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Gauge Theory from Strings

String theory is a very powerful tool to analyze perturbative field
theories, and in particular gauge theories.

Behind this, there is a rather simple and well-known fact: in the
field theory limit α′ → 0 string theory S-matrix elements reproduce
vertices and effective actions in field theory.

I Closed Strings amplitudes ⇒ Gravitational amplitudes

I Open Strings amplitudes ⇒ Gauge amplitudes
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D Branes

The advances of the last 15 years in string theory have opened new
perspectives, and new insights on gauge theories can be obtained
using D Branes:

I The end points of open strings
with Neumann boundary conditions
in (p + 1) space-time directions
and Dirichlet boundary conditions
in the other (9− p),

∂σX
µ|σ=0,π = 0 , µ = 0, 1, . . . , p

X i |σ=0,π = Y i , i = p + 1, . . . , 9

define a (p + 1)-dimensional
hyperplane called Dp-brane.



World-volume Theory

• The presence of a D brane breaks Lorentz and Poincaré
invariance:

I SO(1, 9)⇒ SO(1, p)× SO(9− p)
I translational invariance is broken in the (9− p) directions

transverse to the brane

Open string excitations have no momentum in the transverse
directions ⇒ massless open strings describe a
Field Theory in (p + 1) dimensions.

• Also supersymmetry is generically broken, so we have a
Supersymmetric Field Theory with at most 16 charges
(instead of the original 32 of the bulk theory)!



N D3 branes in Flat Space

Open string spectrum:

Aµ , φi µ = 0, ..., 3 ; i = 1, ..., 6
λ A
α , λ̄α̇A α, α̇ = 1, 2 ; A = 1, 2, 3, 4

all fields transform in the adjoint
representation of SU(N)

Gauge vector multiplet of N = 4 SU(N) SYM in 4d



D branes as Gravitational Solitons

• D branes have a dual nature, since they are also sources of
closed strings

• A stack of N Dp-branes produces a non-trivial geometry in
the 10d-spacetime



D branes as Gravitational Solitons

• For instance D3 Branes are 4-dimensional
solitonic solutions of Type IIB Sugra charged
under a 4-form RR potential C4

eφ = gs

F5 = d(H(r)−1dx0 ∧ · · · ∧ dx3) + ∗dual
ds2 = H(r)−

1
2 ηµν dx

µdxν + H(r)
1
2 (dr2 + r2 dΩ2

5)

with r2 = x i xi and

H(r) = 1 +
4πgs Nα

′2

r4
,

∫
S5

∗F5 =

∫
S5

F5 = N



AdS/CFT correspondence

• In the near horizon limit ⇒ D3 brane geometry reduces to
AdS5 × S5

• On the field theory side, this limit is a decoupling limit ⇒
gauge degrees of freedom decouple from the gravitational
ones ⇒ N = 4 SU(N) SYM in d=4

• This is at the origin of the AdS/CFT correspondence, that
conjectures a duality between Type II B String Theory in
AdS5 × S5 and N = 4 SU(N) SYM in d=4.

• Strong quantum gauge effects can be computed using
classical gravitational calculations!

• This has been tested by
I comparison of correlation functions in SYM and SUGRA

(non-renormalization theorems)
I comparison of spectra in SYM and SUGRA (matching between

conformal dimensions in SYM with Kaluza-Klein masses)
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Gauge/Gravity Correspondence

Can this correspondence be established also in case of non
conformal theories and/or with reduced supersymmetry?

In this talk I will discuss in a specific example how a quantum field
theory with reduced supersymmetry can be described, also
non-perturbatively, by string theory and show that the two-fold
nature of D branes

allows to establish a quantitative non-perturbative

GAUGE / GRAVITY CORRESPONDENCE
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Branes on Orbifolds

I To construct gauge theories in 4d with reduced SUSY one
must change the 10d geometry:

R1,3 × R6 −→ R1,3 × X6

for suitable choices of X6.

I For example one could consider the Z2-orbifold:

R1,3 × R2 × R4/Z2

with Z2 : {x6, ..., x9} → {−x6, ...,−x9}

x0, . . . , x3

x4, x5

N D3

orbifold

fixed pointx6, . . . , x9



Branes on Orbifolds

I To adjust the matter content one must consider fractional D3
branes.

