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Outline of talk

Motivation

• Noncommutative geometry - Connes’ work on the standard
model of particle physics.

• Canonical quantum gravity / Ashtekar and loop variables.

Aim

• Intersection of noncommutative geometry and quantum
gravity.

The Construction

• A spectral triple over a configuration space of connections.

Physical Interpretation

• The construction encodes the Poisson structure of General
Relativity.

• Semi-classical analysis: emergence of classical gravity
coupled to interacting fermions.
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Noncommutative Geometry

I A Spectral Triple is a collection (B,H,D):
a ∗-algebra B represented as operators in the Hilbert space H; a
self-adjoint, unbounded operator D, acting in H such that:

1. The resolvent of D, (1 + D2)−1, is compact.
(spectrum of D nicely distributed)

2. The commutator [D, a] is bounded ∀a ∈ B.
(D first order)

I First example: Riemannian geometry

(B = C∞(M),H = L2(M,S),D =6D)

I 7 ”axioms”, Connes 2008: reconstruction theorem.

I Thus, it is possible to reformulate Riemannian geometry in terms
of algebras of functions and Dirac operators

I Topological data stored in the algebra
I Metric data stored in the Dirac operator
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I Key observation: This ”machinery” does not require the algebra
B to be commutative. This opens the door to noncommutative
geometry.

I A noncommutative example from physics: the standard model
coupled to gravity [Dubois-Violette, Connes, Lott, Chamseddine, Lizzi, Marcolli, ...]

I B = C∞(M)⊗ BF , BF = C⊕H⊕M3(C)

”almost commutative algebra”

I H = fermionic content of SM

I D =6D ⊗ 1 + γ5 ⊗ DF ,

I The classical action of the standard model coupled to gravity
emerges from a certain heat kernel expansion of D.
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Central point
Formulation of the classical standard model coupled to general
relativity as a single gravitational theory. The standard model
emerges from a modification of space-time geometry:

C∞(M)→ C∞(M)⊗ BF

Question
Does quantum field theory also translate into the language of
noncommutative geometry?
-this would presumably involve quantum gravity.

Our goal
To construct a framework which combines noncommutative
geometry with elements of quantum gravity/quantum field theory.
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Ashtekar variables and holonomy loops

I Hamiltonian formulation of GR.

I Foliation of space-time: M = R× Σ

I Ashtekar variables (Ai
j ,E

i
j ) on Σ

- SU(2)-connection (∼ extrinsic curvature of Σ).
- orthonormal frame field (intrinsic geometry of Σ)

I Poisson brackets

{Ai
j(x),E k

l (y)} = δil δ
k
j δ(x − y)

I The Hamiltonian involves two constraints

H =

∫
Nεabc E i

aE j
bF c

ij + N iE j
bF c

ij

(Hamilton, spatial diffeomorphism)
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I Shift focus from connections to holonomy and flux variables

hL(A) = Hol(L,A)

L loop on Σ

F a
S (E ) =

∫
S

εijkE a
i dx jdxk

S surface in Σ.

I Poisson brackets

{F a
S (E ), hC (A)} = ±hC1 (A)σahC2 (A)

C2

S

C1

σa generator of su(2), C = C1C2 are curves in Σ.
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Loop Quantum Gravity

I Attempt to quantize gravity using loop and flux variables
(pure gravity, no unification).

I In LQG the algebra of holonomy loops is handled via an
inductive system of graphs (finite, piece-wise analytic)

I Seen from a graph Γ the space A of smooth connections
with gauge group G is simply the space G n(Γ)

AΓ ' G n(Γ)

where n(Γ) is the number of edges in Γ (one copy of G for
each edge in Γ).
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I When one takes all graphs into account this leads to a
projective system of coarse grained spaces of connections:

. . .← AΓ ← AΓ′ ← AΓ′′ ← . . .' ' '

. . .← G n(Γ) ← G n(Γ′) ← G n(Γ′′) ← . . .

with structure maps

PΓΓ′ : G n(Γ′) → G n(Γ)

I Example:

P : G 4 → G

(g1, g2, g3, g4)→ g1 · g3

because Hol(∇, ε1) · Hol(∇, ε3) = Hol(∇, ε1 · ε3)
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I Result:
A ↪→ lim

←
AΓ =: Aa

[Ashtekar, Lewandowski]

I The space of connections is densely imbedded in a
pro-manifold Aa

. This forms the basis of LQG:

→ Ashtekar-Lewandowski measure (limit of Haar measures),

→ Kinematical Hilbert space, Hkin = L2(Aa
)

- non-separable.

→ quantization of the Poisson structure
- operators ĥL, F̂S

→ implementation of constraints

I Open Issues:

→ Classical limit.
→ Coupling matter.
→ Dynamics.
→ ...
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→ implementation of constraints

I Open Issues:

→ Classical limit.
→ Coupling matter.
→ Dynamics.
→ ...



