construct the various operators allowed by symmetry at the

A⊗ N-fixed point



[3] Phase diagram

• Intra-wire normal backscattering

HIN = VIψ
†
1(0)ψ1(0) ∼ ṼI cos[2

√
2θ1(0)], [dIN = 2K1 > 1],

irrelevant

• Inter-wire normal backscattering

HIW = VWψ
†
1(0)ψ2(0) + h.c. ∼ ṼW cos[

√
πθ1(0)]e

i
√
πφ2(0) + h.c. ,

[dIN = (K1 + 1/K2)/2 > 1], irrelevant

• Inter-wire pairing

HIP = ∆Bψ1(0)ψ2(0) + h.c. ∼ ∆̃B cos[
√
πθ1(0)]e

i
√
πφ2(0) + h.c. ,

[dIN = (K1 + 1/K2)/2 > 1], irrelevant



[3] Phase diagram

• Coupling to channel-2 is H2 ∝ γΓ2 cos[
√
πφ2(0)]. This looks like

d2 = 1/(2K2) < 1 ⇒ relevant ??

• Correct approach to the problem ⇒ Schrieffer-Wolff transformation

using γΓ2|G 〉±1 ∝ |G 〉∓1

• Second-order SW transformation ⇒ H̃2 ∝ t22
t1
cos[2

√
πφ2(0)],

[d2 = 2/K2 > 1], irrelevant

• Conclusion: A⊗ N and N ⊗ A are both stable. The transition

between the two of them cannot pass through N ⊗ N (which is

unstable in any direction). Thus, it may either pass through a A⊗A

fixed point, or through a novel (partially stable) NTCP



[3] Phase diagram

• Ruling out the A⊗ A option ⇒ A⊗ A fully unstable (analysis of the

operators allowed by symmetry)

• Assuming t1(D0) = t2(D0) might lead to a ”putative” fixed point,

with cos[
√
πφj(0)] pinned at αj and with groundstate |G 〉A⊗A such

that
[
γ + i√

2
(α1Γ1 + α2Γ2)

]
|G 〉A⊗A = 0

• Intra-channel backscattering

HNI ∝
∑2

j=1 VNI ,jψ
†
j (0)ψj(0) ∝

∑2
j=1 ṼNI ,j cos[2

√
πθj(0)],

[dNI = 2K > 1], irrelevant

• Inter-channel backscattering

HWI ∝ VWψ
†
1(0)ψ2(0) + h.c. ∝ ṼW cos[

√
π(θ1(0)− θ2(0))],

[dw = K ], relevant if K < 1

• Inter-channel pairing

HPI ∝ ∆Bψ1(0)ψ2(0) + h.c. ∝ ∆̃B cos[
√
π(θ1(0) + θ2(0))],

[dB = K ], relevant if K < 1



[3] Phase diagram

• Our results may be generalized to the case of nonzero inter-channel

bulk interaction [φ(θ)ρ(σ) = (φ(θ)1 ± φ(θ)2)/
√
2]

H0 =
∑
λ=ρ,σ

uλ
2

∫ ∞

0
dx [Kλ(∂xφλ)

2 + K−1
λ (∂xθλ)

2]

• Renormalization Group equations [ν = (2Kρ)
−1 − (2Kσ)

−1]

dt̄1
d ln(D/D0)

= ε1t̄1−F(ν)t̄1t̄
2
2 ,

dt̄2
d ln(D/D0)

= ε2t̄2−F(ν)t̄2t̄
2
1

νF(  )

ν
1 1.750

0
4

−20



[3] Phase diagram

• Conclusion: the A⊗ A-fixed point comes out to be unstable, just

as the N ⊗ N-fixed point. A ”minimal” hypothesis leads to the

necessary existence of a NTCP at intermediate couplings

t1,∗ = t2,∗ ∝
√
ε.



[4] Detecting the NTFP: transport measurement

• Apply a voltage bias Vj to channel-j and measure the (linear)

conductance tensor Gi,j , defined by Ij =
∑2

i=1 Gj,iVi

• For small (”bare”) tj ’s, Gj ,i can be computed perturbatively in
the tj ’s. If we neglect the inter-wire interactions, then Gj ,i is
purely diagonal, and

Gj ,j =
e2

h
(2πt̄j)

2 , (t̄j = tj(D/D0)
−1+ 1

2Kj )

• As the scale D/D0 → 0, we obtain

Gj ,j →
e2

h
(2πt̄j ,∗)

2 =
4π2e2

h

εj
F(ν)



[4] Detecting the NTFP: transport measurement

• a) Expected behavior of Gj,j if the system flows towards the A⊗ N

fixed point

• b) Expected behavior of Gj,j if the system flows towards the NTFP
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[5] g-theorem and phase diagram

• ”In a given boundary interaction problem, it is possible to define a

function g which always decreases under renormalization between

two different boundary fixed points (associated with the same

boundary critical point)” [I. Affleck, A. W. W. Ludwig, PRL 67, 161

(1991); PRB 48, 7297 (1992)]

• g is the ”boundary analog” of Zamolodchikov’s c-function in

conformal field theories, which is proportional to the coefficient in

the linear specific heat, and decreases under renormalization

between two different bulk critical points.

• g is identified with the ”groundstate degeneracy” associated with

the impurity. More precisely, g is related to the scale-independent

contribution to the entanglement entropy associated with the

boundary interaction [P. Calabrese, J. Cardy, J.Stat.Mech.0406:

P06002 (2004).



[5] g-theorem and phase diagram

• The recipe for computing the g -function at the ”conformal”

boundary fixed points

• System on a segment of length ` with conformally invariant

boundary conditions A and B at its endpoints: partition function

ZAB [u/(`T )] =
∑
n

exp[−xnABu/(`T )]

• Take the limit u/(`T ) → 0

ZAB [u/(`T )] →u/(`T )→0 gAgB eπ`Tc/6u



[5] g-theorem and phase diagram

• Result for gN⊗N

gN⊗N = 2(K1K2)
1
4

• Result for gA⊗N

gA⊗N =
√
2(K2/K1)

1
4

• Result for gA⊗A

gA⊗A = 4/(K2K1)
1
4

• Result for gNTFP [ε-expansion + dimensional regularization]

gNTFP = gN⊗N

[
1− 2π2(ε21 + ε22)

F(ν)

]



[6] Conclusions and further developments

• Having more than one normal channel connected to a topological

superconductor opens the way to novel physics

• Frustration mechanism: similar to two-channel Kondo effect, but

the NTCP has a different nature, which still need to be explored

• Extension to multi-(normal) channel junctions

• Experimental realization of our system

• Fingerprints of the frustration physics in dc Josephson current

measurements

• Nonlinear conductance: ”Kane-Fisher”-like physics


