OPERA

Giovanni De Lellis
University "Federico II" and INFN Napoli

Outline of the talk

- The OPERA experiment and its detector
- The analysis chain
- Charmed hadron production
- Oscillation physics results
- Background studies
- Significance

PHYSICS: from neutrino mixing to oscillations

3x3 Unitary Mixing Matrix

$$
\left(\begin{array}{c}
\nu_{e} \\
v_{\mu} \\
v_{\tau}
\end{array}\right)=\left(\begin{array}{lll}
U_{e 1} & U_{e 2} & U_{e 3} \\
U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3}
\end{array}\right)\left(\begin{array}{c}
\nu_{1} \\
v_{2} \\
v_{3}
\end{array}\right)
$$

PMNS (Pontecorvo-Maki-Nakagawa-Sakata) Matrix

$$
\left(\begin{array}{c}
v_{e} \\
v_{\mu} \\
v_{\tau}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{array}\right)\left(\begin{array}{ccc}
c_{13} & 0 & s_{13} \mathrm{e}^{-i \delta_{\sigma}} \\
0 & 1 & 0 \\
-s_{13} \mathrm{e}^{i \delta_{C P}} & 0 & c_{13}
\end{array}\right)\left(\begin{array}{ccc}
c_{12} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right)
$$

"Atmospheric"terms Reactor experiments "Solar'terms
$c_{\mathrm{ij}}=\cos \theta_{\mathrm{ij}}, s_{\mathrm{ij}}=\sin \theta_{\mathrm{ij}}$

OPERA: first direct detection of neutrino oscillations in appearance mode

following the Super-Kamiokande (Macro and Soudan-2) discovery of oscillations with atmospheric neutrinos and the confirmation with solar neutrinos and accelerator beams. An important, missing tile in the oscillation picture.

The PMNS 3-flavor oscillation formalism predicts:

$$
\mathrm{P}\left(v_{\mu} \rightarrow \nu_{\tau}\right) \sim \sin ^{2} 2 \theta_{23} \cos ^{4} \theta_{13} \sin ^{2}\left(\Delta \mathrm{~m}^{2}{ }_{23} \mathrm{~L} / 4 \mathrm{E}\right)
$$

Requirements:

1) long baseline, 2) high neutrino energy, 3) high intensity beam, 4) detect short lived ${ }^{0.75} \mathrm{~s}$

THE PRINCIPLE: hybrid detector with modular structure

- Massive active target ($\sim 1.2 \mathrm{kton}$) with micrometric space resolution
- Detect τ-lepton production and decay
- Underground location (10^{6} reduction of cosmic ray flux)
- Electronic detectors to provide the "time stamp", preselect the interaction brick and reconstruct μ charge/momentum

τ DECAY CHANNEL	BR (\%)
$\tau \rightarrow \mu$	17.7
$\tau \rightarrow \mathrm{e}$	17.8
$\tau \rightarrow \mathrm{~h}$	49.5
$\tau \rightarrow 3 \mathrm{~h}$	15.0

The OPERA Collaboration

140 physicists, 28 institutions in 11 countries

CNGS BEAM AND LNGS

CNGS beam: tuned for τ-appearance at LNGS 730 km away from CERN

Neutrino Beam Parameters

Beam parameters

$\left\langle\mathrm{E} v_{\mu}\right\rangle(\mathrm{GeV})$	17
$\left(v_{\mathrm{e}}+\nu_{\mathrm{e}}\right) / \nu_{\mu}$	$0.9 \% *$
$\overline{\nu_{\mu}} / \nu_{\mu}$	$2.0 \% *$
ν_{τ} prompt	Negligible

* Interaction rate at LNGS

LNGS of INFN, the world largest underground physics laboratory:
$\sim 180^{\prime} 000 \mathrm{~m}^{3}$ caverns' volume, $\sim 3^{\prime} 100 \mathrm{~m}$. w.e. overburden, ~ 1 cosmic $\mu /\left(\mathrm{m}^{2} \mathrm{x}\right.$ hour), experimental infrastructure. Suitable to host detector and related facilities, caverns oriented towards CERN.

Shared operation FT +4 CNGS + LHC

Dedicated mode or 5 cycles + LHC (during filling)

Shared operation no LHC filling (5 CNGS+ FT) High CNGS duty cycle

Final performances of the CNGS beam after five years ($2008 \div 2012$) of data taking

Year	Beam days	P.O.T. $\left(10^{19}\right)$
2008	123	1.74
2009	155	3.53
2010	187	4.09
2011	243	4.75
2012	257	3.86
Total	$\mathbf{9 6 5}$	$\mathbf{1 7 . 9 7}$

Record performances in 2011
Overall 20% less than the proposal value (22.5)

DETECTORS AND FACILITIES in operation:

A very complex experiment...