I They can be interpreted as a D5 branes wrapped around
singular exceptional 2-cycles S2 (with vanishing volume) of
the singular space X 6:

exceptional 2-cycle

wrapped D5-brane

fractional D3-brane

For this reason they are stuck at the singular points and
cannot move.



N = 2 SYM Theory from Fractional Branes

I It is realized by the massless
d.o.f. of open strings attached
to N fractional D3 branes in the
orbifold background

R1,3 × R2 × R4/Z2

where

Z2 : {x6, ..., x9} → {−x6, ...,−x9} x0, . . . , x3

x4, x5

N D3

orbifold

fixed pointx6, . . . , x9

I The orbifold breaks 1/2 SUSY in the bulk, the D3 branes
break a further 1/2:

32× 1

2
× 1

2
= 8 real supercharges → N = 2 SUSY
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0 1 2 3 4 5 6 7 8 9

D3 − − − − ∗ ∗ ∗ ∗ ∗ ∗

Since
SO(1, 9) → SO(1, 3)× SO(2)× SO(4)

the ten dimensional string coordinates XM , ψM and spin fields SA

split as follows

XM → Xµ , X , X̄ , X i , ψM → ψµ , Ψ, Ψ̄ , ψi

SA → SαS−Sȧ , S
α̇S+S ȧ , SαS+Sa , S

α̇S−Sa



I The Z2 orbifold acts as follows

NS sector Z2 parity

Aµ ↔ ψµ− 1
2

|k〉 +

φ ↔ Ψ̄− 1
2
|k〉 +

φi ↔ ψi
− 1

2

|k〉 −

R sector Z2 parity

Λαa ↔ SαS+Sa|k〉 +

Λαȧ ↔ SαS−Sȧ|k〉 −



I The Z2 orbifold acts as follows

NS sector Z2 parity

Aµ ↔ ψµ− 1
2

|k〉 + X

φ ↔ Ψ̄− 1
2
|k〉 + X

φi ↔ ψi
− 1

2

|k〉 −

R sector Z2 parity

Λαa ↔ SαS+Sa|k〉 + X

Λαȧ ↔ SαS−Sȧ|k〉 −

I Thus the surviving fields are: Aµ, φ, Λαa, which build a

N = 2 vector multiplet in d = 4



I The Z2 orbifold acts as follows

NS sector Z2 parity

Aµ ↔ ψµ− 1
2

|k〉 + X

φ ↔ Ψ̄− 1
2
|k〉 + X

φi ↔ ψi
− 1

2

|k〉 −

R sector Z2 parity

Λαa ↔ SαS+Sa|k〉 + X

Λαȧ ↔ SαS−Sȧ|k〉 −

I The surviving fields Aµ, φ, Λαa, can be organized in an N = 2
chiral superfield:

Φ = φ+ θΛ +
1

2
θγµνθFµν



Classical Geometry of N Fractional D3 branes

There is a non trivial profile for the usual (untwisted) fields
associated to D3 Branes:

• Metric

• Dilaton

• R-R self-dual 5-form field strength



Classical Geometry of N Fractional D3 branes

There is a non trivial profile for the usual (untwisted) fields
associated to D3 Branes:

• Metric

• Dilaton

• R-R self-dual 5-form field strength

There is a non trivial profile also for new (twisted) fields:

• NS-NS twisted scalar:

B2 = b Ω2 ⇒ b =

∫
S2

B2

• R-R twisted scalar:

C2 = c Ω2 ⇒ c =

∫
S2

C2

where Ω2 is the form dual to the singular cycle S2 of the orbifold.



The twisted scalar

It is convenient to combine the twisted fields in a complex scalar

t = c +
i

gs
b

that is the lowest component of a bulk scalar superfield

T = t + · · ·+ θ4
(
∂2t̄ + · · ·

)
and has a standard quadratic bulk action

Sbulk = −(π2α′)2

κ2

∫
d6x

(
∂ t̄ · ∂t + · · ·

)
, κ = 8π7/2α′2



World-volume Action

The scalar field t appears also in the world-volume action of the
fractional D3 brane:

Sbrane ∝ − 2N

∫
d6x t̄ δ2(z) +

∫
d4x t TrF 2 + c.c.



