QCD transverse-momentum resummation for Higgs and Vector Boson production at the LHC

Giancarlo Ferrera

giancarlo.ferrera@mi.infn.it

Napoli – March 28th 2013

(日) (同) (三) (三)

э.

Outline

2 Transverse-momentum resummation formalism

2/27

Giancarlo Ferrera – Università di Milano

Outline			Conclusions
Motiva	ations I		

- The discovery of the Higgs boson and the study of its properties depends, in various way, by theoretical predictions for Higgs boson cross sections.
- The study of Drell-Yan lepton pair production is well motivated.

Large production rates and clean experimental signatures: Important for detector calibration.

Possible use as luminosity monitor.

Outline			Conclusions
Motiva	tions II		

Motivations II

Transverse-momentum distributions needed for:

- Precise prediction for M_W .
- Beyond the Standard Model analysis (Z' non SUSY Higgs).
- Test of perturbative QCD predictions.
- Constrain for fits of PDFs.

To fully exploit the information contained in the experimental data from hadron colliders, precise theoretical predictions are needed \implies computation of higher-order QCD corrections.

Giancarlo Ferrera – Università di Milano

QCD transverse-momentum resummation for Higgs and Vector Boson production at the LHC

Outline		Resummed results	Conclusions

State of the art: fixed order calculations for DY

QCD corrections:

- Total cross section known up to NNLO [Hamberg,Van Neerven,Matsuura('91)], [Harlander,Kilgore('02)]
- Rapidity distribution known up to NNLO [Anastasiou,Dixon,Melnikov,Petriello('03)]
- Fully exclusive NNLO calculation completed [Melnikov,Petriello('06)], [Catani,Cieri,de Florian,G.F.,Grazzini('09)]
- Vector boson transverse-momentum distribution known up to NLO [Ellis,Martinelli,Petronzio('83)], [Arnold,Reno('89)], [Gonsalves,Pawlowski,Wai('89)]
- Electroweak correction are know at $\mathcal{O}(\alpha)$ [Dittmaier et al.('02)],[Baur et al.('02)], [Carloni Calame, Montagna,Nicrosini,Vicini('06)]

5/27

Giancarlo Ferrera – Università di Milano

State of the art: fixed order calculations for $gg \rightarrow H$

• QCD corrections:

• Total cross section known up to NNLO QCD corrections in the large-*m_t* approx. [Harlander,Kilgore('02)],

[Anastasiou,Melnikov,Petriello('04)] [Ravindran,Smith,VanNeerven('03)].

• NNLO QCD corrections beyond large- m_t approx.

[Marzani,Ball,DelDuca,Forte,Vicini('08)]

[Harlander,Mantler,Marzani,Ozeren('09)], [Pag,Rogal,Steinhauser('09)]. Accuracy of large- m_t approximation better than 1% for $100 < m_H < 300$ GeV.

- Large QCD corrections: ~ +100% at NLO, ~ +25% at NNLO. The bulk due to threshold $(\hat{s} \rightarrow m_H^2)$ soft/collinear emissions: NNLL resummation gives a further ~ +10% correction [Catani,deFlorian,Grazzini,Nason('03)].
- Fully exclusive NNLO QCD calculation available
 [Anastasiou,Melnikov,Petriello('04)], [Catani,Grazzini('07)]
- Transverse-momentum distribution known up to NLO

[de Florian,Grazzini,Kunszt,('99)],[Ravindran,Smith,Van Neerven('02)], [Glosser,Schmidt('02)]

NLO EW corrections ~ +5% [Aglietti,Bonciani,Degrassi,Vicini('04)],

6/27

[Actis,Passarino,Sturm,Uccirati('08)].

Giancarlo Ferrera – Università di Milano

Outline	q_T distribution		Conclusions

$$\begin{split} h_1(p_1) + h_2(p_2) &\to F(M,q_T) + X \to f_1 + f_2 + X \\ \text{where } F = \gamma^*/Z^0, W^{\pm}, H \text{ and } f_1 f_2 = \ell^+ \ell^-, \ell \nu_{\ell}, \gamma \gamma \end{split}$$

Theoretical framework: QCD factorization formula

$$\frac{d\sigma}{dq_T^2}(q_T, M, s) = \sum_{a,b} \int_0^1 dx_1 \int_0^1 dx_2 f_{a/h_1}(x_1, \mu_F^2) f_{b/h_2}(x_2, \mu_F^2) \frac{d\hat{\sigma}_{ab}}{dq_T^2}(q_T, M, \hat{s}; \alpha_S, \mu_R^2, \mu_F^2).$$

Ø

Giancarlo Ferrera - Università di Milano

QCD transverse-momentum resummation for Higgs and Vector Boson production at the LHC

< ≣ ► ≣ ∽ ९ ⊂ Napoli – 28/3/2013

< 17 ▶

7/27

Outline	q_T distribution		Conclusions

$$\begin{split} h_1(p_1) + h_2(p_2) &\to F(M,q_T) + X \to f_1 + f_2 + X \\ \text{where } F = \gamma^*/Z^0, W^{\pm}, H \text{ and } f_1 f_2 = \ell^+ \ell^-, \ell \nu_\ell, \gamma \gamma \end{split}$$

Theoretical framework: QCD factorization formula

$$\frac{d\sigma}{dq_T^2}(q_T, M, s) = \sum_{a,b} \int_0^1 dx_1 \int_0^1 dx_2 f_{a/h_1}(x_1, \mu_F^2) f_{b/h_2}(x_2, \mu_F^2) \frac{d\hat{\sigma}_{ab}}{dq_T^2}(q_T, M, \hat{s}; \alpha_S, \mu_R^2, \mu_F^2).$$

QCD transverse-momentum resummation for Higgs and Vector Boson production at the LHC

▲ ■ ▶ ■ シ へ ○ Napoli – 28/3/2013

7/27

Outline	q_T distribution	Resummed results	Conclusions

The standard fixed-order QCD perturbative expansions gives:

$$\int_{Q_T^2}^{\infty} dq_T \frac{d\hat{\sigma}_{q\bar{q}}}{dq_T^2} \sim \alpha_S \left[c_{12} \log^2(M^2/Q_T^2) + c_{11} \log(M^2/Q_T^2) + c_{10}(Q_T) \right] \\ + \alpha_S^2 \left[c_{24} \log^4(M^2/Q_T^2) + \dots + c_{21} \log(M^2/Q_T^2) + c_{20}(Q_T) \right] + \mathcal{O}(\alpha_S^3)$$

The logarithmic corrections are the residue of the cancellantion of the real-virtual infrared singularities:

Fixed order calculation theoretically justified only in the region $q_T \sim M_F$ For $q_T \rightarrow 0$, $\alpha_S^n \log^m (M^2/q_T^2) \gg 1$: need for resummation of logarithmic corrections

8/27

Giancarlo Ferrera – Università di Milano

QCD transverse-momentum resummation for Higgs and Vector Boson production at the LHC

・ロン ・回 と ・ ヨン ・

Outline	q_T distribution	Resummed results	Conclusions

The standard fixed-order QCD perturbative expansions gives:

$$\int_{Q_T^2}^{\infty} dq_T \frac{d\hat{\sigma}_{q\bar{q}}}{dq_T^2} \sim \alpha_S \left[c_{12} \log^2(M^2/Q_T^2) + c_{11} \log(M^2/Q_T^2) + c_{10}(Q_T) \right] \\ + \alpha_S^2 \left[c_{24} \log^4(M^2/Q_T^2) + \dots + c_{21} \log(M^2/Q_T^2) + c_{20}(Q_T) \right] + \mathcal{O}(\alpha_S^3)$$

The logarithmic corrections are the residue of the cancellantion of the real-virtual infrared singularities:

$$\begin{array}{c} \mathbf{q} \\ \mathbf{q} \\ \mathbf{q} \\ \mathbf{q} \\ \mathbf{q} \\ \mathbf{k}_{T} \\ \mathbf$$

Fixed order calculation theoretically justified only in the region $q_T \sim M_F$ For $q_T \rightarrow 0$, $\alpha_S^n \log^m (M^2/q_T^2) \gg 1$: need for resummation of logarithmic corrections

8/27

Giancarlo Ferrera – Università di Milano

QCD transverse-momentum resummation for Higgs and Vector Boson production at the LHC

Outline	q_T distribution		Conclusions

The standard fixed-order QCD perturbative expansions gives:

$$\int_{Q_T^2}^{\infty} dq_T \frac{d\hat{\sigma}_{q\bar{q}}}{dq_T^2} \sim \alpha_S \left[c_{12} \log^2(M^2/Q_T^2) + c_{11} \log(M^2/Q_T^2) + c_{10}(Q_T) \right] \\ + \alpha_S^2 \left[c_{24} \log^4(M^2/Q_T^2) + \dots + c_{21} \log(M^2/Q_T^2) + c_{20}(Q_T) \right] + \mathcal{O}(\alpha_S^3)$$

The logarithmic corrections are the residue of the cancellantion of the real-virtual infrared singularities:

$$\begin{array}{c} \bar{q} \\ & & \\ & & \\ q \end{array} \xrightarrow{F}_{q \tau} \begin{array}{c} & \frac{\alpha_{S}}{2\pi} \int \frac{dk_{T}^{2}}{k_{T}^{2}} \int_{k_{T}/M}^{1} d\omega \ P_{qq}(\omega) \ \left[\delta^{2}(\bar{q}_{T} - \vec{k}_{T}) - \delta^{2}(\bar{q}_{T}) \right] \\ & & \\ & & \\ q \end{array} \xrightarrow{g}_{\omega, k_{T}} \begin{array}{c} & & \\ & = \end{array} \begin{array}{c} \frac{\alpha_{S}}{2\pi} \int \frac{dk_{T}^{2}}{k_{T}^{2}} C_{F}(\log k_{T}^{2}/M^{2} - \frac{3}{2} + \mathcal{O}(k_{T}/M)) \left[\delta^{2}(\bar{q}_{T} - \vec{k}_{T}) - \delta^{2}(\bar{q}_{T}) \right] \end{array}$$

Fixed order calculation theoretically justified only in the region $q_T \sim M_F$ For $q_T \rightarrow 0$, $\alpha_S^n \log^m (M^2/q_T^2) \gg 1$: need for resummation of logarithmic corrections

8/27

Giancarlo Ferrera – Università di Milano

QCD transverse-momentum resummation for Higgs and Vector Boson production at the LHC

Outline	q_T distribution		Conclusions

The standard fixed-order QCD perturbative expansions gives:

$$\int_{Q_T^2}^{\infty} dq_T \frac{d\hat{\sigma}_{q\bar{q}}}{dq_T^2} \sim \alpha_S \left[c_{12} \log^2(M^2/Q_T^2) + c_{11} \log(M^2/Q_T^2) + c_{10}(Q_T) \right] \\ + \alpha_S^2 \left[c_{24} \log^4(M^2/Q_T^2) + \dots + c_{21} \log(M^2/Q_T^2) + c_{20}(Q_T) \right] + \mathcal{O}(\alpha_S^3)$$

The logarithmic corrections are the residue of the cancellantion of the real-virtual infrared singularities:

$$\begin{array}{c} \bar{q} \\ & & \\ & & \\ q \end{array} \xrightarrow{\mathcal{A}_{S}} \int \frac{dk_{T}^{2}}{k_{T}^{2}} \int_{k_{T}/M}^{1} \frac{d\omega}{\omega} C_{F} (2 - 2\omega + \omega^{2}) \left[\delta^{2}(\bar{q}_{T} - \bar{k}_{T}) - \delta^{2}(\bar{q}_{T}) \right] \\ & & \\ & & \\ & & \\ q \end{array} \xrightarrow{\mathcal{A}_{S}} \int \frac{dk_{T}^{2}}{k_{T}^{2}} C_{F} \left(\log k_{T}^{2}/M^{2} - \frac{3}{2} + \mathcal{O}(k_{T}/M) \right) \left[\delta^{2}(\bar{q}_{T} - \bar{k}_{T}) - \delta^{2}(\bar{q}_{T}) \right] \\ \end{array}$$

Fixed order calculation theoretically justified only in the region $q_T \sim M_F$ For $q_T \rightarrow 0$, $\alpha_S^n \log^m (M^2/q_T^2) \gg 1$: need for resummation of logarithmic corrections

8/27

Giancarlo Ferrera – Università di Milano

QCD transverse-momentum resummation for Higgs and Vector Boson production at the LHC

Outline	q_T distribution	Resummed results	Conclusions

The standard fixed-order QCD perturbative expansions gives:

$$\int_{Q_T^2}^{\infty} dq_T \frac{d\hat{\sigma}_{q\bar{q}}}{dq_T^2} \sim \alpha_S \left[c_{12} \log^2(M^2/Q_T^2) + c_{11} \log(M^2/Q_T^2) + c_{10}(Q_T) \right] \\ + \alpha_S^2 \left[c_{24} \log^4(M^2/Q_T^2) + \dots + c_{21} \log(M^2/Q_T^2) + c_{20}(Q_T) \right] + \mathcal{O}(\alpha_S^3)$$

The logarithmic corrections are the residue of the cancellantion of the real-virtual infrared singularities:

$$\begin{array}{ccc} \bar{q} & & & & \\ & & & \\ & & & \\ q & & & \\ & & & \\ q & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & & \\ & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & & \\ & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & & \\ & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & & \\ & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & & \\ & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & & \\ & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} \begin{array}{c} & & \\$$

Fixed order calculation theoretically justified only in the region $q_T \sim M_F$ For $q_T \rightarrow 0$, $\alpha_S^n \log^m (M^2/q_T^2) \gg 1$: need for resummation of logarithmic corrections

8/27

Giancarlo Ferrera – Università di Milano

QCD transverse-momentum resummation for Higgs and Vector Boson production at the LHC

Outline	q_T distribution		Conclusions

The standard fixed-order QCD perturbative expansions gives:

$$\int_{Q_T^2}^{\infty} dq_T \frac{d\hat{\sigma}_{q\bar{q}}}{dq_T^2} \sim \alpha_S \left[c_{12} \log^2(M^2/Q_T^2) + c_{11} \log(M^2/Q_T^2) + c_{10}(Q_T) \right] \\ + \alpha_S^2 \left[c_{24} \log^4(M^2/Q_T^2) + \dots + c_{21} \log(M^2/Q_T^2) + c_{20}(Q_T) \right] + \mathcal{O}(\alpha_S^3)$$

The logarithmic corrections are the residue of the cancellantion of the real-virtual infrared singularities:

$$\begin{array}{ccc} \bar{q} & & & & \\ & & & \\ & & & \\ q & & & \\ & & & \\ q & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & & \\ & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & & \\ & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & & \\ & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & & \\ & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & & \\ & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & & \\ & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} \begin{array}{c} & & \\$$

Fixed order calculation theoretically justified only in the region $q_T \sim M_F$ For $q_T \rightarrow 0$, $\alpha_S^n \log^m (M^2/q_T^2) \gg 1$: need for resummation of logarithmic corrections

8/27

Giancarlo Ferrera – Università di Milano

QCD transverse-momentum resummation for Higgs and Vector Boson production at the LHC

For $q_T \sim M_F$ fixed order perturbative expansion feasible: Ellis, Martinelli, Petronzio ('83); Arnold, Reno ('89); Gonsalves, Pawlowski, Wai('89)

Giancarlo Ferrera – Università di Milano

QCD transverse-momentum resummation for Higgs and Vector Boson production at the LHC