The Detector

THE MAGNETIC SPECTROMETERS

- 1.55 T magnetic field bending particles in the horizontal plane
- 24 slabs of magnetized iron interleaved with 24 RPC planes
- 6 drift tube stations for precision measurement of the angular deflection
- momentum resolution:

20\% below $30 \mathrm{GeV} / \mathrm{c}$

Performances of the electronic detector
New Journal of Physics 13 (2011) 053051

Identification of the interaction brick: iterative process (~ 1.6 bricks involved in the analysis of one event)

The heart of the experiment: THE ECC TARGET BRICKS

Hybrid target structure.
Target Tracker

The OPERA target consists of $150^{\prime} 000$ ECC bricks.

Total $105^{\prime} 000 \mathrm{~m}^{2}$ of lead surface and $111^{\prime} 000 \mathrm{~m}^{2}$ of film surface
(~ 9 million films)
Total target mass: 1.25 kton

BRICK MANIPULATOR SYSTEM (BMS)

Extraction of "hit" bricks in parallel with CNGS data taking (quasi-online):

- initially used to fill the brick target (two twin devices at either detector sides)
- fully automatic extraction of up to 50 bricks/day (neutrino interactions)

OPERA brick handling

Target mass evolution

$$
\begin{array}{lc}
\text { date } & \text { bricks } \\
16 / 07 / 08 & 146398 \\
24 / 06 / 09 & 147292 \\
31 / 05 / 12 & 135606 \\
13 / 03 / 13 & 133425 \\
\text { Target loss } & \sim 112 \text { tons }
\end{array}
$$

FILM DEVELOPMENT FACILITY

- 5 automated lines running in parallel, in a dark room
- additional facility underground for Changeable Sheet films

Scanning of Changeable Sheets: several tasks accomplished

LNGS: 10 microscopes, $200 \mathrm{~cm}^{2} / \mathrm{h}$

Nagoya: 5 S-UTS, 220 cm²/h

Brick validation by the interface film analysis

CS doublet alignment by Compton electrons: 2.5
So far $\mathbf{2}^{\prime} \mathbf{0 0 0}{ }^{\prime} \mathbf{0 0 0} \mathbf{~ c m}^{2}$ of CS surface have been analysed in OPERA

Interface emulsion films: high signal/noise ratio for event trigger and scanning time reduction

CC interaction: μ track in interface films

Validation of events without μ in the final state by interface emulsion films

CS tracks: the arrow length is proportional to its slope

Identification of cosmic ray μ and muons from v interactions upstream: important to keep the TT running during the shutdown

Brici 96038 Interface emulsion films
 Electron shower pre-selection

Track follow-up and vertex finding

Track follow-up film by film:

- alignment using cosmic ray tracks
- definition of the stopping point

Located neutrino interaction Volume $\left(\sim 2 \mathrm{~cm}^{3}\right)$ around the stopping point

Located neutrino interaction:
 film to film connection

Located neutrino interaction

Decay search procedure

Decay search: penetrating tracks discarded

Decay search: track selection

Decay search: electron pair

Decay search: kink topology detected

Impact parameter distribution of tracks associated to primary vertices

Status of data analysis

Charmed hadron production: an application of the decay search a control sample for τ

Charm sample:

same topology but muon at interaction vertex

Charm yield from the analysis of $2008 \div 2010$ data

	charm	background	expected	data
1 prong	20 ± 3	9 ± 3	29 ± 4	19
2 prong	15 ± 2	3.8 ± 1.1	19 ± 2	22
3 prong	5 ± 1	1.0 ± 0.3	6 ± 1	5
4 prong	0.8 ± 0.2	-	0.8 ± 0.2	4
All	$\mathbf{4 1} \pm \mathbf{4}$	$\mathbf{1 4} \pm \mathbf{3}$	$\mathbf{5 5} \pm \mathbf{5}$	$\mathbf{5 0}$

Background, mostly from hadronic interactions (contribution from strange particle decay)

Main characteristics of the charm candidate events

Giovanni De Lellis, Napoli

Physics results

$\nu_{\mu} \rightarrow \nu_{\mathrm{e}}$ analysis

4.1 GeV electron

32 events found in the analyzed sample

Electron neutrino search in 2008 and 2009 runs: one of the v_{e} events with a π^{0} as seen in the brick

19 candidates found in a sample of 505 neutrino interactions without muon

Background from $v_{\mu} \mathrm{NC}\left(\pi^{0} \rightarrow \gamma \gamma\right)$

