Exotic Atoms and New Physics Searches

Seminar Università degli Studi di Napoli Federico II

Andrzej Czarnecki 🏾 举 University of Alberta

Outline

Lamb shift: large and small Z Muon decay in orbit and µe conversion Positronium: hyperfine splitting — g factor of a bound electron Loops in few-body systems : He, Ps₂, Ps⁻

<u>Difficulty</u> in the theory of simple atoms: diversity of energy scales.

Opportunity: several expansion parameters:

$$\alpha, Z\alpha, \frac{m_e}{m_N}$$

Expansion parameters

Example of a cutting-edge problem:

Technical tools

Recurrence relations Determination of master integrals Expansion in small masses (for recoil effects) Treatment of tensor integrals

Corrections of order $\alpha^2 (Z\alpha)^5$ to the hyperfine splitting and the Lamb shift MICHAEL I. EIDES AND VALERY A. SHELYUTO

Analytical value:

$$\begin{aligned} -\frac{352897}{27000} + \frac{31\pi^2}{60} - \frac{643\ln 2}{225} - \frac{248\ln^2 2}{15} \\ -\frac{26}{9\sqrt{5}}\ln\left(\frac{7-3\sqrt{5}}{2}\right) - \frac{31}{20}\ln\left(\frac{7-3\sqrt{5}}{2}\right)\ln\left(\frac{1+\sqrt{5}}{2}\right) \\ +\frac{31}{6}\ln^2\left(\sqrt{5}-2\right) - \frac{31}{15}\text{Li}_2\left(2-\sqrt{5}\right) + \frac{31}{15}\text{Li}_2\left(\sqrt{5}-2\right) \\ = -2.22313. \end{aligned}$$

 $\frac{\partial}{\partial k_{\mu}}$

Expansion in mass ratios

with Kirill Melnikov

Muon decay in orbit and searches for lepton flavor violation

Muon decay to an electron and photon, $\mu \rightarrow e\gamma$ Until recently (MEGA @ Los Alamos): $BR(\mu \rightarrow e\gamma) < 10^{-11}$

New bound (MEG @ Paul Scherrer Institute)

Note: unusual QED suppression ~15% (large log of the new physics scale Λ)

$$\Gamma(\mu \to e \gamma) \simeq \left(1 - \frac{8 \alpha}{\pi} \ln \frac{\Lambda}{m_{\mu}}\right) \Gamma^{(0)}(\mu \to e \gamma)$$

Phys. Rev. D 65, 113004

Muon-electron conversion

"The best rare process" No accidental bkgd (single monochromatic e⁻); 10⁻¹⁷ sensitivity envisioned

Variety of mechanisms:

Background from the standard muon decay

Background from the standard muon decay

End point spectrum must be well understood

End point spectrum

Previous studies: Shanker & Roy, Hänggi et al., Herzog & Alder

Relativistic muon wave function, nuclear size and recoil, electron final state interactions: all taken into account.

$$N(E_e) dE_e \simeq 0.4 \cdot 10^{-21} \left(1 - \frac{E_e}{E_{\text{max}}}\right)^5 dE_e$$

New evaluation: AC, X. Garcia i Tormo, W. J. Marciano PRD84,013006,2011

Planned energy resolution in Mu2e: ~250 keV \rightarrow 0.22 background events.

How can the electron get muon's whole energy?

Neutrinos get no energy; The nucleus balances electron's momentum, takes no energy. Near the end point:

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}E_e} \sim |\psi(0)|^2 (Z\alpha)^2 \frac{\mathrm{d}^3\nu_e}{\nu_e} \frac{\mathrm{d}^3\nu_\mu}{\nu_\mu} \delta (E_{\mathrm{max}} - E_e - \nu_e - \nu_\mu) \operatorname{Tr} \dots \psi_e \dots \psi_\mu$$
$$\sim (Z\alpha)^5 (E_{\mathrm{max}} - E_e)^5$$

Next step: radiative corrections to the electron spectrum

Competing effects:

- vacuum polarization in the hard photon; and
- self-energy and real radiation

Ultimate goal: smooth matching of various regions, from the bound electron at low energy, to the end-point.