Napoli – 28/3/2013

9/27

Outline	q_T distribution		Conclusions

For $q_T \sim M_F$ fixed order perturbative expansion feasible: Ellis, Martinelli, Petronzio ('83); Arnold, Reno ('89); Gonsalves, Pawlowski, Wai('89)

LO: pdf=MRST02 LO, 1-loop α_S NLO: pdf=MRST04 NLO, 2-loop α_S

• Factorization and renormalization scale variations: $\mu_F = \mu_R = m_Z, \quad m_Z/2 \le \mu_F, \mu_R \le 2m_Z, \\
1/2 \le \mu_F/\mu_R \le 2. \\
q_T \sim m_Z : LO \pm 25\%, NLO \pm 8\% \\
q_T \sim 20 \text{ GeV} : LO \pm 20\%, NLO \pm 7\%$ • a_T dependent K-factor:

$$K(q_T) = \frac{d\sigma/dq_{TNLO}(\mu_F, \mu_R)}{d\sigma/dq_{TLO}(\mu_F = \mu_R = m_Z)}$$

 $K \sim 1.1$ at $q_T \sim 200~GeV$ up to $K \sim 1.5$ at $q_T \sim 20~GeV$

LO and NLO scale variations bands overlap only for $q_T > 70 \ GeV$

9/27

Giancarlo Ferrera – Università di Milano

QCD transverse-momentum resummation for Higgs and Vector Boson production at the LHC

Outline	q_T distribution		Conclusions

For $q_T \sim M_F$ fixed order perturbative expansion feasible: Ellis, Martinelli, Petronzio ('83); Arnold, Reno ('89); Gonsalves, Pawlowski, Wai('89)

 LO: pdf=MRST02 LO, 1-loop α_S NLO: pdf=MRST04 NLO, 2-loop α_S

• Factorization and renormalization scale variations: $\mu_F = \mu_R = m_Z, \quad m_Z/2 \le \mu_F, \mu_R \le 2m_Z,$ $1/2 \le \mu_F/\mu_R \le 2.$ $q_T \sim m_Z : LO \pm 25\%, NLO \pm 8\%$ $q_T \sim 20 \text{ GeV} : LO \pm 20\%, NLO \pm 7\%$

• q_T dependent K-factor:

$$K(q_T) = \frac{d\sigma/dq_{TNLO}(\mu_F, \mu_R)}{d\sigma/dq_{TLO}(\mu_F = \mu_R = m_Z)}$$

 $K \sim 1.1$ at $q_T \sim 200~GeV$ up to $K \sim 1.5$ at $q_T \sim 20~GeV$

LO and NLO scale variations bands overlap only for $q_T > 70 \text{ GeV}$

9/27

Giancarlo Ferrera – Università di Milano

QCD transverse-momentum resummation for Higgs and Vector Boson production at the LHC

Outline	q_T distribution		Conclusions

For $q_T \sim M_F$ fixed order perturbative expansion feasible: Ellis, Martinelli, Petronzio ('83); Arnold, Reno ('89); Gonsalves, Pawlowski, Wai('89)

 LO: pdf=MRST02 LO, 1-loop α_S NLO: pdf=MRST04 NLO, 2-loop α_S

• Factorization and renormalization scale variations: $\begin{array}{l} \mu_F = \mu_R = m_Z, \quad m_Z/2 \leq \mu_F, \mu_R \leq 2m_Z, \\ 1/2 \leq \mu_F/\mu_R \leq 2. \\ q_T \sim m_Z : LO \pm 25\%, NLO \pm 8\% \\ q_T \sim 20 \ GeV : LO \pm 20\%, NLO \pm 7\% \end{array}$

$$K(q_T) = \frac{d\sigma/dq_{T_{NLO}}(\mu_F, \mu_R)}{d\sigma/dq_{T_{LO}}(\mu_F = \mu_R = m_Z)}$$

 $K\sim 1.1$ at $q_{T}\sim 200~GeV$ up to $K\sim 1.5$ at $q_{T}\sim 20~GeV$

LO and NLO scale variations bands overlap only for $q_T > 70 \text{ GeV}$

9/27

Giancarlo Ferrera - Università di Milano

[●] q_T dependent K-factor:

Outline	q_T distribution		Conclusions

For $q_T \sim M_F$ fixed order perturbative expansion feasible: Ellis, Martinelli, Petronzio ('83); Arnold, Reno ('89); Gonsalves, Pawlowski, Wai('89)

 LO: pdf=MRST02 LO, 1-loop α_S NLO: pdf=MRST04 NLO, 2-loop α_S

• Factorization and renormalization scale variations: $\begin{array}{l} \mu_F = \mu_R = m_Z, \quad m_Z/2 \leq \mu_F, \mu_R \leq 2m_Z, \\ 1/2 \leq \mu_F/\mu_R \leq 2. \\ q_T \sim m_Z : LO \pm 25\%, NLO \pm 8\% \\ q_T \sim 20 \ GeV : LO \pm 20\%, NLO \pm 7\% \end{array}$

$$K(q_T) = \frac{d\sigma/dq_{TNLO}(\mu_F, \mu_R)}{d\sigma/dq_{TLO}(\mu_F = \mu_R = m_Z)}$$

 $K\sim 1.1$ at $q_{T}\sim 200~GeV$ up to $K\sim 1.5$ at $q_{T}\sim 20~GeV$

LO and NLO scale variations bands overlap only for $q_T > 70 \ GeV$

Giancarlo Ferrera – Università di Milano

QCD transverse-momentum resummation for Higgs and Vector Boson production at the LHC

Napoli - 28/3/2013

9/27

[●] q_T dependent K-factor:

Outline	q_T distribution		Conclusions

- CDF data: 66 Gev $< M^2 < 116$ Gev, $\sigma_{tot} = 248 \pm 11 \, pb$ [CDF Collaboration ('00)] D0 data: 75 Gev $< M^2 < 105$ GeV, $\sigma_{tot} = 221 \pm 11 \, pb$ [D0 Collaboration ('00)]
 - Good agreement between NLO results and data up to $q_T \sim 20~GeV$.
- In the small q_T region $(q_T \lesssim 20 \text{ GeV})$ LO and NLO result diverges to $+\infty$ and $-\infty$ (accidental partial agreement at $q_T \sim 5 7 \text{ GeV}$): need for resummation.

10/27

Giancarlo Ferrera – Università di Milano

Outline	q_T distribution	Resummed results	Conclusions

- CDF data: 66 Gev $< M^2 < 116$ Gev, $\sigma_{tot} = 248 \pm 11 \, pb$ [CDF Collaboration ('00)] D0 data: 75 Gev $< M^2 < 105 \, GeV$, $\sigma_{tot} = 221 \pm 11 \, pb$ [D0 Collaboration ('00)]
- Good agreement between NLO results and data up to $q_T \sim 20 \text{ GeV}$.
- In the small q_T region (q_T ≤ 20 GeV) LO and NLO result diverges to +∞ and -∞ (accidental partial agreement at q_T ~ 5 - 7 GeV): need for resummation.

10/27

Giancarlo Ferrera – Università di Milano

Outline	q_T distribution	Resummed results	Conclusions

- $\begin{array}{l} \mbox{CDF data: 66 } Gev < M^2 < 116 \; Gev, \\ \sigma_{tot} = 248 \pm 11 \; pb \\ \mbox{[CDF Collaboration ('00)]} \\ \mbox{D0 data: 75 } Gev < M^2 < 105 \; GeV, \\ \sigma_{tot} = 221 \pm 11 \; pb \\ \mbox{[D0 Collaboration ('00)]} \end{array}$
- Good agreement between NLO results and data up to $q_T \sim 20 \text{ GeV}$.
- In the small q_T region (q_T ≤ 20 GeV) LO and NLO result diverges to +∞ and -∞ (accidental partial agreement at q_T ~ 5 - 7 GeV): need for resummation.

Giancarlo Ferrera – Università di Milano

QCD transverse-momentum resummation for Higgs and Vector Boson production at the LHC

э

Outline	q_T distribution	Resummed results	Conclusions

- CDF data: 66 Gev $< M^2 < 116$ Gev, $\sigma_{tot} = 248 \pm 11 \, pb$ [CDF Collaboration ('00)] D0 data: 75 Gev $< M^2 < 105$ GeV, $\sigma_{tot} = 221 \pm 11 \, pb$ [D0 Collaboration ('00)]
 - Good agreement between NLO results and data up to $q_T \sim 20 \text{ GeV}$.
- In the small q_T region $(q_T \lesssim 20 \text{ GeV})$ LO and NLO result diverges to $+\infty$ and $-\infty$ (accidental partial agreement at $q_T \sim 5 7 \text{ GeV}$): need for resummation.

Giancarlo Ferrera – Università di Milano

Outline	q_T distribution		Conclusions

Fixed order results: q_T spectrum of Z and Higgs boson

- D0 data [D0 Coll.('08,'10)].
- Scale variations as before: $\mu_F = \mu_R = m_Z$, $1/2 \le \{\mu_F/m_Z, \mu_R/m_Z, \mu_F/\mu_R\} \le 2$,
- Experimental errors very small but bins are larger.
- Qualitatively same situation of Tevatron Run I data.
- LO and NLO scale variations bands overlap only for q_T > 60 GeV
- Good agreement between NLO results and data up to $q_T \sim 20 \; GeV$.

A (10) > A (10) > A

• Qualitative similar results for Higgs q_T distribution in gluon fusion (LHC at $\sqrt{s} = 14 \ TeV$).

In the small q_T region $(q_T \leq 20 \text{ GeV})$ effects of soft-gluon resummation are essential. At Tevatron 90% of the W^{\pm} and Z^0 are produced with $q_T \leq 20 \text{ GeV}$

Giancarlo Ferrera – Università di Milano

QCD transverse-momentum resummation for Higgs and Vector Boson production at the LHC

Napoli – 28/3/2013

11/27

Outline	q_T distribution		Conclusions

Fixed order results: q_T spectrum of Z and Higgs boson

- D0 data [D0 Coll.('08,'10)].
- Scale variations as before: $\mu_F = \mu_R = m_Z$, $1/2 \le \{\mu_F/m_Z, \mu_R/m_Z, \mu_F/\mu_R\} \le 2$,
- Experimental errors very small but bins are larger.
- Qualitatively same situation of Tevatron Run I data.
- LO and NLO scale variations bands overlap only for q_T > 60 GeV
- Good agreement between NLO results and data up to $q_T \sim 20 \ GeV$.
- Qualitative similar results for Higgs q_T distribution in gluon fusion (LHC at $\sqrt{s} = 14 \text{ TeV}$).

In the small q_T region $(q_T \leq 20 \text{ GeV})$ effects of soft-gluon resummation are essential At Tevatron 90% of the W^{\pm} and Z^0 are produced with $q_T \leq 20 \text{ GeV}$

Napoli – 28/3/2013

Giancarlo Ferrera – Università di Milano

Outline	q_T resummation	Resummed results	Conclusions

Idea of large logs (Sudakov) resummation: reorganize the perturbative expansion by all-order summation $(L = \log(M^2/q_T^2))$.

$\alpha_s L^2$	$\alpha_{s}L$			$\mathcal{O}(\alpha_S)$
$\alpha_S^2 L^4$	$\alpha_S^2 L^3$	$\alpha_S^2 L^2$	$\alpha_s^2 L$	$\mathcal{O}(\alpha_S^2)$
$\alpha_S^n L^{2n}$	$\alpha_{S}^{n}L^{2n-1}$	$\alpha_{S}^{n}L^{2n-2}$		$\mathcal{O}(\alpha_{S}^{n})$

- Ratio of two successive rows $\mathcal{O}(\alpha_{S}L^{2})$: fixed order expansion valid when $\alpha_{S}L^{2} \ll 1$.
- Ratio of two successive columns O(1/L): resummed expansion valid when $1/L \ll 1$ i.e. when $\alpha_s L^2 \sim 1$ (and $\alpha_s \ll 1$).

A B > A B >

Giancarlo Ferrera – Università di Milano

QCD transverse-momentum resummation for Higgs and Vector Boson production at the LHC

Outline	q_T resummation	Conclusions

Idea of large logs (Sudakov) resummation: reorganize the perturbative expansion by all-order summation $(L = \log(M^2/q_T^2))$.

$\alpha_{S}L^{2}$	$\alpha_{s}L$			 $\mathcal{O}(\alpha_{S})$
$\alpha_s^2 L^4$	$\alpha_S^2 L^3$	$\alpha_s^2 L^2$	$\alpha_s^2 L$	 $\mathcal{O}(\alpha_{S}^{2})$
	•••			
$\alpha_{S}^{n}L^{2n}$	$\alpha_{S}^{n}L^{2n-1}$	$\alpha_{S}^{n}L^{2n-2}$		 $\mathcal{O}(\alpha_{S}^{n})$
dominant logs	next-to-dominant logs			

- Ratio of two successive rows $\mathcal{O}(\alpha_s L^2)$: fixed order expansion valid when $\alpha_s L^2 \ll 1$.
- Ratio of two successive columns O(1/L): resummed expansion valid when $1/L \ll 1$ i.e. when $\alpha_s L^2 \sim 1$ (and $\alpha_s \ll 1$).

Outline	q_T resummation	Resummed results	Conclusions

Idea of large logs (Sudakov) resummation: reorganize the perturbative expansion by all-order summation $(L = \log(M^2/q_T^2))$.

$\alpha_{S}L^{2}$	$\alpha_{s}L$			 $\mathcal{O}(\alpha_{S})$
$\alpha_s^2 L^4$	$\alpha_S^2 L^3$	$\alpha_s^2 L^2$	$\alpha_s^2 L$	 $\mathcal{O}(\alpha_{S}^{2})$
	•••			
$\alpha_{S}^{n}L^{2n}$	$\alpha_{S}^{n}L^{2n-1}$	$\alpha_{S}^{n}L^{2n-2}$		 $\mathcal{O}(\alpha_{S}^{n})$
dominant logs	next-to-dominant logs			

- Ratio of two successive rows $\mathcal{O}(\alpha_{S}L^{2})$: fixed order expansion valid when $\alpha_{S}L^{2} \ll 1$.
- Ratio of two successive columns O(1/L): resummed expansion valid when $1/L \ll 1$ i.e. when $\alpha_s L^2 \sim 1$ (and $\alpha_s \ll 1$).

Outline	q_T resummation	Conclusions

Idea of large logs (Sudakov) resummation: reorganize the perturbative expansion by all-order summation $(L = \log(M^2/q_T^2))$.

$\alpha_{S}L^{2}$	$\alpha_{s}L$			 $\mathcal{O}(\alpha_{S})$
$\alpha_s^2 L^4$	$\alpha_S^2 L^3$	$\alpha_s^2 L^2$	$\alpha_s^2 L$	 $\mathcal{O}(\alpha_{S}^{2})$
	•••			
$\alpha_{S}^{n}L^{2n}$	$\alpha_{S}^{n}L^{2n-1}$	$\alpha_{S}^{n}L^{2n-2}$		 $\mathcal{O}(\alpha_{S}^{n})$
dominant logs	next-to-dominant logs			

- Ratio of two successive rows $\mathcal{O}(\alpha_{S}L^{2})$: fixed order expansion valid when $\alpha_{S}L^{2} \ll 1$.
- Ratio of two successive columns $\mathcal{O}(1/L)$: resummed expansion valid when $1/L \ll 1$ i.e. when $\alpha_S L^2 \sim 1$ (and $\alpha_S \ll 1$).