Energy distribution of the $19 v_{e}$ candidates

Energy cut		20 GeV	30 GeV	No cut				
BG common to both analyses	BG (a) from π^{0}	0.2	0.2	0.2				
	BG (b) from $\tau \rightarrow e$	0.2	0.3	0.3				
	ν_{e} beam contamination	4.2	7.7	19.4				
Total expected BG in 3-flavour oscillation analysis	4.6	8.2	19.8					
BG to non-standard oscillation analysis only	ν_{e} via 3-flavour oscillation	1.0	1.3	1.4				
Total expected BG in non-standard oscillation analysis						5.6	9.4	21.3
Data		4	6	19				

Observation compatible with background-only hypothesis: 19.8 ± 2.8 (syst) events

3 flavour analysis

Energy cut to increase the S / N

4 observed events

4.6 expected

Search for non-standard oscillations at large $\Delta \mathrm{m}^{2}$ values: exclusion plot in the $\sin ^{2}\left(2 \theta_{\text {new }}\right)-\Delta \mathrm{m}^{2}{ }_{\text {new }}$ plane
 different L/E values

$\nu_{\mu} \rightarrow \nu_{\tau}$ analysis

- 2008-2009 run analysis
- Conservative approach: get confidence on the detector performances before applying any kinematical cut
- No kinematical cut
- Slower analysis speed (signal/noise not optimal)
- Good data/MC agreement

The first ν_{τ} "appearance" candidate (2010)

Candidate

ν_{τ} interaction and τ decay from $v_{\mu} \rightarrow v_{\tau}$ oscillation

Physics Letters B 691 (2010) 138-145

Contents lists available at ScienceDirect
Physics Letters B
www.elsevier.com/locate/physletb

Observation of a first v_{τ} candidate event in the OPERA experiment in the CNGS beam

First tau neutrino candidate event Muonless event 9234119599 , taken on $22^{\text {nd }}$ August 2009 (as seen by the electronic detectors)

Event reconstruction in the brick

careful visual inspection of the films behind/in front of the secondary vertex:
no "black" or "evaporation" tracks. Support topological hypothesis of a particle decay

Kinematical variables

- Kinematical variables are computed by averaging the two independent sets of measurements

VARIABLE	AVERAGE
kink (mrad)	41 ± 2
decay length ($\mu \mathrm{m}$)	1335 ± 35
P daughter ($\mathrm{GeV} / \mathrm{c}$)	$12^{+6}{ }_{-3}$
Pt ($\mathrm{MeV} / \mathrm{c}$)	$470{ }^{+240}{ }_{-120}$
missing Pt (MeV/c)	$570{ }^{+320}{ }_{-170}$
ϕ (deg)	173 ± 2

Strategy for the $2010 \div 2012$ runs

- Apply kinematical selection
- $15 \mathrm{GeV} \mu$ momentum cut (upper bound)
- Anticipate the analysis of the most probable brick for all the events before moving to the second (and further ones): optimal ratio between efficiency and analysis time
- Anticipate the analysis of 0μ events (events without any μ in the final state)
- In view of 2012 Summer conferences: 0μ and 1μ sample for 2010 run, for 2011 run stick to 0μ sample only, 2012 not yet analysed

Second neutrino tau candidate event taken on 23 ${ }^{\text {rd }}$ April 2011

Second $\mathbf{V}_{\boldsymbol{\tau}}$ Candidate Event

Schematics of the event

Secondary Interaction In Emulsion
With four Nuclear fragments

Zoom of the primary interaction and decay region

Momentum measurement and particle identification of event tracks

Track\#	Momentum (1σ interval) [$\mathrm{GeV} / \mathrm{c}$]	Particle ID	Method / Comments
Primary	$\begin{array}{\|l\|} \hline 2.8 \\ (2.1-3.5) \end{array}$	Hadron	- Momentum-Range Consistency Check Stops after 2 brick walls. Incompatible with muon ($26 \div 44$ brick walls)
d1	$\begin{array}{\|l\|} \hline 6.6 \\ (5.2-8.6) \end{array}$	Hadron	- Momentum-Range Consistency Check
d2	$\begin{aligned} & 1.3 \\ & (1.1-1.5) \end{aligned}$	Hadron	- Momentum-Range Consistency Check
d3	$\begin{array}{\|l\|} \hline 2.0 \\ (1.4-2.9) \end{array}$	Hadron	Interaction in the Brick @ 1.3cm downstream