World-volume Action

The scalar field t plays a role also in the world-volume action of the
fractional D3 brane:

Sbrane ∝ − 2N

∫
d6x t̄ δ2(z) +

∫
d4x t TrF 2 + c.c.

I it plays the role of the gauge coupling constant

t ≡ τgauge =
θ

π
+ i

8π

g2



World-volume Action

The scalar field t plays a role also in the world-volume action of the
fractional D3 brane:

Sbrane ∝ − 2N

∫
d6x t̄ δ2(z) +

∫
d4x t TrF 2

I it plays the role of the gauge coupling constant

t ≡ τgauge =
θ

π
+ i

8π

g2

I it generates a source term for the equation of motion of t

�t = Jcl δ
2(z) , Jcl = − δ

δt̄
Sbrane



Gauge/Gravity Correspondence

I The solution of the field equation for t is

πi t(z) = πi t0 − 2N log
z

ε
, t0 =

i

2gs
Bertolini, Di Vecchia, M.F., Lerda, Marotta, Pesando; Polchinski; M.F., Liccardo, Musto.

I Identifying z with quantities with mass dimension 1

z ≡ 2πα′ a ε ≡ 2πα′ µ

we have
πi t(a) = πi t0 − 2N log

a

µ

i.e. the running coupling constant of N = 2 SU(N) SYM:

πit ≡ πiτgauge = πi t0 − 2N log
a

µ
= −2N log

a

Λ

where Λ = µ e−π/(4Ngs) is the dynamically generated scale of
the theory.
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Gauge/Gravity Correspondence

D3 branes

t

t(z) ≡ τgauge

In this correspondence

I the N source D3 branes are placed at z = 0, i.e. the
expectation value of the adjoint scalar of the world-volume
theory is vanishing: 〈φ〉 = 0.



Gauge/Gravity Correspondence

D3 branes

t

t(z) ≡ τgauge

In this correspondence

I the N source D3 branes are placed at z = 0, i.e. the
expectation value of the adjoint scalar of the world-volume
theory is vanishing: 〈φ〉 = 0.

I When the D branes are displaced from the origin, i.e.
〈φ〉 = diag(a1, a2, ·, aN) the solution is

πit(z) = −2N Tr log
z − 〈φ〉

Λ



Gauge/Gravity Correspondence

D3 branes

t

t(z) ≡ τgauge

In this correspondence

I the N source D3 branes are placed at z = 0, i.e. the
expectation value of the adjoint scalar of the world-volume
theory is vanishing: 〈φ〉 = 0.

I the point z at which we evaluate t(z) is identified with the
(complexified) energy scale at which we compute τgauge !



Is That all?

I The fractional brane solution has problems:

I it has a short distance (IR) singularity at |z | = ρs

I at |z | = 2πα′Λe−π/4gs ≥ ρs , the YM coupling diverges :
g2
YM →∞ and massive probes become tensionless ⇒

Enhançon

I This description breaks down for small z , that is for small a
(IR region !)



Is That all?

I From the Seiberg & Witten exact solution of N = 2 gauge
theories we know that the complete gauge coupling τ has
non-perturbative contributions due to instantons !

For example, for SU(2) we have

πi τ = −4 log
( a

Λ

)
+

3

2

Λ4

a4
+

105

64

Λ8

a8
+ · · ·



Is That all?

I From the Seiberg & Witten exact solution of N = 2 gauge
theories we know that the complete gauge coupling τ has
non-perturbative contributions due to instantons !

For example, for SU(2) we have

πi τ = −4 log
( a

Λ

)
+

3

2

Λ4

a4
+

105

64

Λ8

a8
+ · · ·

I Is there a way to obtain these instanton effects from the
gauge/gravity correspondence?



Instantons in Gauge Theories

I A gauge instanton in four dimensions is a non trivial solution
Aa
µ(x) of the field equations with

∗F a
µν = F a

µν S =
8π2

g2
k

I For instance the k = 1 SU(2) instanton in the regular gauge is
’t Hooft

Aa
µ = 2

ηaµν(x − x0)ν

(x − x0)2 + ρ2

I The SU(N) instanton depends on 4N moduli.