Giancarlo Ferrera – Università di Milano

12/27

Outline	q_T resummation	Conclusions

 Dynamics factorization: general propriety of QCD matrix element for soft emissions based on colour coherence. It is the analogous of the independent multiple soft-photon emission is QED:

$$dw_n(q_1,\ldots,q_n)\simeq \frac{1}{n!}\prod_{i=1}^n dw_i(q_i)$$

 Kinematics factorization: not valid in general. For q_T distribution of DY process it holds in the impact parameter space (Fourier transform).

$$\int d^2 \vec{q}_T \exp(-i\vec{b}\cdot\vec{q}_T) \,\delta\left(\vec{q}_T - \sum_{j=1}^n \vec{q}_{T_j}\right) = \exp(-i\vec{b}\cdot\sum_{j=1}^n \vec{q}_{T_j}) = \prod_{j=1}^n \exp(-i\vec{b}\cdot\vec{q}_{T_j}) \,.$$

- Exponentiation holds in the impact parameter space. Results have then to be transformed back to the physical space.
- Resummed result can then be properly combined with the fixed order result (*matching*) to have a good control of both the kinematical regions:
 q_T << M and q_T ~ M.

13/27

Giancarlo Ferrera – Università di Milano

QCD transverse-momentum resummation for Higgs and Vector Boson production at the LHC

< ≣ ▶ ≣ •⁄) २.० Napoli – 28/3/2013

Outline	q_T resummation	Conclusions

 Dynamics factorization: general propriety of QCD matrix element for soft emissions based on colour coherence. It is the analogous of the independent multiple soft-photon emission is QED:

$$dw_n(q_1,\ldots,q_n)\simeq \frac{1}{n!}\prod_{i=1}^n dw_i(q_i)$$

 Kinematics factorization: not valid in general. For q_T distribution of DY process it holds in the impact parameter space (Fourier transform).

$$\int d^2 \vec{q}_T \exp(-i\vec{b}\cdot\vec{q}_T) \,\delta\left(\vec{q}_T - \sum_{j=1}^n \vec{q}_{T_j}\right) = \exp(-i\vec{b}\cdot\sum_{j=1}^n \vec{q}_{T_j}) = \prod_{j=1}^n \exp(-i\vec{b}\cdot\vec{q}_{T_j}) \,.$$

- Exponentiation holds in the impact parameter space. Results have then to be transformed back to the physical space.
- Resummed result can then be properly combined with the fixed order result (*matching*) to have a good control of both the kinematical regions:
 q_T << M and q_T ~ M.

13/27

Giancarlo Ferrera – Università di Milano

Outline	q_T resummation	Conclusions

 Dynamics factorization: general propriety of QCD matrix element for soft emissions based on colour coherence. It is the analogous of the independent multiple soft-photon emission is QED:

$$dw_n(q_1,\ldots,q_n)\simeq \frac{1}{n!}\prod_{i=1}^n dw_i(q_i)$$

 Kinematics factorization: not valid in general. For q_T distribution of DY process it holds in the impact parameter space (Fourier transform).

$$\int d^2 \vec{q}_T \exp(-i\vec{b}\cdot\vec{q}_T) \,\delta\left(\vec{q}_T - \sum_{j=1}^n \vec{q}_{T_j}\right) = \exp(-i\vec{b}\cdot\sum_{j=1}^n \vec{q}_{T_j}) = \prod_{j=1}^n \exp(-i\vec{b}\cdot\vec{q}_{T_j}) \,.$$

- Exponentiation holds in the impact parameter space. Results have then to be transformed back to the physical space.
- Resummed result can then be properly combined with the fixed order result (*matching*) to have a good control of both the kinematical regions:
 q_T << M and q_T ~ M.

13/27

Giancarlo Ferrera – Università di Milano

Outline	q_T resummation	Conclusions

 Dynamics factorization: general propriety of QCD matrix element for soft emissions based on colour coherence. It is the analogous of the independent multiple soft-photon emission is QED:

$$dw_n(q_1,\ldots,q_n)\simeq \frac{1}{n!}\prod_{i=1}^n dw_i(q_i)$$

 Kinematics factorization: not valid in general. For q_T distribution of DY process it holds in the impact parameter space (Fourier transform).

$$\int d^2 \vec{q}_T \exp(-i\vec{b}\cdot\vec{q}_T) \,\delta\left(\vec{q}_T - \sum_{j=1}^n \vec{q}_{T_j}\right) = \exp(-i\vec{b}\cdot\sum_{j=1}^n \vec{q}_{T_j}) = \prod_{j=1}^n \exp(-i\vec{b}\cdot\vec{q}_{T_j}) \,.$$

- Exponentiation holds in the impact parameter space. Results have then to be transformed back to the physical space.
- Resummed result can then be properly combined with the fixed order result (*matching*) to have a good control of both the kinematical regions:
 q_T << M and q_T ~ M.

13/27

Giancarlo Ferrera – Università di Milano

Outline	q_T resummation	Conclusions

 Dynamics factorization: general propriety of QCD matrix element for soft emissions based on colour coherence. It is the analogous of the independent multiple soft-photon emission is QED:

$$dw_n(q_1,\ldots,q_n)\simeq \frac{1}{n!}\prod_{i=1}^n dw_i(q_i)$$

 Kinematics factorization: not valid in general. For q_T distribution of DY process it holds in the impact parameter space (Fourier transform).

$$\int d^2 \vec{q}_T \exp(-i\vec{b}\cdot\vec{q}_T) \,\delta\left(\vec{q}_T - \sum_{j=1}^n \vec{q}_{T_j}\right) = \exp(-i\vec{b}\cdot\sum_{j=1}^n \vec{q}_{T_j}) = \prod_{j=1}^n \exp(-i\vec{b}\cdot\vec{q}_{T_j}) \,.$$

- Exponentiation holds in the impact parameter space. Results have then to be transformed back to the physical space.
- Resummed result can then be properly combined with the fixed order result (*matching*) to have a good control of both the kinematical regions: q_T << M and q_T ~ M.

13/27

State of the art: transverse-momentum resummation

• The method to perform the resummation of the large logarithms of q_T is known

```
[Parisi,Petronzio.('79)], [Kodaira,Trentadue('82)],[Altarelli,
Ellis, Greco, Martinelli('84)], [Collins,Soper,Sterman('85)],
[Catani,de Florian,Grazzini('01)]
```

- Various phenomenological studies of the vector boson transverse momentum distribution exist [Balasz,Qiu,Yuan('95)],[Balasz,Yuan('97)],[Ellis et al.('97)], [Kulesza et al.('02)]
- In this study we apply the transverse-momentum distribution the resummation formalism developed by [Catani,de Florian, Grazzini('01)].
- Recently various results for transverse-momentum resummation in the framework of Effective Theories appeared [Gao,Li,Liu('05)],[Idilbi,Ji,Yuan('05)], [Mantry,Petriello('10)],-[Becher,Neubert('10)],[García,Idibli,Scimemi('11)].

14/27

Giancarlo Ferrera – Università di Milano

QCD transverse-momentum resummation for Higgs and Vector Boson production at the LHC

لا ≣ ک ≣ √ *۹* و Napoli – 28/3/2013

A (1) > A (1) > A

Outline		q_T resummation	
---------	--	-------------------	--

Transverse-momentum resummation in pQCD

$$\frac{d\hat{\sigma}}{dq_T^2} = \frac{d\hat{\sigma}^{(\text{res})}}{dq_T^2} + \frac{d\hat{\sigma}^{(\text{fin})}}{dq_T^2}; \qquad \int_0^{Q_T^2} dq_T^2 \Big[\frac{d\hat{\sigma}^{(\text{res})}}{dq_T^2}\Big]_{f.o.}^{Q_T \to 0} 1 + \sum_n \sum_{m=1}^{2n} c_{nm} \alpha_S^n \log^m \frac{M^2}{Q_T^2} \int_0^{Q_T^2} dq_T^2 \Big[\frac{d\hat{\sigma}^{(\text{fin})}}{dq_T^2}\Big]_{f.o.}^{Q_T \to 0} 0$$

Resummation holds in impact parameter space: $q_T \ll M \Leftrightarrow Mb \gg 1$, $\log M/q_T \gg 1 \Leftrightarrow \log Mb \gg 1$

$$\frac{d\hat{\sigma}^{(res)}}{dq_T^2} = \frac{M^2}{\hat{s}} \int_0^\infty db \, \frac{b}{2} J_0(bq_T) \, \mathcal{W}(b, M),$$

In the Mellin moments $(f_N \equiv \int_0^1 f(x) x^{N-1} dx)$ space we have the exponentiated form:

 $\mathcal{W}_N(b,M) = \mathcal{H}_N(lpha_S) imes \exp \left\{ \mathcal{G}_N(lpha_S,L)
ight\}$ where $L \equiv \log(M^2 b^2)$

 $\mathcal{G}_{N}(\alpha_{S},L) = Lg^{(1)}(\alpha_{S}L) + g_{N}^{(2)}(\alpha_{S}L) + \frac{\alpha_{S}}{\pi}g_{N}^{(3)}(\alpha_{S}L) + \cdots; \qquad \mathcal{H}_{N}(\alpha_{S}) = \sigma^{(0)}(\alpha_{S},M) \left[1 + \frac{\alpha_{S}}{\pi}\mathcal{H}_{N}^{(1)} + \left(\frac{\alpha_{S}}{\pi}\right)^{2}\mathcal{H}_{N}^{(2)} + \cdots \right]$

NLL and NNLL respectively matched with "finite" part at: α_S (LO) and α_S^2 (NLO)

Note that thanks to the exponentiation the perturbative approach is now valid for α_{SL}

Giancarlo Ferrera – Università di Milano

QCD transverse-momentum resummation for Higgs and Vector Boson production at the LHC

< ≣ ► ≣ ∽ ৭.ে Napoli – 28/3/2013

15/27

・ロト ・日ト ・ヨト ・ヨ
Outline	q_T resummation	Conclusions

$$\frac{d\hat{\sigma}}{dq_T^2} = \frac{d\hat{\sigma}^{(\text{res})}}{dq_T^2} + \frac{d\hat{\sigma}^{(\text{fin})}}{dq_T^2}; \qquad \int_0^{Q_T^2} dq_T^2 \Big[\frac{d\hat{\sigma}^{(\text{res})}}{dq_T^2}\Big]_{f.o.}^{Q_T \to 0} 1 + \sum_n \sum_{m=1}^{2n} c_{nm} \alpha_S^n \log^m \frac{M^2}{Q_T^2} \int_0^{Q_T^2} dq_T^2 \Big[\frac{d\hat{\sigma}^{(\text{fin})}}{dq_T^2}\Big]_{f.o.}^{Q_T \to 0} 0$$

Resummation holds in impact parameter space: $q_T \ll M \Leftrightarrow Mb \gg 1$, $\log M/q_T \gg 1 \Leftrightarrow \log Mb \gg 1$

$$\frac{d\hat{\sigma}^{(res)}}{dq_T^2} = \frac{M^2}{\hat{s}} \int_0^\infty db \, \frac{b}{2} J_0(bq_T) \, \mathcal{W}(b, M),$$

In the Mellin moments $(f_N \equiv \int_0^1 f(x)x^{N-1}dx)$ space we have the exponentiated form: $\mathcal{W}_N(b,M) = \mathcal{H}_N(\alpha_S) \times \exp\left\{\mathcal{G}_N(\alpha_S,L)\right\}$ where $L \equiv \log(M^2b^2)$ $\mathcal{W}_N(\alpha_S,L) = Lg^{(1)}(\alpha_SL) + g_N^{(2)}(\alpha_SL) + \frac{\alpha_S}{\pi}g_N^{(3)}(\alpha_SL) + \cdots;$ $\mathcal{H}_N(\alpha_S) = \sigma^{(0)}(\alpha_S,M)\left[1 + \frac{\alpha_S}{\pi}\mathcal{H}_N^{(1)} + \left(\frac{\alpha_S}{\pi}\right)^2\mathcal{H}_N^{(2)} + \cdots\right]$ LL $(\sim \alpha_S^n L^{n+1})$: $g^{(1)}, (\sigma^{(0)})$; NLL $(\sim \alpha_S^n L^n)$: $g_N^{(2)}, \mathcal{H}_N^{(1)}$; NNLL $(\sim \alpha_S^n L^{n-1})$: $g_N^{(3)}, \mathcal{H}_N^{(2)}$; NLL and NNLL respectively matched with "finite" part at: α_S (LQ) and α_S^2 (NLQ)

Note that thanks to the exponentiation the perturbative approach is now valid for $\alpha_S L$

Giancarlo Ferrera – Università di Milano

QCD transverse-momentum resummation for Higgs and Vector Boson production at the LHC

< ≣ ► ≣ ∽ ৭.ে Napoli – 28/3/2013

15/27

イロン イヨン イヨン イヨン

Outline	q_T resummation	Conclusions

$$\frac{d\hat{\sigma}}{dq_T^2} = \frac{d\hat{\sigma}^{(res)}}{dq_T^2} + \frac{d\hat{\sigma}^{(fin)}}{dq_T^2}; \qquad \int_0^{Q_T^2} dq_T^2 \Big[\frac{d\hat{\sigma}^{(res)}}{dq_T^2}\Big]_{f.o.}^{Q_T \to 0} 1 + \sum_n \sum_{m=1}^{2n} c_{nm} \alpha_S^n \log^m \frac{M^2}{Q_T^2} \int_0^{Q_T^2} dq_T^2 \Big[\frac{d\hat{\sigma}^{(fin)}}{dq_T^2}\Big]_{f.o.}^{Q_T \to 0} 0$$

Resummation holds in impact parameter space: $q_T \ll M \Leftrightarrow Mb \gg 1$, $\log M/q_T \gg 1 \Leftrightarrow \log Mb \gg 1$

$$\frac{d\hat{\sigma}^{(res)}}{dq_T^2} = \frac{M^2}{\hat{s}} \int_0^\infty db \, \frac{b}{2} J_0(bq_T) \, \mathcal{W}(b, M),$$

In the Mellin moments $(f_N \equiv \int_0^1 f(x) x^{N-1} dx)$ space we have the exponentiated form:

 $\mathcal{W}_N(b,M) = \mathcal{H}_N(\alpha_S) \times \exp \left\{ \mathcal{G}_N(\alpha_S,L) \right\} \quad \text{where} \quad L \equiv \log(M^2 b^2)$

 $\mathcal{G}_N(\alpha_S, L) = Lg^{(1)}(\alpha_S L) + g_N^{(2)}(\alpha_S L) + \frac{\alpha_S}{\pi} g_N^{(3)}(\alpha_S L) + \cdots; \qquad \mathcal{H}_N(\alpha_S) = \sigma^{(0)}(\alpha_S, M) \left[1 + \frac{\alpha_S}{\pi} \mathcal{H}_N^{(1)} + \left(\frac{\alpha_S}{\pi}\right)^2 \mathcal{H}_N^{(2)} + \cdots \right]$

L $(\sim \alpha_{S}^{n}L^{n+1})$: $g^{(1)}$, $(\sigma^{(0)})$; NLL $(\sim \alpha_{S}^{n}L^{n})$: $g_{N}^{(2)}$, $\mathcal{H}_{N}^{(1)}$; NNLL $(\sim \alpha_{S}^{n}L^{n-1})$: $g_{N}^{(3)}$, $\mathcal{H}_{N}^{(2)}$