Independent momentum measurements carried out in two labs

Kinematics of the second Candidate Event

	Cut	Value
φ (Tau - Hadron) [degree]	>90	167.8 ± 1.1
average kink angle [mrad]	<500	87.4 ± 1.5
Total momentum at 2ry vtx [GeV/c]	>3.0	8.4 ± 1.7
Min Invariant mass [GeV/c$\left.{ }^{2}\right]$	$0.5<$ <2.0	0.96 ± 0.13
Invariant mass [GeV/c$]$	$0.5<$ <2.0	0.80 ± 0.12
Transverse Momentum at 1ry vtx [GeV/c]	<1.0	0.31 ± 0.11

Kinematics of the second candidate event

.....candidate cut

After 2012 Summer conferences

- Extension of the analysed sample to events with one μ in the final state

Third tau neutrino event taken on May $2^{\text {nd }} 2012$

Analysis of the interface films

Brick 23543

$\tau \rightarrow \mu$ candidate brick analysis and decay search

Decay in the plastic base

$\tau \rightarrow \mu$ candidate

Third tau neutrino event

$\tau \rightarrow \mu$

Decay vertex
Primary vertex

Event tracks' features

TRACK NUMBER	PID	MEASUREMENT 1			MEASUREMENT 2		
		Θ_{X}	Θ_{Y}	$\mathrm{P}(\mathrm{GeV} / \mathrm{c})$	Θ_{X}	Θ_{Y}	P (GeV/c)
$\begin{gathered} 1 \\ \text { DAUGHTER } \end{gathered}$	MUON	-0.217	-0.069	$\begin{gathered} 3.1 \\ {[2.6,4.0] \mathrm{MCS}} \end{gathered}$	-0.223	-0.069	$\begin{gathered} 2.8 \pm 0.2 \\ \text { Range (TT+RPC) } \end{gathered}$
2	HADRON Range	0.203	-0.125	$\begin{gathered} 0.85 \\ {[0.70,1.10]} \end{gathered}$	0.205	-0.115	$\begin{gathered} 0.96 \\ {[0.76,1.22]} \end{gathered}$
3	PHOTON	0.024	-0.155	$\begin{gathered} 2.64 \\ {[1.9,4.3]} \end{gathered}$	0.029	-0.160	$\begin{gathered} 3.24 \\ {[2.52,4.55]} \end{gathered}$
4 PARENT	TAU	-0.040	0.098		-0.035	0.096	

γ attachment

	$\delta \theta_{\mathrm{RMS}}$ (mrad)	DZ (mm)	Measured IP $(\mu \mathrm{m})$	IP resolution $(\mu \mathrm{m})$	ATTACHMENT
1 ry vertex	6	3.1	18.2	13.6	OK
2 ry vertex	6	2.8	68.7	12.2	EXCLUDED

Muon charge and momentum reconstruction

Charge determination of the muon

Charge measurement based on TT and RPC hits when no hits in drift tubes Fit function:

$$
\begin{array}{cc}
\mathrm{X}(\mathrm{z})=\mathrm{p} 0+\mathrm{p} 1 \times(\mathrm{z}-\mathrm{z} 0)+\mathrm{p} 2 \mathrm{x}(\mathrm{z}-\mathrm{z} 0)^{2} & \text { for } \mathrm{z}>\mathrm{z} 0, \text { start of magnetized region } \\
\mathrm{X}(\mathrm{z})=\mathrm{p} 0+\mathrm{p} 1 \times(\mathrm{z}-\mathrm{z} 0) & \text { for } \mathrm{z}<\mathrm{z} 0
\end{array}
$$

Track follow down to assess the nature of track 2

Track 2 interacting in the downstream brick without visible charged particles
Event: 12123032048, 2 May 2012 10:12 (UTC), XZ projection

Momentum/range inconsistent with μ hypothesis $0.9 \mathrm{GeV} / 4 \mathrm{~cm}$ Lead

$$
D=\frac{L}{R_{\text {lead }}(p)} \frac{\rho_{\text {lead }}}{\rho_{\text {average }}}
$$

$L=$ track length
$R_{\text {lead }}=\mu$ range
$\rho_{\text {average }}=$ average density
$\rho_{\text {lead }}=$ lead density
$\mathrm{p}=$ momentum in emulsion

Hadrons
Muons

Kinematical variables

Kink angle (mrad)	$\mathbf{2 4 5} \pm \mathbf{5}$
decay length $(\mu \mathrm{m})$	$\mathbf{3 7 6} \pm \mathbf{1 0}$