Instantons in Gauge Theories

I The more general instantonic solution of a gauge theory can
be constructed using the ADHM construction.

Atiyah, Drinfeld, Hitchin, Manin

I The gauge connection Aµ(x) is built up algebrically in terms
of a (k + 1) dimensional vector of quaternions, which satisfies
a certain number of conditions so that the field strenght Fµν
is automatically self-dual.

I In this way Aµ(x) depends on a number of parameters which
are more then the real instanton moduli, but are subject to a
number of bosonic and fermionic constraints: ADHM
constraint.

I To compute the instantonic contribution to the gauge degrees
of freedom effective action we have to integrate over the
instanton moduli space with an appropriate measure.



String description of Gauge Instantons

• Instanton-charge k solutions of SU(N) gauge theories
correspond to k D-instantons inside N D3 branes.

Witten 1995, Douglas 1995, Dorey 1999, ...

D-instantons

N D3-branes



D-Instantons

In a system of
k D-instantons inside
N D3 branes there
are different types of
open strings:

k D-instantons

D(–1)/D(–1)

D3/D3

N D3-branes

D3/D(–1)
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D-Instantons

In a system of
k D-instantons inside
N D3 branes there
are different types of
open strings:

k D-instantons

D(–1)/D(–1)

D3/D3

N D3-branes

D3/D(–1)

I D3/D3 open strings describe gauge degrees of freedom

I D(–1)/D(–1) and D(–1)/D3 open strings account for the
instanton moduli

Witten 1995; Douglas 1995

I the action of the D(–1)/D(–1) and D(–1)/D3 strings is the
ADHM measure of the instanton moduli space

Green-Gutperle 2000; Billó et al. 2002



Non-perturbative Gravitational Solution?

We could now ask two questions:

I Is it possible to compute a Gravitational Solution
corresponding to bound states of D branes and D-instantons?

I Is this classical profile related to the exact gauge coupling of a
dual theory?

Let’s try to answer these questions!
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Field Equations for t

We have derived the classical t profile solving the field equation

� t = Jcl δ
2(z)

derived from the bulk supergravity action:

Sbulk ∝
∫

d6x
(
∂ t̄ · ∂t + · · ·

)
and from the boundary action:

Sbrane ∝
∫

d6x Jcl t̄ δ
2(z)

All the relevant information is encoded in Jcl ⇒ terms linear in t̄
of the boundary action!
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The Current Jcl from the Prepotential

I As customary for N = 2 theories, the brane action can be
written in terms of a prepotential

Sbrane =

∫
d4x d4θ Fpert(Φ,T )

encoding all classical interactions among (massless) open and
closed strings.

I If we recall that

T = t + · · ·+ θ4
(
∂2t̄ + · · ·

)
we see that the source terms can be derived from Fpert(Φ,T )
as

Jcl =
p̄2

π

δFpert
δT

∣∣∣
T=0,Φ=〈φ〉
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The Complete Current J from the Prepotential

I At this point it is clear how to obtain the source J describing
also the non-perturbative contributions to the D3 branes
theory !

I To find J we have to include in F (Φ,T ) the non perturbative
contributions induced by D-instantons:

F (Φ,T ) = Fpert(Φ,T ) + Fnon−pert(Φ,T )



The Complete Current J from the Prepotential

I At this point it is clear how to obtain the source J describing
also the non-perturbative contributions to the D3 branes
theory !

I To find J we have to include in F (Φ,T ) the non perturbative
contributions induced by D-instantons:

F (Φ,T ) = Fpert(Φ,T ) + Fnon−pert(Φ,T )



The non-perturbative prepotential

The non-perturbative prepotential is an integral over the centered
D-instanton moduli space M(k):

Fnp(Φ,T ) =
∑
k

∫
dM̂(k)e

−Sinst(M(k),Φ,T )

Sinst(M(k),M,T ) = S(M(k)) + S(M(k),Φ) + S(M(k),T )

I S(M(k)): pure moduli action ⇒ ADHM measure on M(k)

I S(M(k),Φ): mixed moduli-gauge fields action

I S(M(k),T ): mixed moduli-gravity fields action
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Sinst(M(k),Φ,T )