NLL and NNLL respectively matched with "finite" part at: α_S (LO) and α_S^2 (NLO)

Note that thanks to the exponentiation the perturbative approach is now valid for $\alpha_S L$

Giancarlo Ferrera – Università di Milano

QCD transverse-momentum resummation for Higgs and Vector Boson production at the LHC

< ≣ ▶ ≣ ୬৭৫ Napoli – 28/3/2013

15/27

イロン イヨン イヨン イヨン

Outline	q_T resummation	Conclusions

$$\frac{d\hat{\sigma}}{dq_T^2} = \frac{d\hat{\sigma}^{(res)}}{dq_T^2} + \frac{d\hat{\sigma}^{(fin)}}{dq_T^2}; \qquad \int_0^{Q_T^2} dq_T^2 \Big[\frac{d\hat{\sigma}^{(res)}}{dq_T^2}\Big]_{f.o.}^{Q_T \to 0} 1 + \sum_n \sum_{m=1}^{2n} c_{nm} \alpha_S^n \log^m \frac{M^2}{Q_T^2} \int_0^{Q_T^2} dq_T^2 \Big[\frac{d\hat{\sigma}^{(fin)}}{dq_T^2}\Big]_{f.o.} \stackrel{Q_T \to 0}{=} 0$$

Resummation holds in impact parameter space: $q_T \ll M \Leftrightarrow Mb \gg 1$, $\log M/q_T \gg 1 \Leftrightarrow \log Mb \gg 1$

$$\frac{d\hat{\sigma}^{(res)}}{dq_T^2} = \frac{M^2}{\hat{s}} \int_0^\infty db \, \frac{b}{2} J_0(bq_T) \, \mathcal{W}(b, M),$$

In the Mellin moments $(f_N \equiv \int_0^1 f(x) x^{N-1} dx)$ space we have the exponentiated form:

 $\mathcal{W}_{N}(b,M) = \mathcal{H}_{N}(\alpha_{S}) \times \exp\left\{\mathcal{G}_{N}(\alpha_{S},L)\right\} \quad \text{where} \quad L \equiv \log(M^{2}b^{2})$ $\mathcal{G}_{N}(\alpha_{S},L) = Lg^{(1)}(\alpha_{S}L) + g^{(2)}_{N}(\alpha_{S}L) + \frac{\alpha_{S}}{2}g^{(3)}_{N}(\alpha_{S}L) + \cdots; \quad \mathcal{H}_{N}(\alpha_{S}) = \sigma^{(0)}(\alpha_{S},M)\left[1 + \frac{\alpha_{S}}{2}\mathcal{H}^{(1)}_{N} + \left(\frac{\alpha_{S}}{2}\right)^{2}\mathcal{H}^{(2)}_{N} + \cdots\right]$

L $(\sim \alpha_{S}^{n}L^{n+1})$: $g^{(1)}$, $(\sigma^{(0)})$; NLL $(\sim \alpha_{S}^{n}L^{n})$: $g_{N}^{(2)}$, $\mathcal{H}_{N}^{(1)}$; NNLL $(\sim \alpha_{S}^{n}L^{n-1})$: $g_{N}^{(3)}$, $\mathcal{H}_{N}^{(2)}$;

NLL and NNLL respectively matched with "finite" part at: $lpha_{S}$ (LO) and $lpha_{S}^{2}$ (NLO)

Note that thanks to the exponentiation the perturbative approach is now valid for α_{SL}

Giancarlo Ferrera – Università di Milano

QCD transverse-momentum resummation for Higgs and Vector Boson production at the LHC

< ≣ ▶ ≣ •⁄) ९ (Napoli – 28/3/2013

イロト イポト イヨト イヨト

Outline	$q_{\mathcal{T}}$ resummation	Conclusions

$$\frac{d\hat{\sigma}}{dq_T^2} = \frac{d\hat{\sigma}^{(res)}}{dq_T^2} + \frac{d\hat{\sigma}^{(fin)}}{dq_T^2}; \qquad \int_0^{Q_T^2} dq_T^2 \Big[\frac{d\hat{\sigma}^{(res)}}{dq_T^2}\Big]_{f.o.}^{Q_T \to 0} 1 + \sum_n \sum_{m=1}^{2n} c_{nm} \alpha_S^n \log^m \frac{M^2}{Q_T^2} \int_0^{Q_T^2} dq_T^2 \Big[\frac{d\hat{\sigma}^{(fin)}}{dq_T^2}\Big]_{f.o.} \stackrel{Q_T \to 0}{=} 0$$

Resummation holds in impact parameter space: $q_T \ll M \Leftrightarrow Mb \gg 1$, $\log M/q_T \gg 1 \Leftrightarrow \log Mb \gg 1$

$$\frac{d\hat{\sigma}^{(res)}}{dq_T^2} = \frac{M^2}{\hat{s}} \int_0^\infty db \, \frac{b}{2} J_0(bq_T) \, \mathcal{W}(b, M),$$

In the Mellin moments $(f_N \equiv \int_0^1 f(x) x^{N-1} dx)$ space we have the exponentiated form:

 $\mathcal{W}_{N}(b,M) = \mathcal{H}_{N}(\alpha_{5}) \times \exp\left\{\mathcal{G}_{N}(\alpha_{5},L)\right\} \quad \text{where} \quad L \equiv \log(M^{2}b^{2})$ $\mathcal{G}_{N}(\alpha_{5},L) = Lg^{(1)}(\alpha_{5}L) + g_{N}^{(2)}(\alpha_{5}L) + \frac{\alpha_{5}}{\pi}g_{N}^{(3)}(\alpha_{5}L) + \cdots; \quad \mathcal{H}_{N}(\alpha_{5}) = \sigma^{(0)}(\alpha_{5},M)\left[1 + \frac{\alpha_{5}}{\pi}\mathcal{H}_{N}^{(1)} + \left(\frac{\alpha_{5}}{\pi}\right)^{2}\mathcal{H}_{N}^{(2)} + \cdots\right]$ $\text{LL} \left(\sim \alpha_{5}^{n}L^{n+1}\right): g^{(1)}, (\sigma^{(0)}); \quad \text{NLL} \left(\sim \alpha_{5}^{n}L^{n}\right): g_{M}^{(2)}, \mathcal{H}_{M}^{(1)}; \quad \text{NNLL} \left(\sim \alpha_{5}^{n}L^{n-1}\right): g_{M}^{(3)}, \mathcal{H}_{M}^{(2)};$

NLL and NNLL respectively matched with "finite" part at: $lpha_{S}$ (LO) and $lpha_{S}^{2}$ (NLO)

Note that thanks to the exponentiation the perturbative approach is now valid for α_{SL}

Giancarlo Ferrera – Università di Milano

QCD transverse-momentum resummation for Higgs and Vector Boson production at the LHC

< ≣ ▶ ≣ ∽ी २.0 Napoli – 28/3/2013

イロン イヨン イヨン イヨン

Outline	q_T resummation	Conclusions

$$\frac{d\hat{\sigma}}{dq_T^2} = \frac{d\hat{\sigma}^{(res)}}{dq_T^2} + \frac{d\hat{\sigma}^{(fin)}}{dq_T^2}; \qquad \int_0^{Q_T^2} dq_T^2 \Big[\frac{d\hat{\sigma}^{(res)}}{dq_T^2}\Big]_{f.o.}^{Q_T \to 0} 1 + \sum_n \sum_{m=1}^{2n} c_{nm} \alpha_S^n \log^m \frac{M^2}{Q_T^2} \int_0^{Q_T^2} dq_T^2 \Big[\frac{d\hat{\sigma}^{(fin)}}{dq_T^2}\Big]_{f.o.} \stackrel{Q_T \to 0}{=} 0$$

Resummation holds in impact parameter space: $q_T \ll M \Leftrightarrow Mb \gg 1$, $\log M/q_T \gg 1 \Leftrightarrow \log Mb \gg 1$

$$\frac{d\hat{\sigma}^{(res)}}{dq_T^2} = \frac{M^2}{\hat{s}} \int_0^\infty db \, \frac{b}{2} J_0(bq_T) \, \mathcal{W}(b, M),$$

In the Mellin moments $(f_N \equiv \int_0^1 f(x) x^{N-1} dx)$ space we have the exponentiated form:

 $\mathcal{W}_{N}(b,M) = \mathcal{H}_{N}(\alpha_{S}) \times \exp\left\{\mathcal{G}_{N}(\alpha_{S},L)\right\} \quad \text{where} \quad L \equiv \log(M^{2}b^{2})$ $\mathcal{G}_{N}(\alpha_{S},L) = Lg^{(1)}(\alpha_{S}L) + g_{N}^{(2)}(\alpha_{S}L) + \frac{\alpha_{S}}{\pi}g_{N}^{(3)}(\alpha_{S}L) + \cdots; \quad \mathcal{H}_{N}(\alpha_{S}) = \sigma^{(0)}(\alpha_{S},M)\left[1 + \frac{\alpha_{S}}{\pi}\mathcal{H}_{N}^{(1)} + \left(\frac{\alpha_{S}}{\pi}\right)^{2}\mathcal{H}_{N}^{(2)} + \cdots\right]$ $\text{LL} (\sim \alpha_{S}^{n}L^{n+1}): g^{(1)}, (\sigma^{(0)}); \quad \text{NLL} (\sim \alpha_{S}^{n}L^{n}): g_{N}^{(2)}, \mathcal{H}_{N}^{(1)}; \quad \text{NNLL} (\sim \alpha_{S}^{n}L^{n-1}): g_{N}^{(3)}, \mathcal{H}_{N}^{(2)};$ $\text{NLL and NNLL respectively matched with "finite" part at: \alpha_{S} (LO) and \alpha_{S}^{2} (NLO)$ $\text{Note that thanks to the exponentiation the perturbative approach is now valid for <math>\alpha_{S}L \sim 1$

Giancarlo Ferrera - Università di Milano

QCD transverse-momentum resummation for Higgs and Vector Boson production at the LHC

< ≣ ▶ ≣ ∽ी २.0 Napoli – 28/3/2013

イロン イヨン イヨン イヨン

Outline	q_T resummation	Conclusions

$$\frac{d\hat{\sigma}}{dq_T^2} = \frac{d\hat{\sigma}^{(\text{res})}}{dq_T^2} + \frac{d\hat{\sigma}^{(\text{fin})}}{dq_T^2}; \qquad \int_0^{Q_T^2} dq_T^2 \Big[\frac{d\hat{\sigma}^{(\text{res})}}{dq_T^2}\Big]_{f.o.}^{Q_T \to 0} 1 + \sum_n \sum_{m=1}^{2n} c_{nm} \alpha_S^n \log^m \frac{M^2}{Q_T^2} \int_0^{Q_T^2} dq_T^2 \Big[\frac{d\hat{\sigma}^{(\text{fin})}}{dq_T^2}\Big]_{f.o.} \stackrel{Q_T \to 0}{=} 0$$

Resummation holds in impact parameter space: $q_T \ll M \Leftrightarrow Mb \gg 1$, $\log M/q_T \gg 1 \Leftrightarrow \log Mb \gg 1$

$$\frac{d\hat{\sigma}^{(res)}}{dq_T^2} = \frac{M^2}{\hat{s}} \int_0^\infty db \, \frac{b}{2} J_0(bq_T) \, \mathcal{W}(b, M),$$

In the Mellin moments $(f_N \equiv \int_0^1 f(x) x^{N-1} dx)$ space we have the exponentiated form:

 $\mathcal{W}_{N}(b,M) = \mathcal{H}_{N}(\alpha_{S}) \times \exp\left\{\mathcal{G}_{N}(\alpha_{S},L)\right\} \quad \text{where} \quad L \equiv \log(M^{2}b^{2})$ $\mathcal{G}_{N}(\alpha_{S},L) = Lg^{(1)}(\alpha_{S}L) + g_{N}^{(2)}(\alpha_{S}L) + \frac{\alpha_{S}}{\pi}g_{N}^{(3)}(\alpha_{S}L) + \cdots; \quad \mathcal{H}_{N}(\alpha_{S}) = \sigma^{(0)}(\alpha_{S},M)\left[1 + \frac{\alpha_{S}}{\pi}\mathcal{H}_{N}^{(1)} + \left(\frac{\alpha_{S}}{\pi}\right)^{2}\mathcal{H}_{N}^{(2)} + \cdots\right]$ $LL \left(\sim \alpha_{S}^{n}L^{n+1}\right): g^{(1)}, (\sigma^{(0)}); \quad \text{NLL } \left(\sim \alpha_{S}^{n}L^{n}\right): g_{N}^{(2)}, \mathcal{H}_{N}^{(1)}; \quad \text{NNLL } \left(\sim \alpha_{S}^{n}L^{n-1}\right): g_{N}^{(3)}, \mathcal{H}_{N}^{(2)};$ $\text{NLL and NNLL respectively matched with "finite" part at: } \alpha_{S} (LO) \text{ and } \alpha_{S}^{2} (\text{NLO})$ Note that thanks to the exponentiation the perturbative approach is new valid for any logical set of the set of the exponentiation of the perturbative approach is new valid.