Positronium

Martin Deutsch 1917 - 2002

- Very similar to hydrogen, except
- no hadronic nucleus
- annihilation
- reduced mass reduced $m_e \rightarrow \frac{m_e}{2}$

Two spin states: singlet (para-Ps; short-lived, 0.1 ns) triplet (ortho-Ps; long-lived, ~150 ns)

All properties can be described by QED, using one parameter: $\alpha = \frac{1}{137.036}$

Positronium spectrum: discrepancy with QED

Tree-level QED prediction for the hyperfine splitting (HFS)

 $\gamma_{\mu} \otimes \gamma^{\mu} \to 1 \otimes 1 + \sigma \otimes \sigma$

$$\Delta v_{\rm HFS} = \frac{7}{12} m_e \alpha^4 \simeq 204 \,\,{\rm GHz}$$

Quantum corrections to the HFS: one-loop

Quantum corrections to the HFS: two-loop

 $\frac{m_e \alpha^6}{\pi^2} \left[\frac{1367}{648} - \frac{5197}{3456} \pi^2 + \left(\frac{1}{2} + \frac{221}{144} \pi^2 \right) \ln 2 - \frac{53}{32} \zeta(3) + \frac{5}{24} \pi^2 \ln \frac{1}{\alpha} \right]$ \$\approx 11.8 MHz \rightarrow 0.006\% (Experimental error \approx 0.7 MHz)

New experiment aims at direct transition

<u>Akira Miyazaki</u>^a, T. Yamazaki^a, T. Suehara^a, T. Namba^a, S. Asai^a, T. Kobayashi^a, H. Saito^b, T. Idehara^c, I. Ogawa^c, S. Sabchevski^d

Previous experiments: used para-ortho mixing

FIG. 1. Zeeman energy levels of positronium in its ground n=1

Breit 1928 - Dirac theory

Note: Breit's calculation predates Schwinger's by 20 years

Bound-electron g-2: theory

two-loop corrections

$$\begin{split} b_{41} &= \frac{28}{9} \\ b_{40} &= -16.4 \\ m_e \left({}^{12}C^{5+} \right) &= 0.00054857990931 (29)_{exp} (1)_{th} u \\ \text{Theoretical error: negligible} \end{split}$$

2010: new measurement with oxygen, ¹⁶O⁷⁺

Theoretical prediction:

$$g^{\text{th}}(Z=8) = 2.00004702032(11)$$

Measured value:

$$g^{\exp}(Z=8) = 2.0000470201(25)$$

J. Verdú,¹ H. Häffner,² W. Quint,³ T. Valenzuela,⁴ and G. Werth⁵ (preliminary)

Few-body systems: antiprotonic helium

Figure 4 | Antiproton-to-electron and proton-to-electron mass ratios.

Spectrum of the molecule Ps2

A direct signal of the molecule: transition line

From Suzuki & Usukura, 2000

A direct signal of the molecule: transition line

From Suzuki & Usukura, 2000

Energy levels: ground state and P-excitation

Wave function determined variationally, ^{M. Puchalski} using Coulomb potential;

Coordinate system for the positronium molecule

Relativistic corrections: perturbations. Annihilation dominates.

Interval P-S determined with 5 x 10⁻⁶ accuracy (slightly smaller than in Ps, "dielectric effect").

Low energy studies require (and test) precise predictions.

Here we have reviewed

- * decays of bound muons;
- * positronium HFS; effect of binding on the g-factor;
- * Lamb shift;
- * and few-body systems.
- Each area needs improvements of its theory. Each has a vigorous experimental activity.

Two-loop corrections to heavy quark decays

This program was extended to the muon decay with Alexey Pak, and later also with Matt Dowling and Jan Piclum

New proton radius from muonic-H (PSI)

Comparison with scattering experiments

Typical luminosity in fixed-target experiments

$$\sim 10^{37...38} / (\mathrm{cm}^2 \cdot \mathrm{s})$$

In a single muonic atom

= density × velocity
=
$$|\psi(0)|^2 \cdot Z\alpha = \frac{m_{\mu}^3 Z^4 \alpha^4}{\pi} \sim Z^4 \cdot 4 \cdot 10^{39} / (\text{cm}^2 \cdot \text{s})$$

Comparison with scattering experiments

Typical luminosity in fixed-target experiments

$$\sim 10^{37...38} / (cm^2 \cdot s)$$

In a single muonic atom

 $= \text{density} \times \text{velocity}$ $= \left|\psi(0)\right|^2 \cdot Z\alpha = \frac{m_{\mu}^3 Z^4 \alpha^4}{\pi} \sim Z^4 \cdot 4 \cdot 10^{39} / (\text{cm}^2 \cdot \text{s})$

Many atoms are studied in parallel: ~10¹¹ muons stopped per second, each lives about 10⁻⁶ seconds: 10⁵ atoms present:

$$\sim 10^{49} / (cm^2 \cdot s)$$