All terms in Sinst(M(k),Φ,T ) can be computed from strings dia-
grams:

S(M(k)): µ

χ

tµ

aµ

aµ

χ̄ χ

S(M(k),Φ):

µ

µ

φ

θ

θ

µ

µ

Fµν

S(M(k),T ): τ

θ

τ̄

θ

θθ



Sinst(M(k),Φ,T )

The relevant term in our discussion is S(M(k),T ):

S(M(k),T ):

χ

χ

χ t

χ

S(M(k),T ) = −iπ
∞∑
`=0

1

`!
Tr(χ`) (ip̄)` T



The Non-perturbative Prepotential

The non-perturbative prepotential is:

Fnp(Φ,T ) =
∑
k

∫
dM̂(k)e

−Sinst(M(k),Φ,T )

= · · ·+ iπT
∑
k

∫
dM̂(k)

∞∑
`=0

1

`!
(ip̄)`Trχ` e−Sinst(M(k),Φ)



The Non-perturbative Prepotential

The non-perturbative prepotential is:

Fnp(Φ,T ) = · · ·+ iπT
∑
k

∫
dM̂(k)

∞∑
`=0

1

`!
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The integrals over the moduli space can be explicitly computed using
the localization tecnique

Nekrasov, 2002; Flume+Poghossian, 2002; Bruzzo et al, 2003; ...

but in fact their result is already known, since they are related to
the quantum expectation values of chiral correlators:∑

k

∫
dM̂(k)e

−Sinst(M(k),Φ)Trχ` ∝ 〈Trφ`+2〉inst

For instance:

〈Trφ4〉 = 2a4 + 6Λ4 − 9
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+ · · ·



The Non-perturbative Prepotential

Fnp(Φ,T ) = · · ·+ iπT
∑
k

∫
dM̂(k)

∞∑
`=0

1

`!
(ip̄)`Trχ` e−Sinst(M(k),Φ)

The integrals over the moduli space can be explicitly computed using
the localization tecnique

Nekrasov, 2002; Flume+Poghossian, 2002; Bruzzo et al, 2003; ...

so we get

Fnp(Φ,T ) = −iπT
∞∑
`=0

1

`!
(ip̄)`−2〈Trφ` 〉inst



The Exact Current J

We can now compute the complete superpotential:

F (Φ,T ) = Fpert(Φ,T ) + Fnp(Φ,T )



The Exact Current J

We can now compute the complete superpotential

F (Φ,T ) = −iπT
∞∑
`=0

1

`!
(ip̄)`−2 〈Trφ` 〉 ,

that depends on the complete quantum correlators 〈Trφ` 〉
and obtain the exact current J:

J =
p̄2

π

δF (Φ,T )

δT

∣∣∣
T=0,Φ=〈φ〉

= i

∞∑
`=0

1

`!
(ip̄)` 〈Trφ` 〉
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The Exact t Profile

Solving the Field Equation for t with the exact current:

�t = J δ2(z)

we find the new profile for t:

iπ t = iπ t0 − 2
〈

Tr log
z − φ
µ

〉
= −2

〈
Tr log

z − φ
Λ

〉
The exact solution has the same form of the classical one

iπ t = −2 Tr log
z − 〈φ〉

Λ

with the classical expectation values replaced by the quantum ones!



Closed Expression for the t Profile

The complete solution for the t field can be expressed in a closed
form exploiting the information about the gauge theory of the
source branes contained in the Seiberg-Witten curve.

In the simple SU(2) case, when the curve is a torus

y2 = (z2 − u)2 − 4Λ4

where u = 1
2 〈Trφ2〉 and Λ is the dynamically generated scale of

the effective theory, it can be shown that

iπ t = log
(z2 − u) −

√
(z2 − u)2 − 4Λ4

(z2 − u) +
√

(z2 − u)2 − 4Λ4
.