PHI ANGLE

$\mathrm{P} \boldsymbol{\mu}(\mathrm{GeV} / \mathrm{c})$	$\mathbf{2 . 8} \pm \mathbf{0 . 2}$
$\mathrm{Pt}(\mathrm{MeV} / \mathrm{c})$	$\mathbf{6 9 0} \pm \mathbf{5 0}$
ϕ (degrees)	$\mathbf{1 5 4 . 5} \pm \mathbf{1 . 5}$

Kinematical variables. All cuts passed: $\tau \rightarrow \mu$ candidate

DECAY LENGTH

MUON MOMENTUM

KINK ANGLE

TRANSVERSE MOMENTUM AT 2RY VTX

Background studies

Improvements on the background rejection: large angle track detection Undetected soft and large angle muons are the source of charm background Detection of particles and nuclear fragments in hadronic interactions

 16 images from microscope

Two different approaches get comparable results

Background studies: hadronic interactions

Comparison of large data sample (π^{-}beam test at CERN) with Fluka simulation: check the agreement and estimate the systematic error of simulation

Track length analysed in the brick: $2 \mathrm{GeV} / \mathrm{c}: 8.5 \mathrm{~m}, 4 \mathrm{GeV} / \mathrm{c}: 12.6 \mathrm{~m}, 10 \mathrm{GeV} / \mathrm{c}: 38.5 \mathrm{~m}$

Black : π^{-}beam data
Red : MC (FLUKA) simulation

Secondary track emission

Good agreement within the statistical error: systematic error reduced to 30\%

Nuclear fragments emission probability

Highly ionizing fragments

Black : experimental data
Red : simulated data $(\beta=p / E=0.7)$
It provides additional background reduction.

Nuclear fragments in 1 and 3 prong interactions

Agreement within the statistical error: systematic error is 10%.

Large angle muon scattering

Kink angle

Rate in lead $\left(10^{-6}\right)$ and less in emulsion/base $\left(10^{-8}\right.$ to $\left.10^{-7}\right)$. No measurements except an upper limit: S.A. Akimenko et al., NIM A423 (1986) 518 ($<10^{-5}$ in lead). 10^{-5} rate used Plan to revise this number by an experimental measurement with emulsion

Statistical considerations

Extended sample to muonic interactions

Extended sample					
	Signal	Background	Charm	μ scattering	had int
$\tau \rightarrow \mathrm{h}$	0.66	0.045	0.029		0.016
$\tau \rightarrow 3 \mathrm{~h}$	0.51	0.090	0.087		0.003
$\tau \rightarrow \mu$	0.56	0.026	0.0084	0.018	
$\tau \rightarrow \mathrm{e}$	0.49	0.065	0.065		
total	2.22	$\mathbf{0 . 2 2 6}$	0.19	0.018	0.019

3 observed events in the $\tau \rightarrow \mathrm{h}, \tau \rightarrow 3 \mathrm{~h}$ and $\tau \rightarrow \mu$ channels Pvalue $=\mathrm{P}_{0}=1.125 \times 10^{-4}$
Probability to be explained by background $=7.2910^{-4}$
This corresponds to 3.2σ significance of non-null observation

Exploit kinematical characteristics of the events: likelihood analysis

Data/MC agreement for relevant variables

Momentum measurement by multiple Coulomb scattering for identified μ in the $2 \div 6 \mathrm{GeV}$ range

2012 New J. Phys. 14013026

Data/MC agreement for the relevant variables: slopes, momentum, ϕ

Likelihood analysis: one of the discriminating variables

Statistical considerations

Combining different channels: Likelihood based method, see e.g. G. Cowan et al., Eur. Phys. J. C71 (2011) 1554

$$
f^{S+B}(s, b, x)=\frac{s f_{S}(x)+b f_{B}(x)}{s+b} \quad \mathcal{L}(s, b)=\frac{(s+b)^{n} e^{-(s+b)}}{n!} \prod_{c=1}^{4} \prod_{i=0}^{n_{c}} \prod_{v=1}^{n_{v}} f_{v, c}^{S+B}\left(s, b, x_{v}\right)
$$

$$
L R=-2 \ln \frac{\mathcal{L}(0, b)}{\mathcal{L}(s, b)}
$$

$$
-2 \ln L
$$

3.5σ significance 10
10
10
10
10

Evidence for $v_{\mu} \rightarrow v_{\tau}$ in appearance mode

- Three events reported
- Conservative background evaluation
- Significance of 3.2σ with simple counting method
- With a first likelihood approach, 3.5\% level
- 4 σ observation within reach

Thank you for your attention

Angle between the parent particle and the hadron jet in the transverse plane discard the largest φ track unless it is identified as hadron

degrees

Decay position (micron)

Transverse momentum at secondary vertex $(\mathrm{GeV} / \mathrm{c})$