Giancarlo Ferrera – Università di Milano

QCD transverse-momentum resummation for Higgs and Vector Boson production at the LHC

▲ ≧ → ≧ → ۹ ۹ ۹ Napoli – 28/3/2013

15/27

イロト イポト イヨト イヨト

Outline	q_T resummation	Conclusions

$$\frac{d\hat{\sigma}}{dq_T^2} = \frac{d\hat{\sigma}^{(res)}}{dq_T^2} + \frac{d\hat{\sigma}^{(fin)}}{dq_T^2}; \qquad \int_0^{Q_T^2} dq_T^2 \Big[\frac{d\hat{\sigma}^{(res)}}{dq_T^2}\Big]_{f.o.}^{Q_T \to 0} 1 + \sum_n \sum_{m=1}^{2n} c_{nm} \alpha_S^n \log^m \frac{M^2}{Q_T^2} \int_0^{Q_T^2} dq_T^2 \Big[\frac{d\hat{\sigma}^{(fin)}}{dq_T^2}\Big]_{f.o.}^{Q_T \to 0} 0$$

Resummation holds in impact parameter space: $q_T \ll M \Leftrightarrow Mb \gg 1$, $\log M/q_T \gg 1 \Leftrightarrow \log Mb \gg 1$

$$\frac{d\hat{\sigma}^{(res)}}{dq_T^2} = \frac{M^2}{\hat{s}} \int_0^\infty db \, \frac{b}{2} J_0(bq_T) \, \mathcal{W}(b, M),$$

In the Mellin moments $(f_N \equiv \int_0^1 f(x) x^{N-1} dx)$ space we have the exponentiated form:

 $\mathcal{W}_{N}(b,M) = \mathcal{H}_{N}(\alpha_{S}) \times \exp\left\{\mathcal{G}_{N}(\alpha_{S},L)\right\} \quad \text{where} \quad L \equiv \log(M^{2}b^{2})$ $\mathcal{G}_{N}(\alpha_{S},L) = Lg^{(1)}(\alpha_{S}L) + g^{(2)}_{N}(\alpha_{S}L) + \frac{\alpha_{S}}{\pi}g^{(3)}_{N}(\alpha_{S}L) + \cdots; \quad \mathcal{H}_{N}(\alpha_{S}) = \sigma^{(0)}(\alpha_{S},M)\left[1 + \frac{\alpha_{S}}{\pi}\mathcal{H}_{N}^{(1)} + \left(\frac{\alpha_{S}}{\pi}\right)^{2}\mathcal{H}_{N}^{(2)} + \cdots\right]$ $LL (\sim \alpha_{S}^{n}L^{n+1}): g^{(1)}, (\sigma^{(0)}); \quad \text{NLL} (\sim \alpha_{S}^{n}L^{n}): g^{(2)}_{N}, \mathcal{H}_{N}^{(1)}; \quad \text{NNLL} (\sim \alpha_{S}^{n}L^{n-1}): g^{(3)}_{N}, \mathcal{H}_{N}^{(2)};$ $\text{NLL and NNLL respectively matched with "finite" part at: } \alpha_{S} (LO) \text{ and } \alpha_{S}^{2} (\text{NLO})$

Note that thanks to the exponentiation the perturbative approach is now valid for α_{SL}

QCD transverse-momentum resummation for Higgs and Vector Boson production at the LHC

لا ≣ ک ≣ √ مر Napoli – 28/3/2013

Outline	q_T resummation	Conclusions

$$\frac{d\hat{\sigma}}{dq_T^2} = \frac{d\hat{\sigma}^{(res)}}{dq_T^2} + \frac{d\hat{\sigma}^{(fin)}}{dq_T^2}; \qquad \int_0^{Q_T^2} dq_T^2 \Big[\frac{d\hat{\sigma}^{(res)}}{dq_T^2}\Big]_{f.o.}^{Q_T \to 0} 1 + \sum_n \sum_{m=1}^{2n} c_{nm} \alpha_S^n \log^m \frac{M^2}{Q_T^2} \int_0^{Q_T^2} dq_T^2 \Big[\frac{d\hat{\sigma}^{(fin)}}{dq_T^2}\Big]_{f.o.} \stackrel{Q_T \to 0}{=} 0$$

Resummation holds in impact parameter space: $q_T \ll M \Leftrightarrow Mb \gg 1$, $\log M/q_T \gg 1 \Leftrightarrow \log Mb \gg 1$

$$\frac{d\hat{\sigma}^{(res)}}{dq_T^2} = \frac{M^2}{\hat{s}} \int_0^\infty db \, \frac{b}{2} J_0(bq_T) \, \mathcal{W}(b, M),$$

In the Mellin moments $(f_N \equiv \int_0^1 f(x) x^{N-1} dx)$ space we have the exponentiated form:

 $\mathcal{W}_{N}(b,M) = \mathcal{H}_{N}(\alpha_{S}) \times \exp\left\{\mathcal{G}_{N}(\alpha_{S},L)\right\} \quad \text{where} \quad L \equiv \log(M^{2}b^{2})$ $\mathcal{G}_{N}(\alpha_{S},L) = Lg^{(1)}(\alpha_{S}L) + g_{N}^{(2)}(\alpha_{S}L) + \frac{\alpha_{S}}{\pi}g_{N}^{(3)}(\alpha_{S}L) + \cdots; \quad \mathcal{H}_{N}(\alpha_{S}) = \sigma^{(0)}(\alpha_{S},M)\left[1 + \frac{\alpha_{S}}{\pi}\mathcal{H}_{N}^{(1)} + \left(\frac{\alpha_{S}}{\pi}\right)^{2}\mathcal{H}_{N}^{(2)} + \cdots\right]$ $LL (\sim \alpha_{S}^{n}L^{n+1}): g^{(1)}, (\sigma^{(0)}); \quad \text{NLL} (\sim \alpha_{S}^{n}L^{n}): g_{N}^{(2)}, \mathcal{H}_{N}^{(1)}; \quad \text{NNLL} (\sim \alpha_{S}^{n}L^{n-1}): g_{N}^{(3)}, \mathcal{H}_{N}^{(2)};$ $\text{NLL and NNLL respectively matched with "finite" part at: \alpha_{S} (LO) and \alpha_{S}^{2} (\text{NLO})$ $\text{Note that thanks to the exponentiation the perturbative approach is now valid for } \alpha_{S}L \sim 1$

Giancarlo Ferrera - Università di Milano

QCD transverse-momentum resummation for Higgs and Vector Boson production at the LHC

Main distinctive features of the formalism [Catani, de Florian,

Grazzini('01)], [Bozzi,Catani,de Florian, Grazzini('03,'06,'08)]:

- Resummation performed at partonic cross section level: PDF evaluated at $\mu_F \sim M$: no PDF extrapolation in the non perturbative region, study of μ_R and μ_F dependence as in fixed-order calculations.
- Possible to make prediction without introducing non perturbative effects: Landau singularity of the QCD coupling regularized using a *Minimal Prescription* [Laenen,Sterman,Vogelsang('00)],[Catani et al.('96)].
- Resummed effects exponentiated in a universal Sudakov form factor $\mathcal{G}_N(\alpha_S, L)$; process-dependence factorized in the hard scattering coefficient $\mathcal{H}_N(\alpha_S)$.

• Perturbative unitarity constrain and resummation scale Q:

$$\ln\left(M^2b^2\right) \to \widetilde{L} \equiv \ln\left(Q^2b^2 + 1\right)$$

- $\bullet\,$ avoids unjustified higher-order contributions in the small-b region.
- recover *exactly* the total cross-section (upon integration on q_T)
- variations of the resummation scale $Q \sim M$: estimate the uncertainty from higher orders uncalculated logarithmic corrections.

16/27

Giancarlo Ferrera – Università di Milano

QCD transverse-momentum resummation for Higgs and Vector Boson production at the LHC

Main distinctive features of the formalism [Catani, de Florian,

Grazzini('01)], [Bozzi,Catani,de Florian, Grazzini('03,'06,'08)]:

- Resummation performed at partonic cross section level: PDF evaluated at $\mu_F \sim M$: no PDF extrapolation in the non perturbative region, study of μ_R and μ_F dependence as in fixed-order calculations.
- Possible to make prediction without introducing non perturbative effects: Landau singularity of the QCD coupling regularized using a *Minimal Prescription* [Laenen,Sterman,Vogelsang('00)],[Catani et al.('96)].
- Resummed effects exponentiated in a universal Sudakov form factor $\mathcal{G}_N(\alpha_S, L)$; process-dependence factorized in the hard scattering coefficient $\mathcal{H}_N(\alpha_S)$.

• Perturbative unitarity constrain and resummation scale Q:

$$\ln\left(M^2b^2\right) \to \widetilde{L} \equiv \ln\left(Q^2b^2 + 1\right)$$

- $\bullet\,$ avoids unjustified higher-order contributions in the small-b region.
- recover *exactly* the total cross-section (upon integration on q_T)
- variations of the resummation scale Q ~ M: estimate the uncertainty from higher orders uncalculated logarithmic corrections.

16/27

Giancarlo Ferrera – Università di Milano

QCD transverse-momentum resummation for Higgs and Vector Boson production at the LHC

Main distinctive features of the formalism [Catani, de Florian,

Grazzini('01)], [Bozzi,Catani,de Florian, Grazzini('03,'06,'08)]:

- Resummation performed at partonic cross section level: PDF evaluated at $\mu_F \sim M$: no PDF extrapolation in the non perturbative region, study of μ_R and μ_F dependence as in fixed-order calculations.
- Possible to make prediction without introducing non perturbative effects: Landau singularity of the QCD coupling regularized using a *Minimal Prescription* [Laenen,Sterman,Vogelsang('00)],[Catani et al.('96)].
- Resummed effects exponentiated in a universal Sudakov form factor G_N(α_S, L); process-dependence factorized in the hard scattering coefficient H_N(α_S).
- Perturbative unitarity constrain and resummation scale Q:

$$\ln\left(M^2b^2\right) \to \widetilde{L} \equiv \ln\left(Q^2b^2 + 1\right)$$

- $\bullet\,$ avoids unjustified higher-order contributions in the small-b region.
- recover *exactly* the total cross-section (upon integration on q_T)
- variations of the resummation scale Q ~ M: estimate the uncertainty from higher orders uncalculated logarithmic corrections.

16/27

Giancarlo Ferrera – Università di Milano

QCD transverse-momentum resummation for Higgs and Vector Boson production at the LHC

Main distinctive features of the formalism [Catani, de Florian,

Grazzini('01)], [Bozzi,Catani,de Florian, Grazzini('03,'06,'08)]:

- Resummation performed at partonic cross section level: PDF evaluated at $\mu_F \sim M$: no PDF extrapolation in the non perturbative region, study of μ_R and μ_F dependence as in fixed-order calculations.
- Possible to make prediction without introducing non perturbative effects: Landau singularity of the QCD coupling regularized using a *Minimal Prescription* [Laenen,Sterman,Vogelsang('00)],[Catani et al.('96)].
- Resummed effects exponentiated in a universal Sudakov form factor G_N(α_S, L); process-dependence factorized in the hard scattering coefficient H_N(α_S).

• Perturbative unitarity constrain and resummation scale Q:

$$\ln\left(M^2b^2\right) \to \widetilde{L} \equiv \ln\left(Q^2b^2 + 1\right)$$

- avoids unjustified higher-order contributions in the small-*b* region.
- recover *exactly* the total cross-section (upon integration on q_T)
- variations of the resummation scale $Q \sim M$: estimate the uncertainty from higher orders uncalculated logarithmic corrections.

16/27

Giancarlo Ferrera – Università di Milano

QCD transverse-momentum resummation for Higgs and Vector Boson production at the LHC

Main distinctive features of the formalism [Catani, de Florian,

Grazzini('01)], [Bozzi,Catani,de Florian, Grazzini('03,'06,'08)]:

- Resummation performed at partonic cross section level: PDF evaluated at $\mu_F \sim M$: no PDF extrapolation in the non perturbative region, study of μ_R and μ_F dependence as in fixed-order calculations.
- Possible to make prediction without introducing non perturbative effects: Landau singularity of the QCD coupling regularized using a *Minimal Prescription* [Laenen,Sterman,Vogelsang('00)],[Catani et al.('96)].
- Resummed effects exponentiated in a universal Sudakov form factor G_N(α_S, L); process-dependence factorized in the hard scattering coefficient H_N(α_S).

• Perturbative unitarity constrain and resummation scale Q:

$$\ln\left(M^2b^2\right) \rightarrow \widetilde{L} \equiv \ln\left(Q^2b^2+1\right)$$

- avoids unjustified higher-order contributions in the small-*b* region.
- recover *exactly* the total cross-section (upon integration on q_T)
- variations of the resummation scale Q ~ M: estimate the uncertainty from higher orders uncalculated logarithmic corrections.

16/27

Giancarlo Ferrera – Università di Milano

QCD transverse-momentum resummation for Higgs and Vector Boson production at the LHC

Main distinctive features of the formalism [Catani, de Florian,

Grazzini('01)], [Bozzi,Catani,de Florian, Grazzini('03,'06,'08)]:

- Resummation performed at partonic cross section level: PDF evaluated at $\mu_F \sim M$: no PDF extrapolation in the non perturbative region, study of μ_R and μ_F dependence as in fixed-order calculations.
- Possible to make prediction without introducing non perturbative effects: Landau singularity of the QCD coupling regularized using a *Minimal Prescription* [Laenen,Sterman,Vogelsang('00)],[Catani et al.('96)].
- Resummed effects exponentiated in a universal Sudakov form factor G_N(α_S, L); process-dependence factorized in the hard scattering coefficient H_N(α_S).
- Perturbative unitarity constrain and resummation scale Q:

$$\ln\left(M^{2}b^{2}\right) \rightarrow \widetilde{L} \equiv \ln\left(Q^{2}b^{2}+1\right) \Rightarrow \exp\left\{\mathcal{G}_{N}(\alpha_{S},\widetilde{L})\right\}\big|_{b=0} = 1$$

- avoids unjustified higher-order contributions in the small-b region.
- recover exactly the total cross-section (upon integration on q_T)
- variations of the resummation scale Q ~ M: estimate the uncertainty from higher orders uncalculated logarithmic corrections.

16/27

Giancarlo Ferrera – Università di Milano

Main distinctive features of the formalism [Catani, de Florian,

Grazzini('01)], [Bozzi,Catani,de Florian, Grazzini('03,'06,'08)]:

- Resummation performed at partonic cross section level: PDF evaluated at $\mu_F \sim M$: no PDF extrapolation in the non perturbative region, study of μ_R and μ_F dependence as in fixed-order calculations.
- Possible to make prediction without introducing non perturbative effects: Landau singularity of the QCD coupling regularized using a *Minimal Prescription* [Laenen,Sterman,Vogelsang('00)],[Catani et al.('96)].
- Resummed effects exponentiated in a universal Sudakov form factor G_N(α_S, L); process-dependence factorized in the hard scattering coefficient H_N(α_S).
- Perturbative unitarity constrain and resummation scale Q:

$$\ln\left(M^{2}b^{2}\right) \rightarrow \widetilde{L} \equiv \ln\left(Q^{2}b^{2}+1\right) \Rightarrow \exp\left\{\mathcal{G}_{N}(\alpha_{S},\widetilde{L})\right\}\Big|_{b=0} = 1 \Rightarrow \int_{0}^{\infty} dq_{T}^{2} \left(\frac{d\hat{\sigma}}{dq_{T}^{2}}\right)_{NLL+LO} \hat{\sigma}_{NLO}^{(tot)};$$

- avoids unjustified higher-order contributions in the small-*b* region.
- recover *exactly* the total cross-section (upon integration on q_T)

 variations of the resummation scale Q ~ M: estimate the uncertainty from higher orders uncalculated logarithmic corrections.

16/27

Giancarlo Ferrera – Università di Milano

Main distinctive features of the formalism [Catani, de Florian,

Grazzini('01)], [Bozzi,Catani,de Florian, Grazzini('03,'06,'08)]:

- Resummation performed at partonic cross section level: PDF evaluated at $\mu_F \sim M$: no PDF extrapolation in the non perturbative region, study of μ_R and μ_F dependence as in fixed-order calculations.
- Possible to make prediction without introducing non perturbative effects: Landau singularity of the QCD coupling regularized using a *Minimal Prescription* [Laenen,Sterman,Vogelsang('00)],[Catani et al.('96)].
- Resummed effects exponentiated in a universal Sudakov form factor G_N(α_S, L); process-dependence factorized in the hard scattering coefficient H_N(α_S).
- Perturbative unitarity constrain and resummation scale Q:

$$\ln\left(M^{2}b^{2}\right) \rightarrow \widetilde{L} \equiv \ln\left(Q^{2}b^{2}+1\right) \Rightarrow \exp\left\{\mathcal{G}_{N}(\alpha_{S},\widetilde{L})\right\}\Big|_{b=0} = 1 \Rightarrow \int_{0}^{\infty} dq_{T}^{2}\left(\frac{d\hat{\sigma}}{dq_{T}^{2}}\right)_{NLL+LO} \hat{\sigma}_{NLO}^{(tot)};$$

- avoids unjustified higher-order contributions in the small-b region.
- recover *exactly* the total cross-section (upon integration on q_T)
- variations of the resummation scale $Q \sim M$: estimate the uncertainty from higher orders uncalculated logarithmic corrections.