Similar expressions hold for the SU(N) cases.
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The t Profile

We have computed the exact t profile taking into account the
full dynamics of the D3 brane theory, including the
non-perturbative effects induced by the D-instantons:

t

D-instantons

−→

D3 branes

tcl



The t Profile

We have computed the exact t profile taking into account the
full dynamics of the D3 brane theory, including the
non-perturbative effects induced by the D-instantons:

t

D-instantons

−→

D3 branes

tcl

Going from tcl(z) to t(z) the result is naturally expressed as
function of u = 1

2 〈Trφ2〉 instead of a2 = 1
2 Tr 〈φ2〉.



t as Gauge Coupling?

Can this profile be read as the exact gauge coupling of a dual SU(2)
gauge theory?

iπ t = log
(z2 − u) −

√
(z2 − u)2 − 4Λ4

(z2 − u) +
√

(z2 − u)2 − 4Λ4



t as Gauge Coupling?

Can this profile be read as the exact gauge coupling of a dual SU(2)
gauge theory?

iπ t = log
(z2 − u) −

√
(z2 − u)2 − 4Λ4

(z2 − u) +
√

(z2 − u)2 − 4Λ4

I in the classical case the gauge coupling τ was identified with
the classical solution of 2 D3 branes sitting at the origin:
a = 0

I in the quantum case the equivalent choice is

u = a2 +
1

2

Λ4

a2
+

5

32

Λ8

a6
+

9

64

Λ12

a10
+ · · · = 0

⇒ Enhancon !!!



t as Gauge Coupling?

Can this profile be read as the exact gauge coupling of a dual SU(2)
gauge theory?

iπ t = log
z2 −

√
z4 − 4Λ4

z2 +
√
z4 − 4Λ4

I in the classical case, the complex variable z was identified
with the classical parameter of the Coulomb branch of the
dual theory a while Λ ≡ Λ

I in the quantum case we have to identify z with the quantum
parameter of the Coulomb branch of the dual theory u1/2 and
Λ ≡ Λ



t as Gauge Coupling?

Can this profile be read as the exact gauge coupling of a dual SU(2)
gauge theory?

iπ t = log
u −

√
u2 − 4Λ4

u +
√
u2 − 4Λ4

I Using the Seiberg-Witten curve of an SU(2) theory one can
verify that this expression does not coincide with the torus
modular parameter, which is in fact the gauge coupling τ !
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There is however a relation between τ and t!

I Using again the Seiberg-Witten curve one can verify that
t is the anharmonic ratio of the roots of the curve, which is
known to be a particular modular function of τ :

iπ t = log
u −

√
u2 − 4Λ4

u +
√
u2 − 4Λ4

= −16
η(4τ)8

η(τ)8

where η(τ) = eiπτ/24
∏

n(1− eiπnτ ) is the Dedekind
theta-function.



τ as Function of t

There is however a relation between τ and t!

I Using again the Seiberg-Witten curve one can verify that
t is the anharmonic ratio of the roots of the curve, which is
known to be a particular modular function of τ :

iπ t = log
u −

√
u2 − 4Λ4

u +
√
u2 − 4Λ4

= −16
η(4τ)8

η(τ)8

where η(τ) = eiπτ/24
∏

n(1− eiπnτ ) is the Dedekind
theta-function.

I This relation holds for all the SU(2) theories with an arbitrary
matter content.

I Similar relations hold for SU(3) and SU(4) (and presumably
for all the SU(N))!



τ as Function of t

There is however a relation between τ and t!

I Using again the Seiberg-Witten curve one can verify that
t is the anharmonic ratio of the roots of the curve, which is
known to be a particular modular function of τ :

iπ t = log
u −

√
u2 − 4Λ4

u +
√
u2 − 4Λ4

= −16
η(4τ)8

η(τ)8

where η(τ) = eiπτ/24
∏

n(1− eiπnτ ) is the Dedekind
theta-function.

I t(z) still contains all the information about the gauge theory
coupling, even if it does not directly coincide with it!



Conclusions and Outlooks

I D brane systems provide a very efficient set-up to describe
gauge theories in a “stringy way”.

I Also non-perturbative effects can be explicity described in this
set-up introducing instantonic branes.

I Gauge/Gravity correspondence can, at least in some cases,
incorporate also the non perturbative features of the field
theory.

I Possible developments:

I Gravity ⇒ compute the exact solution for the other
gravitational fields.

I Gauge ⇒ study strong coupling regime of the gauge theories.
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