16/27

Giancarlo Ferrera – Università di Milano

Outline	q_T resummation	Conclusions

- We have performed the resummation up to NNLL+NLO. It means that our complete formula includes:
 - NNLL logarithmic contributions to all orders;
 - NNLO corrections (i.e. $\mathcal{O}(\alpha_S^2)$) at small q_T ;
 - NLO corrections (i.e. $\mathcal{O}(\alpha_S^2)$) at large q_T ;
 - NNLO result (i.e. O(α²₅)) for the total cross section (upon integration over q_T).
- NLO+PS generators (MC@NLO/POWHEG) reach LL(and part of the NLL)+LO accuracy (NLO for total cross section).
- The calculation of the resummed q_T spectrum are implemented in numerical codes HqT [Bozzi, Catani, de

Florian,Grazzini('03,'06,'08)],

[deFlorian,G.F.,Grazzini,Tommasini('11)] and DYqT [Bozzi,Catani,de Florian,G.F.,Grazzini('08,'10) (public versions of both codes are available).

17/27

Giancarlo Ferrera – Università di Milano

QCD transverse-momentum resummation for Higgs and Vector Boson production at the LHC

▲ ≧ → ≧ → ۹ ۹ ۹ Napoli – 28/3/2013

- 4 回 > - 4 回 > - 4 回

Outline	q_T resummation	Conclusions

- We have performed the resummation up to NNLL+NLO. It means that our complete formula includes:
 - NNLL logarithmic contributions to all orders;
 - NNLO corrections (i.e. $\mathcal{O}(\alpha_s^2)$) at small q_T ;
 - NLO corrections (i.e. $\mathcal{O}(\alpha_s^2)$) at large q_T ;
 - NNLO result (i.e. O(α²₅)) for the total cross section (upon integration over q_T).
- NLO+PS generators (MC@NLO/POWHEG) reach LL(and part of the NLL)+LO accuracy (NLO for total cross section).
- The calculation of the resummed q_T spectrum are implemented in numerical codes HqT [Bozzi, Catani, de

Florian,Grazzini('03,'06,'08)],

[deFlorian,G.F.,Grazzini,Tommasini('11)] and DYqT [Bozzi,Catani,de Florian,G.F.,Grazzini('08,'10) (public versions of both codes are available).

17/27

Giancarlo Ferrera – Università di Milano

QCD transverse-momentum resummation for Higgs and Vector Boson production at the LHC

▲ ■ → ۹ ۹ ۹ Napoli – 28/3/2013

・ 日・ ・ ヨ・ ・

Outline	q_T resummation	Conclusions

- We have performed the resummation up to NNLL+NLO. It means that our complete formula includes:
 - NNLL logarithmic contributions to all orders;
 - NNLO corrections (i.e. $\mathcal{O}(\alpha_s^2)$) at small q_T ;
 - NLO corrections (i.e. $\mathcal{O}(\alpha_s^2)$) at large q_T ;
 - NNLO result (i.e. O(α²_S)) for the total cross section (upon integration over q_T).
- NLO+PS generators (MC@NLO/POWHEG) reach LL(and part of the NLL)+LO accuracy (NLO for total cross section).

The calculation of the resummed q_T spectrum are implemented in numerical codes HqT [Bozzi,Catani,de
 Florian,Grazzini('03,'06,'08)],
 [de Florian,G.F.,Grazzini,Tommasini('11)] and DYqT [Bozzi,Catani,de
 Florian,G.F.,Grazzini('08,'10) (public versions of both codes are available).

17/27

Giancarlo Ferrera – Università di Milano

QCD transverse-momentum resummation for Higgs and Vector Boson production at the LHC

▲ ≧ → ≧ → ۹ ۹ ۹ Napoli – 28/3/2013

・ 伊ト ・ ヨト ・

Outline	q_T resummation	Conclusions

- We have performed the resummation up to NNLL+NLO. It means that our complete formula includes:
 - NNLL logarithmic contributions to all orders;
 - NNLO corrections (i.e. $\mathcal{O}(\alpha_s^2)$) at small q_T ;
 - NLO corrections (i.e. $\mathcal{O}(\alpha_s^2)$) at large q_T ;
 - NNLO result (i.e. O(α²_S)) for the total cross section (upon integration over q_T).
- NLO+PS generators (MC@NLO/POWHEG) reach LL(and part of the NLL)+LO accuracy (NLO for total cross section).
- The calculation of the resummed q_T spectrum are implemented in numerical codes HqT [Bozzi,Catani,de
 Florian,Grazzini('03,'06,'08)],
 [deFlorian,G.F.,Grazzini,Tommasini('11)] and DYqT [Bozzi,Catani,de
 Florian,G.F.,Grazzini('08,'10) (public versions of both codes are available).

17/27

Giancarlo Ferrera – Università di Milano

Outline		Resummed results	Conclusions

Resummed results

- Left side: NLL+LO result compared with fixed LO result.
 Resummation cure the fixed order divergence at q_T → 0.
- Right side: NNLL+NLO result compared with fixed NLO result.
- The q_T spectrum of Z boson is slightly harder at NNLL+NLO accuracy than at NLL+LO accuracy.
- q_T spectrum of Higgs boson: similar qualitative effects (the spectrum is harder and the higher-order effects are more important).
- Integral of the NLL+LO (NNLL+NLO) curve reproduce the total NLO (NNLO) cross section to better 1% (check of the code).

< 17 ▶

18/27

Giancarlo Ferrera – Università di Milano

Outline		Resummed results	Conclusions

Resummed results

- Left side: NLL+LO result compared with fixed LO result.
 Resummation cure the fixed order divergence at q_T → 0.
- Right side: NNLL+NLO result compared with fixed NLO result.
- The q_T spectrum of Z boson is slightly harder at NNLL+NLO accuracy than at NLL+LO accuracy.
- *q*_T spectrum of Higgs boson: similar qualitative effects (the spectrum is harder and the higher-order effects are more important).
- Integral of the NLL+LO (NNLL+NLO) curve reproduce the total NLO (NNLO) cross section to better 1% (check of the code).

Giancarlo Ferrera – Università di Milano

QCD transverse-momentum resummation for Higgs and Vector Boson production at the LHC

Napoli – 28/3/2013

Outline		Resummed results	Conclusions

Resummed results

- Left side: NLL+LO result compared with fixed LO result.
 Resummation cure the fixed order divergence at q_T → 0.
- Right side: NNLL+NLO result compared with fixed NLO result.
- The q_T spectrum of Z boson is slightly harder at NNLL+NLO accuracy than at NLL+LO accuracy.
- q_T spectrum of Higgs boson: similar qualitative effects (the spectrum is harder and the higher-order effects are more important).
- Integral of the NLL+LO (NNLL+NLO) curve reproduce the total NLO (NNLO) cross section to better 1% (check of the code).

Giancarlo Ferrera – Università di Milano

QCD transverse-momentum resummation for Higgs and Vector Boson production at the LHC

Outline		Resummed results	Conclusions

D0 data for the Z q_T spectrum compared with perturbative results.

• Uncertainty bands obtained varying μ_R , μ_F , Q independently:

$$\begin{split} 1/2 &\leq \{\mu_F/m_Z, \mu_R/m_Z, 2Q/m_Z, \mu_F/\mu_R, Q/\mu_R\} \leq 2 \\ \text{to avoid large logarithmic contributions} \\ (\sim \ln(\mu_F^2/\mu_R^2), \ln(Q^2/\mu_R^2)) \text{ in the evolution of} \\ \text{the parton densities and in the the resummed} \\ \text{form factor.} \end{split}$$

- Significant reduction of scale dependence from NLL+LO to NNLL+NLO for all *q*_T.
- Good convergence of resummed results: NNLL+NLO and NLL+LO bands overlap (contrary to the fixed-order case).

 Good agreement between data and resummed predictions (without any model for non-perturbative effects).

<ロ> <四> <四> <日> <日> <日</p>

The perturbative uncertainty of the NNLL+NLO results is comparable with the experimental errors.

19/27

Giancarlo Ferrera - Università di Milano

Outline		Resummed results	Conclusions

D0 data for the Z q_T spectrum compared with perturbative results.

- Uncertainty bands obtained varying μ_R , μ_F , Q independently:
- $$\begin{split} 1/2 &\leq \{\mu_F/m_Z, \mu_R/m_Z, 2Q/m_Z, \mu_F/\mu_R, Q/\mu_R\} \leq 2 \\ \text{to avoid large logarithmic contributions} \\ (\sim \ln(\mu_F^2/\mu_R^2), \ln(Q^2/\mu_R^2)) \text{ in the evolution of} \\ \text{the parton densities and in the the resummed} \\ \text{form factor.} \end{split}$$
- Significant reduction of scale dependence from NLL+LO to NNLL+NLO for all *q*_T.
- Good convergence of resummed results: NNLL+NLO and NLL+LO bands overlap (contrary to the fixed-order case).
- Good agreement between data and resummed predictions (without any model for non-perturbative effects).

(ロ) (回) (三) (三)

The perturbative uncertainty of the NNLL+NLO results is comparable with the experimental errors.

Giancarlo Ferrera - Università di Milano

QCD transverse-momentum resummation for Higgs and Vector Boson production at the LHC

Napoli – 28/3/2013

Outline		Resummed results	Conclusions

D0 data for the Z q_T spectrum compared with perturbative results.

- Uncertainty bands obtained varying μ_R , μ_F , Q independently:
- $$\begin{split} 1/2 &\leq \{\mu_F/m_Z, \mu_R/m_Z, 2Q/m_Z, \mu_F/\mu_R, Q/\mu_R\} \leq 2 \\ \text{to avoid large logarithmic contributions} \\ (\sim \ln(\mu_F^2/\mu_R^2), \ln(Q^2/\mu_R^2)) \text{ in the evolution of} \\ \text{the parton densities and in the the resummed} \\ \text{form factor.} \end{split}$$
- Significant reduction of scale dependence from NLL+LO to NNLL+NLO for all *q*_T.
- Good convergence of resummed results: NNLL+NLO and NLL+LO bands overlap (contrary to the fixed-order case).
- Good agreement between data and resummed predictions (without any model for non-perturbative effects).

・ロト ・回ト ・ヨト ・ヨ

The perturbative uncertainty of the NNLL+NLO results is comparable with the experimental errors.

Napoli – 28/3/2013

Giancarlo Ferrera – Università di Milano

Outline		Resummed results	Conclusions

D0 data for the Z q_T spectrum compared with perturbative results.

- Uncertainty bands obtained varying μ_R , μ_F , Q independently:
- $$\begin{split} 1/2 &\leq \{\mu_F/m_Z, \mu_R/m_Z, 2Q/m_Z, \mu_F/\mu_R, Q/\mu_R\} \leq 2 \\ \text{to avoid large logarithmic contributions} \\ (\sim \ln(\mu_F^2/\mu_R^2), \ln(Q^2/\mu_R^2)) \text{ in the evolution of} \\ \text{the parton densities and in the the resummed} \\ \text{form factor.} \end{split}$$
- Significant reduction of scale dependence from NLL+LO to NNLL+NLO for all *q*_T.
- Good convergence of resummed results: NNLL+NLO and NLL+LO bands overlap (contrary to the fixed-order case).
- Good agreement between data and resummed predictions (without any model for non-perturbative effects).

The perturbative uncertainty of the NNLL+NLO results is comparable with the experimental errors.

Giancarlo Ferrera - Università di Milano

QCD transverse-momentum resummation for Higgs and Vector Boson production at the LHC

Napoli – 28/3/2013

Outline		Resummed results	Conclusions

D0 data for the Z q_T spectrum: Fractional difference with respect to the reference result: NNLL+NLO, $\mu_R = \mu_F = 2Q = m_Z$.

- NNLL+NLO scale dependence is ±6% at the peak, ±5% at q_T = 10 GeV and ±12% at q_T = 50 GeV. For q_T ≥ 60 GeV the resummed result looses predictivity.
- At large values of q_T, the NLO and NNLL+NLO bands overlap.

At intermediate values of transverse momenta the scale variation bands do not overlap.

 The resummation improves the agreement of the NLO results with the data. In the small-q_T region, the NLO result is theoretically unreliable and the NLO band deviates from the NNLL+NLO band.

20/27

Napoli - 28/3/2013

Outline		Resummed results	Conclusions

D0 data for the Z q_T spectrum: Fractional difference with respect to the reference result: NNLL+NLO, $\mu_R = \mu_F = 2Q = m_Z$.

- NNLL+NLO scale dependence is ±6% at the peak, ±5% at q_T = 10 GeV and ±12% at q_T = 50 GeV. For q_T ≥ 60 GeV the resummed result looses predictivity.
- At large values of q_T, the NLO and NNLL+NLO bands overlap.
 At intermediate values of transverse momenta the scale variation bands do not overlap.

 The resummation improves the agreement of the NLO results with the data. In the small-q_T region, the NLO result is theoretically unreliable and the NLO band deviates from the NNLL+NLO band.

Outline		Resummed results	Conclusions

D0 data for the Z q_T spectrum: Fractional difference with respect to the reference result: NNLL+NLO, $\mu_R = \mu_F = 2Q = m_Z$.

- NNLL+NLO scale dependence is ±6% at the peak, ±5% at q_T = 10 GeV and ±12% at q_T = 50 GeV. For q_T ≥ 60 GeV the resummed result looses predictivity.
- At large values of *q*_T, the NLO and NNLL+NLO bands overlap.

At intermediate values of transverse momenta the scale variation bands do not overlap.

 The resummation improves the agreement of the NLO results with the data. In the small-q_T region, the NLO result is theoretically unreliable and the NLO band deviates from the NNLL+NLO band.

Outline		Resummed results	Conclusions

Non perturbative effects: q_T spectrum of Z boson at the Tevatron

D0 data for the Z q_T spectrum.

- Up to now result in a complete perturbative framework.
- Non perturbative effects parametrized by

$$\exp\{\mathcal{G}_N(\alpha_S,\widetilde{L})\} \rightarrow \exp\{\mathcal{G}_N(\alpha_S,\widetilde{L})\} S_{NP}$$

• With NP effects the q_T spectrum is

э

Giancarlo Ferrera – Università di Milano

QCD transverse-momentum resummation for Higgs and Vector Boson production at the LHC

Napoli - 28/3/2013

Outline		Resummed results	Conclusions

Non perturbative effects: q_T spectrum of Z boson at the Tevatron

D0 data for the Z q_T spectrum.

- Up to now result in a complete perturbative framework.
- Non perturbative effects parametrized by a NP form factor $S_{NP} = \exp\{-g_{NP}b^2\}$:

$$\exp\{\mathcal{G}_{N}(\alpha_{S},\widetilde{L})\} \rightarrow \exp\{\mathcal{G}_{N}(\alpha_{S},\widetilde{L})\} S_{NP}$$

 $g_{NP} = 0.8 \ GeV^2$ [Kulesza et al.('02)]

• With NP effects the q_T spectrum is

< 17 ▶

Giancarlo Ferrera – Università di Milano

QCD transverse-momentum resummation for Higgs and Vector Boson production at the LHC

э Napoli - 28/3/2013

Outline		Resummed results	Conclusions

Non perturbative effects: q_T spectrum of Z boson at the Tevatron

D0 data for the Z q_T spectrum.

- Up to now result in a complete perturbative framework.
- Non perturbative effects parametrized by a NP form factor $S_{NP} = \exp\{-g_{NP}b^2\}$:

$$\exp\{\mathcal{G}_{N}(\alpha_{S},\widetilde{L})\} \rightarrow \exp\{\mathcal{G}_{N}(\alpha_{S},\widetilde{L})\} S_{NP}$$

 $g_{NP} = 0.8 \ GeV^2$ [Kulesza et al.('02)]

• With NP effects the q_T spectrum is harder.

Quantitative impact of such NP effects is comparable with perturbative uncertainties.

21/27

Giancarlo Ferrera – Università di Milano

QCD transverse-momentum resummation for Higgs and Vector Boson production at the LHC

э Napoli - 28/3/2013

Outline		Resummed results	Conclusions

Resummed results: q_T spectrum of *H* boson at the LHC $\sqrt{s} = 14 \ TeV$

Higgs q_T spectrum for $m_H = 125 \ GeV$ at LHC.

• Uncertainty bands obtained as before: $1/2 \le \{\mu_F/m_Z, \mu_R/m_Z, 2Q/m_Z, \mu_F/\mu_R, Q/\mu_R\} \le 2$

- Significant reduction of scale dependence from NLL+LO to NNLL+NLO for all *q*_T.
- Good convergence of resummed results: NNLL+NLO and NLL+LO bands overlap (contrary to the fixed-order case).
- The q_T spectrum has a strong sensitivity from PDFs (especially from the gluon density). Usefull to constrain the PDFs fits.

Giancarlo Ferrera – Università di Milano

Outline		Resummed results	Conclusions

Resummed results: q_T spectrum of *H* boson at the LHC $\sqrt{s} = 14 \ TeV$

Higgs q_T spectrum for $m_H = 125 \ GeV$ at LHC.

- Uncertainty bands obtained as before: $1/2 \le \{\mu_F/m_Z, \mu_R/m_Z, 2Q/m_Z, \mu_F/\mu_R, Q/\mu_R\} \le 2$
- Significant reduction of scale dependence from NLL+LO to NNLL+NLO for all *q*_T.
- Good convergence of resummed results: NNLL+NLO and NLL+LO bands overlap (contrary to the fixed-order case).
- The q_T spectrum has a strong sensitivity from PDFs (especially from the gluon density). Usefull to constrain the PDFs fits.

22/27

Giancarlo Ferrera – Università di Milano

Outline		Resummed results	Conclusions

Resummed results: q_T spectrum of *H* boson at the LHC $\sqrt{s} = 14 \ TeV$

Higgs q_T spectrum for $m_H = 125 \text{ GeV}$ at LHC.

- Uncertainty bands obtained as before: $1/2 \le \{\mu_F/m_Z, \mu_R/m_Z, 2Q/m_Z, \mu_F/\mu_R, Q/\mu_R\} \le 2$
- Significant reduction of scale dependence from NLL+LO to NNLL+NLO for all *q*_T.
- Good convergence of resummed results: NNLL+NLO and NLL+LO bands overlap (contrary to the fixed-order case).
- The q_T spectrum has a strong sensitivity from PDFs (especially from the gluon density). Usefull to constrain the PDFs fits.

22/27

Giancarlo Ferrera – Università di Milano
Outline		Resummed results	Conclusions

Resummed results: q_T spectrum of *H* boson at the LHC $\sqrt{s} = 14 \ TeV$

Higgs q_T spectrum for $m_H = 125 \ GeV$ at LHC.

- Uncertainty bands obtained as before: $1/2 \le \{\mu_F/m_Z, \mu_R/m_Z, 2Q/m_Z, \mu_F/\mu_R, Q/\mu_R\} \le 2$
- Significant reduction of scale dependence from NLL+LO to NNLL+NLO for all *q*_T.
- Good convergence of resummed results: NNLL+NLO and NLL+LO bands overlap (contrary to the fixed-order case).
- The *q*_T spectrum has a strong sensitivity from PDFs (especially from the gluon density). Usefull to constrain the PDFs fits.

Giancarlo Ferrera – Università di Milano

QCD transverse-momentum resummation for Higgs and Vector Boson production at the LHC

Napoli - 28/3/2013

Outline		Resummed results	Conclusions

- Experiments have finite acceptance: important to provide exclusive theoretical predictions.
- Analytic resummation formalism inclusive over soft-gluon emission: not possible to apply selection cuts on final state partons.
- We have included the full dependence on the decay variables: possible to apply cuts on vector/Higgs boson and decay products.

• To construct the "finite" part we rely on the fully-differential NNLO result from the codes HNNLO/DYNNLO [Catani,Cieri,deFlorian,Ferrera,Grazzini('09)], [Catani,Grazzini('09)].

 Calculation implemented in numerical codes (HRes/DYRes) which include spin correlations, finite-width effects and compute distributions in form of bin histograms.

23/27

Giancarlo Ferrera – Università di Milano

Outline		Resummed results	Conclusions

- Experiments have finite acceptance: important to provide exclusive theoretical predictions.
- Analytic resummation formalism inclusive over soft-gluon emission: not possible to apply selection cuts on final state partons.
- We have included the full dependence on the decay variables: possible to apply cuts on vector/Higgs boson and decay products.

 To construct the "finite" part we rely on the fully-differential NNLO result from the codes HNNLO/DYNNLO [Catani,Cieri,deFlorian,Ferrera,Grazzini('09)], [Catani,Grazzini('09)].

 Calculation implemented in numerical codes (HRes/DYRes) which include spin correlations, finite-width effects and compute distributions in form of bin histograms.

23/27

Giancarlo Ferrera – Università di Milano

Outline		Resummed results	Conclusions

- Experiments have finite acceptance: important to provide exclusive theoretical predictions.
- Analytic resummation formalism inclusive over soft-gluon emission: not possible to apply selection cuts on final state partons.
- We have included the full dependence on the decay variables: possible to apply cuts on vector/Higgs boson and decay products.

 To construct the "finite" part we rely on the fully-differential NNLO result from the codes HNNLO/DYNNLO [Catani,Cieri,deFlorian,Ferrera,Grazzini('09)], [Catani,Grazzini('09)].

 Calculation implemented in numerical codes (HRes/DYRes) which include spin correlations, finite-width effects and compute distributions in form of bin histograms.

23/27

Giancarlo Ferrera – Università di Milano

Outline		Resummed results	Conclusions

- Experiments have finite acceptance: important to provide exclusive theoretical predictions.
- Analytic resummation formalism inclusive over soft-gluon emission: not possible to apply selection cuts on final state partons.
- We have included the full dependence on the decay variables: possible to apply cuts on vector/Higgs boson and decay products.

 To construct the "finite" part we rely on the fully-differential NNLO result from the codes HNNLO/DYNNLO [Catani,Cieri,deFlorian,Ferrera,Grazzini('09)], [Catani,Grazzini('09)].

 Calculation implemented in numerical codes (HRes/DYRes) which include spin correlations, finite-width effects and compute distributions in form of bin histograms.

Outline		Resummed results	Conclusions

- Experiments have finite acceptance: important to provide exclusive theoretical predictions.
- Analytic resummation formalism inclusive over soft-gluon emission: not possible to apply selection cuts on final state partons.
- We have included the full dependence on the decay variables: possible to apply cuts on vector/Higgs boson and decay products.
- To construct the "finite" part we rely on the fully-differential NNLO result from the codes HNNLO/DYNNLO [Catani, Cieri, de Florian, Ferrera, Grazzini('09)], [Catani, Grazzini('09)].
- Calculation implemented in numerical codes (HRes/DYRes) which include spin correlations, finite-width effects and compute distributions in form of bin histograms.

DY q_T -resummation with V boson decay

CMS data for the Z q_T spectrum compared with NNLL+NLO result. Scale variation:

 $1/2 \le \{\mu_F/m_Z, \mu_R/m_Z, \mu_F/\mu_R, 2Q/m_Z, Q/\mu_R\} \le 2$

ATLAS data for the Z q_T spectrum compared with NNLL+NLO result.

Giancarlo Ferrera – Università di Milano

QCD transverse-momentum resummation for Higgs and Vector Boson production at the LHC

Napoli – 28/3/2013

Outline		Resummed results	Conclusions

DY q_T -resummation with V boson decay

ATLAS data for the $W q_T$ spectrum compared with NNLL+NLO result.

Lepton p_T spectrum from W^+ decay. NNLL+NLO result compared with the NNLO result.

Important spectrum for the measurement of M_W at the LHC.

25/27

Giancarlo Ferrera – Università di Milano

Outline		Resummed results	Conclusions

$gg \rightarrow H q_T$ -resummation with H boson decay

Fixed order results for $|\cos\theta^*| = \sqrt{1 - 4p_{T,\gamma}^2/m_H^2}$ distribution at the LHC.

Resummed results for $|\cos \theta^*| = \sqrt{1 - 4p_{T,\gamma}^2/m_H^2}$ distribution at the LHC. Important spectrum for the measurement of M_W at the LHC.

< 17 ▶

< ∃ > < ∃

26/27

Giancarlo Ferrera – Università di Milano

Outline		Conclusions

• NNLL+NLO *q_T*-resummation for Drell-Yan and Higgs production in gluon fusion.

Reduction of scale uncertainties from NLL+LO to NNLL+NLO accuracy. The NNLL+NLO results for Drell-Yan consistent with the experimental data in a wide region of q_T .

- Added full kinematical dependence on the vector/Higgs boson and on the final state leptons/photons.
- Preliminary comparison with LHC data (implementing experimental cuts): good agreement between data and NNLL+NLO results without any model for Non Perturbative effects.
- Public version of the numerical codes HqT/DYqT and HRes/DYRes available.

27/27

Giancarlo Ferrera – Università di Milano

QCD transverse-momentum resummation for Higgs and Vector Boson production at the LHC

Outline		Conclusions

• NNLL+NLO q_T -resummation for Drell-Yan and Higgs production in gluon fusion.

Reduction of scale uncertainties from NLL+LO to NNLL+NLO accuracy. The NNLL+NLO results for Drell-Yan consistent with the experimental data in a wide region of q_T .

- Added full kinematical dependence on the vector/Higgs boson and on the final state leptons/photons.
- Preliminary comparison with LHC data (implementing experimental cuts): good agreement between data and NNLL+NLO results without any model for Non Perturbative effects.
- Public version of the numerical codes HqT/DYqT and HRes/DYRes available.

27/27

Giancarlo Ferrera – Università di Milano

QCD transverse-momentum resummation for Higgs and Vector Boson production at the LHC

A (1) > (1) > (1)

Outline		Conclusions

• NNLL+NLO q_T -resummation for Drell-Yan and Higgs production in gluon fusion.

Reduction of scale uncertainties from NLL+LO to NNLL+NLO accuracy. The NNLL+NLO results for Drell-Yan consistent with the experimental data in a wide region of q_T .

- Added full kinematical dependence on the vector/Higgs boson and on the final state leptons/photons.
- Preliminary comparison with LHC data (implementing experimental cuts): good agreement between data and NNLL+NLO results without any model for Non Perturbative effects.
- Public version of the numerical codes HqT/DYqT and HRes/DYRes available.

27/27

Giancarlo Ferrera – Università di Milano

QCD transverse-momentum resummation for Higgs and Vector Boson production at the LHC

A (1) > (1) > (1)

Outline		Conclusions

• NNLL+NLO q_T -resummation for Drell-Yan and Higgs production in gluon fusion.

Reduction of scale uncertainties from NLL+LO to NNLL+NLO accuracy. The NNLL+NLO results for Drell-Yan consistent with the experimental data in a wide region of q_T .

- Added full kinematical dependence on the vector/Higgs boson and on the final state leptons/photons.
- Preliminary comparison with LHC data (implementing experimental cuts): good agreement between data and NNLL+NLO results without any model for Non Perturbative effects.
- Public version of the numerical codes HqT/DYqT and HRes/DYRes available.

A (1) > (1) > (1)

Outline		Conclusions

• NNLL+NLO q_T -resummation for Drell-Yan and Higgs production in gluon fusion.

Reduction of scale uncertainties from NLL+LO to NNLL+NLO accuracy. The NNLL+NLO results for Drell-Yan consistent with the experimental data in a wide region of q_T .

- Added full kinematical dependence on the vector/Higgs boson and on the final state leptons/photons.
- Preliminary comparison with LHC data (implementing experimental cuts): good agreement between data and NNLL+NLO results without any model for Non Perturbative effects.
- Public version of the numerical codes HqT/DYqT and HRes/DYRes available.

Outline		Conclusions

Back up slides

Giancarlo Ferrera – Università di Milano

QCD transverse-momentum resummation for Higgs and Vector Boson production at the LHC

Fully-Exclusive Cross Sections at NNLO in hadron-collisions

- Experiments have finite acceptance, in particular VH experimental analyses performed in extreme kinematical regimes (e.g. boosted analysis with jet veto): important to provide exclusive theoretical predictions.
- At NLO general algorithms (e.g. Dipole formalism [Catani, Seymour('98)]) allow (relative) straightforward fully-exclusive calculations.
- At NNLO in hadronic collisions only few fully exclusive calculations exist:
 - Sector decomposition: [Binoth, Heinrich('00)] gg → H [Anastasiou, Melnikov, Petriello('04)]→FEHIP Drell-Yan [Melnikov, Petriello('06)]→FEWZ
 - *q*_T-subtraction:

 $\begin{array}{l} gg \rightarrow H \ [\texttt{Catani},\texttt{Grazzini}(`07)] \rightarrow \texttt{HNNLO} \\ \texttt{Drell-Yan} \ [\texttt{Catani},\texttt{Cieri},\texttt{de} \ \texttt{Florian},\texttt{G.F.},\texttt{Grazzini}(`09)] \rightarrow \texttt{DYNNLO} \\ \texttt{Associated} \ WH \ \texttt{production} \ [\texttt{G.F.},\texttt{Grazzini},\texttt{Tramontano}(`11)] \rightarrow \ \texttt{WNNLO} \\ \texttt{Diphoton} \ \texttt{prod}.\ [\texttt{Catani},\texttt{Cieri},\texttt{de} \ \texttt{Florian},\texttt{G.F.},\texttt{Grazzini}(`11)] \rightarrow \ \texttt{2}\gamma\texttt{NNLO} \end{array}$

29/27

Giancarlo Ferrera – Università di Milano

QCD transverse-momentum resummation for Higgs and Vector Boson production at the LHC

Napoli – 28/3/2013

The q_T -subtraction formalism at NNLO

 $h_1(p_1) + h_2(p_2) \rightarrow V(M, q_T) + X$

V is one or more colourless particles (vector bosons, leptons, photons, Higgs bosons,...) [Catani, Grazzini('07)]. \bar{q}

• Key point I: at LO the q_T of the V is exactly zero.

$$d\sigma^V_{(N)NLO}|_{q_T \neq 0} = d\sigma^{V+\rm jets}_{(N)LO} \ , \label{eq:loss}$$

 $\bigvee_{\substack{V \\ V \\ \sigma \in g \\ k_T}} q_T = -k_T$

for $q_T \neq 0$ the NNLO IR divergences cancelled with the NLO subtraction method.

- The only remaining NNLO singularities are associated with the $q_T \rightarrow 0$ limit.
- Key point II: treat the NNLO singularities at q_T = 0 by an additional subtraction using the universality of logarithmically-enhanced contributions from q_T resummation formalism [Catani, de Florian, Grazzini('00)].

$$d\sigma_{N^{n}LO}^{V} \xrightarrow{q_{T} \to 0} d\sigma_{LO}^{V} \otimes \Sigma(q_{T}/M) dq_{T}^{2} = d\sigma_{LO}^{V} \otimes \sum_{n=1}^{\infty} \sum_{k=1}^{2n} \left(\frac{\alpha_{S}}{\pi}\right)^{n} \Sigma^{(n,k)} \frac{M^{2}}{q_{T}^{2}} \ln^{k-1} \frac{M^{2}}{q_{T}^{2}} d^{2}q_{T}$$

$$d\sigma^{CT} \xrightarrow{q_{T} \to 0} d\sigma_{LO}^{V} \otimes \Sigma(q_{T}/M) dq_{T}^{2}$$

QCD transverse-momentum resummation for Higgs and Vector Boson production at the LHC

Outline		Conclusions

The final result valid also for $q_T = 0$ is:

$$d\sigma^V_{(N)NLO} = \mathcal{H}^V_{(N)NLO} \otimes d\sigma^V_{LO} + \left[d\sigma^{V+\rm jets}_{(N)LO} - d\sigma^{CT}_{(N)LO} \right] \ , \label{eq:delta_eq}$$

where
$$\mathcal{H}_{NNLO}^{V} = \left[1 + \frac{\alpha_{S}}{\pi} \mathcal{H}^{V(1)} + \left(\frac{\alpha_{S}}{\pi}\right)^{2} \mathcal{H}^{V(2)}\right]$$

- The choice of the counter-term has some arbitrariness but it must behave $d\sigma^{CT} \xrightarrow{q_T \to 0} d\sigma^V_{LO} \otimes \Sigma(q_T/M) dq_T^2$ where $\Sigma(q_T/M)$ is universal.
- $d\sigma^{CT}$ regularizes the $q_T = 0$ singularity of $d\sigma^{V+\text{jets}}$: double real and real-virtual NNLO contributions, while (the finite part of) two-loops virtual corrections are contained in \mathcal{H}_{NNLO}^V .
- Final state partons only appear in dσ^{V+jets} so that NNLO IR-safe cuts are included in the NLO computation: observable-independent NNLO extension of the subtraction formalism.

Associated WH production in NNLO QCD

G.F., Grazzini, Tramontano arXiv:1107.1164

- A NLO calculation for $h_1 h_2 \rightarrow V + X$ requires:

 - dσ_{LO}^{V+jets} (and dσ_{LO}^V).
 H^{V(1)} [de Florian, Grazzini('01)]: contains the finite-part of the one-loop amplitude $c\bar{c} \rightarrow V$.
 - $d\sigma_{LO}^{CT}$: depends by the (universal) q_T -resummation coeff. A_1 and B_1 .
- A NNLO calculation for $h_1h_2 \rightarrow V + X$ requires also:

 - $d\sigma_{NLO}^{V+\text{jets}}$. $\mathcal{H}^{V(2)}$: contains the finite-part of the two-loops amplitude $c\bar{c} \rightarrow V$.
 - $d\sigma_{MO}^{CT}$: depends by the (universal) q_T -resummation coeff. A_2 and B_2 .
- WH production at NNLO within q_T-subtraction:
 - $d\sigma_{NLO}^{WH+jets}$.
 - $\mathcal{H}^{DY(2)}$ [Catani, Cieri, de Florian, G.F., Grazzini('12)].

Fully-exclusive NNLO calculation, implemented in the parton-level Monte Carlo code: [G.F., Grazzini, Tramontano('11)]

Giancarlo Ferrera – Università di Milano

QCD transverse-momentum resummation for Higgs and Vector Boson production at the LHC

Outline		Conclusions

$pp \rightarrow WH(\rightarrow l\nu b\bar{b})$

 p_T spectra of the fat jet at the LHC@14TeV for $m_H = 120 \, GeV$ at LO (dots), NLO (dashes) and NNLO (solid).

Selection strategy of [Butterworth et al.('08)]: search a large-p_T Higgs boson thorough a collimated bb pair decay. Cuts:
 Leptons: p^l_T > 30 GeV, |η^l| < 2.5, p^{miss}_T > 30 GeV, p^W_T > 200 GeV.
 Jets: Cambridge/Aachen algorithm with R=1.2. Fat jet (contain the bb) p^l_T > 200 GeV,

 $|\eta^{J}| < 2.5$ Jet veto: No other jets with

Jet veto: No other jets with $p_T > 20 GeV$ and $|\eta| < 5$.

- Large negative higher-order corrections: NLO (NNLO) effects -52%/-36% (-6%/-19%), depending on the scale choice (factor two around $\mu_F = \mu_R = m_W + m_H$).
- Jet veto strongly affect the higher order corrections ⇒ stability of fixed order calculation challenged.

33/27

Napoli - 28/3/2013

Giancarlo Ferrera – Università di Milano

$p\bar{p} \rightarrow WH(\rightarrow l\nu b\bar{b})$

 p_T spectra of the dijet system at the Tevatron for $m_H = 120 \, GeV$ at LO (dots), NLO (dashes) and NNLO (solid).

Outs:

Leptons: $p_T^l > 20 \, GeV$, $|\eta^l| < 2$, $p_T^{miss} > 20 \, GeV$. Jets: k_T algorithm with R=0.4. Exactly two jets (with $p_T > 20 \, GeV$ and $|\eta| < 2$) at least one of them has to be a *b* jet (with $|\eta| < 1$).

- Higher-order corrections: NLO (NNLO) effects from +13% to +30% (from -1% to +4%) depending on the scale choice (factor two around $\mu_F = \mu_R = m_W + m_H$). The scale dependence is at the level of about $\pm 1\%$ both at NLO and NNLO.
- The shape of the distribution is stable against perturbative corrections. Perturbative expansion under good control.

34/27

Giancarlo Ferrera – Università di Milano

Outline		Resummed results	Conclusions

 Left side: NLL+LO result compared with fixed LO result.
 Resummation cure the fixed order divergence at q_T → 0.

 Right side: variation of factorization and renormalization scales as in customary fixed-order calculations: ~ 5% at low q_T, ~ 9% at q_T ~ 50 GeV.

Finite LO component contribution is: $\lesssim 1\%$ near the peak, $\sim 8\%$ at $q_T \sim 20 \text{ GeV}$, $\sim 60\%$ at $q_T \sim 50 \text{ GeV}$.

 Integral of the NLL+LO curve reproduce the total NLO cross section to better 1% (check of the code).

35/27

Giancarlo Ferrera – Università di Milano

QCD transverse-momentum resummation for Higgs and Vector Boson production at the LHC

▲ ≧ → ≧ → ۹ ۹ ۹ Napoli – 28/3/2013

Outline		Resummed results	Conclusions

 Left side: NLL+LO result compared with fixed LO result.
 Resummation cure the fixed order divergence at q_T → 0.

 Right side: variation of factorization and renormalization scales as in customary fixed-order calculations: ~ 5% at low q_T, ~ 9% at q_T ~ 50 GeV.

Finite LO component contribution is: $\lesssim 1\%$ near the peak, ~ 8% at $q_T \sim 20 \text{ GeV}$, ~ 60% at $q_T \sim 50 \text{ GeV}$.

 Integral of the NLL+LO curve reproduce the total NLO cross section to better 1% (check of the code).

35/27

Giancarlo Ferrera – Università di Milano

Outline		Resummed results	Conclusions

 Left side: NLL+LO result compared with fixed LO result.
 Resummation cure the fixed order divergence at q_T → 0.

 Right side: variation of factorization and renormalization scales as in customary fixed-order calculations: ~ 5% at low q_T, ~ 9% at q_T ~ 50 GeV.

Finite LO component contribution is: $\lesssim 1\%$ near the peak, ~ 8% at $q_T \sim 20 \text{ GeV}$, ~ 60% at $q_T \sim 50 \text{ GeV}$.

 Integral of the NLL+LO curve reproduce the total NLO cross section to better 1% (check of the code).

35/27

Giancarlo Ferrera - Università di Milano

QCD transverse-momentum resummation for Higgs and Vector Boson production at the LHC

Napoli – 28/3/2013

Outline		Resummed results	Conclusions

 Left side: NLL+LO result compared with fixed LO result.
 Resummation cure the fixed order divergence at q_T → 0.

 Right side: variation of factorization and renormalization scales as in customary fixed-order calculations: ~ 5% at low q_T, ~ 9% at q_T ~ 50 GeV.

- Finite LO component contribution is: $\lesssim 1\%$ near the peak, $\sim 8\%$ at $q_T \sim 20 \text{ GeV}$, $\sim 60\%$ at $q_T \sim 50 \text{ GeV}$.
- Integral of the NLL+LO curve reproduce the total NLO cross section to better 1% (check of the code).

Giancarlo Ferrera – Università di Milano

QCD transverse-momentum resummation for Higgs and Vector Boson production at the LHC

Napoli – 28/3/2013

Outline		Resummed results	Conclusions

 Left side: NLL+LO result compared with fixed LO result.
 Resummation cure the fixed order divergence at q_T → 0.

 Right side: variation of factorization and renormalization scales as in customary fixed-order calculations: ~ 5% at low q_T, ~ 9% at q_T ~ 50 GeV.

- Finite LO component contribution is: $\lesssim 1\%$ near the peak, $\sim 8\%$ at $q_T \sim 20 \text{ GeV}$, $\sim 60\%$ at $q_T \sim 50 \text{ GeV}$.
- Integral of the NLL+LO curve reproduce the total NLO cross section to better 1% (check of the code).

Giancarlo Ferrera – Università di Milano

QCD transverse-momentum resummation for Higgs and Vector Boson production at the LHC

Napoli – 28/3/2013

Outline		Conclusions

- CDF data: 66 GeV $< M^2 < 116$ GeV, $\sigma_{tot} = 248 \pm 11 \, pb$ [CDF Collaboration ('00)] D0 data: 75 GeV $< M^2 < 105$ GeV, $\sigma_{tot} = 221 \pm 11 \, pb$ [D0 Collaboration ('00)]
- Our calculation implements γ*Z interference and finite-width effects. Here we use the narrow width approximation (differences within 1% level).
- NLL+LO resummed result fits reasonably well also in the $q_T \lesssim 20 \ GeV$ (without a model for non-perturbative effects).
- Suppression in the large-q_T region (q_T ≤ 60 GeV) (strong dependence from the resummation scale).

36/27

Giancarlo Ferrera - Università di Milano

Outline		Resummed results	Conclusions

- CDF data: 66 GeV $< M^2 < 116$ GeV, $\sigma_{tot} = 248 \pm 11 \, pb$ [CDF Collaboration ('00)] D0 data: 75 GeV $< M^2 < 105$ GeV, $\sigma_{tot} = 221 \pm 11 \, pb$ [D0 Collaboration ('00)]
- Our calculation implements γ^{*}Z interference and finite-width effects. Here we use the narrow width approximation (differences within 1% level).
- NLL+LO resummed result fits reasonably well also in the $q_T \lesssim 20 \ GeV$ (without a model for non-perturbative effects).
- Suppression in the large-q_T region (q_T ≤ 60 GeV) (strong dependence from the resummation scale).

36/27

Giancarlo Ferrera - Università di Milano

Outline		Resummed results	Conclusions

- CDF data: 66 GeV $< M^2 < 116$ GeV, $\sigma_{tot} = 248 \pm 11 \ pb$ [CDF Collaboration ('00)] D0 data: 75 GeV $< M^2 < 105$ GeV, $\sigma_{tot} = 221 \pm 11 \ pb$ [D0 Collaboration ('00)]
- Our calculation implements γ^{*}Z interference and finite-width effects. Here we use the narrow width approximation (differences within 1% level).
- NLL+LO resummed result fits reasonably well also in the $q_T \lesssim 20 \ GeV$ (without a model for non-perturbative effects).
- Suppression in the large-q_T region (q_T ≤ 60 GeV) (strong dependence from the resummation scale).

▲ E → E → Q Q Napoli – 28/3/2013

Giancarlo Ferrera - Università di Milano

Outline		Resummed results	Conclusions

- CDF data: 66 GeV $< M^2 < 116$ GeV, $\sigma_{tot} = 248 \pm 11 \ pb$ [CDF Collaboration ('00)] D0 data: 75 GeV $< M^2 < 105 \ GeV$, $\sigma_{tot} = 221 \pm 11 \ pb$ [D0 Collaboration ('00)]
- Our calculation implements γ^{*}Z interference and finite-width effects. Here we use the narrow width approximation (differences within 1% level).
- NLL+LO resummed result fits reasonably well also in the $q_T \lesssim 20 \text{ GeV}$ (without a model for non-perturbative effects).
- Suppression in the large-q_T region (q_T ≤ 60 GeV) (strong dependence from the resummation scale).

Napoli – 28/3/2013

Giancarlo Ferrera – Università di Milano

Outline		Resummed results	Conclusions

- CDF data: 66 GeV $< M^2 < 116$ GeV, $\sigma_{tot} = 248 \pm 11 \ pb$ [CDF Collaboration ('00)] D0 data: 75 GeV $< M^2 < 105 \ GeV$, $\sigma_{tot} = 221 \pm 11 \ pb$ [D0 Collaboration ('00)]
- Our calculation implements γ^{*}Z interference and finite-width effects. Here we use the narrow width approximation (differences within 1% level).
- NLL+LO resummed result fits reasonably well also in the $q_T \lesssim 20 \text{ GeV}$ (without a model for non-perturbative effects).
- Suppression in the large- q_T region ($q_T \lesssim 60 \text{ GeV}$) (strong dependence from the resummation scale).

36/27

Giancarlo Ferrera – Università di Milano

Outline		Resummed results	Conclusions

- NLL+LO results for different values of the resummation scale Q (estimate of higher-order logarithmic contributions).
- We vary $Q = m_Z/2$, $m_Z/4 \le Q \le m_Z$: uncertainty $\pm 12 - 15\%$ in the region $q_T \gtrsim 20 \text{ GeV}$ (it dominate over the renormalization and factorization scale variations).
- We expect a sensible reduction once the complete NNLL+NLO calculation will be available.

37/27

Napoli - 28/3/2013

Giancarlo Ferrera - Università di Milano

Outline		Resummed results	Conclusions

- NLL+LO results for different values of the resummation scale Q (estimate of higher-order logarithmic contributions).
- We vary $Q = m_Z/2$, $m_Z/4 \le Q \le m_Z$: uncertainty $\pm 12 - 15\%$ in the region $q_T \gtrsim 20 \text{ GeV}$ (it dominate over the renormalization and factorization scale variations).
- We expect a sensible reduction once the complete NNLL+NLO calculation will be available.

37/27

Giancarlo Ferrera - Università di Milano

Outline		Resummed results	Conclusions

- NLL+LO results for different values of the resummation scale Q (estimate of higher-order logarithmic contributions).
- We vary $Q = m_Z/2$, $m_Z/4 \le Q \le m_Z$: uncertainty $\pm 12 - 15\%$ in the region $q_T \gtrsim 20 \text{ GeV}$ (it dominate over the renormalization and factorization scale variations).
- We expect a sensible reduction once the complete NNLL+NLO calculation will be available.

37/27

Giancarlo Ferrera - Università di Milano

Outline		Resummed results	Conclusions

- NLL+LO results for different values of the resummation scale Q (estimate of higher-order logarithmic contributions).
- We vary $Q = m_Z/2$, $m_Z/4 \le Q \le m_Z$: uncertainty $\pm 12 - 15\%$ in the region $q_T \gtrsim 20 \text{ GeV}$ (it dominate over the renormalization and factorization scale variations).
- We expect a sensible reduction once the complete NNLL+NLO calculation will be available.

Giancarlo Ferrera - Università di Milano

QCD transverse-momentum resummation for Higgs and Vector Boson production at the LHC

Napoli - 28/3/2013