Coupling Matter to
Quantum Gravity

via Spectral Triples

Jesper Møller Grimstrup

Outline of talk

Noncommutative
Geometry

Ashtekar variables and
holonomy loops

Loop Quantum Gravity

The Project

The construction

- - - - - - -

Spaces of Connections

The Poisson structure of
GR

The choice of basepoint

The 3D Dirac operator

The Dirac Hamiltonian

Many particle states

A bosonic sector

The spectral action

Connes Distance
Formula

Discussion

I Result:
A ↪→ lim

←
AΓ =: Aa

[Ashtekar, Lewandowski]

I The space of connections is densely imbedded in a
pro-manifold Aa

. This forms the basis of LQG:

→ Ashtekar-Lewandowski measure (limit of Haar measures),

→ Kinematical Hilbert space, Hkin = L2(Aa
)

- non-separable.

→ quantization of the Poisson structure
- operators ĥL, F̂S
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→ implementation of constraints

I Open Issues:

→ Classical limit.
→ Coupling matter.
→ Dynamics.
→ ...



Coupling Matter to
Quantum Gravity

via Spectral Triples

Jesper Møller Grimstrup

Outline of talk

Noncommutative
Geometry

Ashtekar variables and
holonomy loops

Loop Quantum Gravity

The Project

The construction

- - - - - - -

Spaces of Connections

The Poisson structure of
GR

The choice of basepoint

The 3D Dirac operator

The Dirac Hamiltonian

Many particle states

A bosonic sector

The spectral action

Connes Distance
Formula

Discussion

Our Project

I Aim: To construct a spectral triple that involves an algebra
of holonomy loops, i.e. functions on A:

L : ∇ → Hol(∇, L) ∈ Mn(C)

I Such a spectral triple will be a geometrical construction over
the configuration space A (i.e. ’quantum’),

I The Dirac-type operator will be a kind of functional
derivation operator.

I A canonical structure at the quantized level (top down
approach).

I Idea: use holonomy loops instead of Wilson loops (LQG) →
Noncommutative geometry.
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I Strategy: Use a system of graphs to capture information
about the space A:

1. Construct a spectral triple (B,D,H)Γ at the level of each
finite graph Γ. Since

AΓ ' G n

this is easy (Haar measure, Dirac operator etc.)

2. Ensure compatibility with the structure maps

PΓnΓm : AΓn → AΓm ,

for all structures (Hilbert space, algebra, Dirac operator)

3. take a limit over graphs to obtain a spectral triple over the
space of connections A.
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I This program only works with a countable system of graphs.

I In [hep-th/0802.1783] and [hep-th/0802.1784] we worked
with a triangulation T and its barycentric subdivisions.

....

I Later we worked with a projective system of cubic lattices.

....

I Both systems of graphs permit a spectral triple construction.
I But the cubic lattices turn out to be more natural

(semi-classical analysis).
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The construction

A single cubic lattice

I Let Γ be a finite 3D finite cubic
lattice with oriented edges {εi}
and vertices {vi}.

I Assign to each edge εi a group
element gi ∈ G

∇ : εi → gi

where G is a compact Lie-group.

I Think of ∇(εi ) = gi as the parallel transport of a connection
∇ along the edge εi .

I The space of such maps is denoted AΓ. Notice:

AΓ ' G n

I Think of the space AΓ as a coarse-grained approximation of
the space A of smooth connections.
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I Algebra:

I Choose a basepoint v0 in Γ.

I A loop L is a finite sequence
of edges L = {εi1 , εi2 , . . . , εin}
which starts and ends in v0.

I Discard trivial backtracking. v0
I Noncommutative product between loops by gluing them at

the basepoint.
I Involution of L by reversal of direction L∗ = L−1.
I The algebra BΓ is the algebra generated by loops running in

Γ. A general element in BΓ is of the form

a =
∑
i

aiLi , ai ∈ C

I Define
∇(L) = ∇(εi1 ) · ∇(εi2 ) · . . . · ∇(εin)

Think of ∇(L) as the holonomy of a connection ∇ around a
loop L.
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a =
∑
i

aiLi , ai ∈ C

I Define
∇(L) = ∇(εi1 ) · ∇(εi2 ) · . . . · ∇(εin)

Think of ∇(L) as the holonomy of a connection ∇ around a
loop L.
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I Hilbert space: There is a natural Hilbert space

HΓ = L2(G n,Ml(C))

involving a matrix factor Ml(C) (l size of rep. of G ). L2 is
with respect to the Haar measure on G n.

I The loop algebra BΓ is represented on HΓ by

fL · ψ(∇) = ∇(L) · ψ(∇) , ψ ∈ HΓ

with a matrix multiplication on the matrix factor in the
Hilbert space.

II Example: L = {ε1, ε4, ε
∗
6 , ε
∗
3}

fL ∼ g1·g4·(g6)−1·(g3)−1

v0
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I Dirac operator: at the level of a single graph Γ we can just
pick any Dirac operator D on G n

I All together: we have a spectral triple (BΓ,HΓ,D) at the
level of the graph Γ.
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A family of lattices

I Consider an infinite system of nested, 3-dimensional lattices

Γ0 → Γ1 → Γ2 → . . .

with Γi a subdivision of Γi−1

...

On the level of the associated manifolds AΓi this gives rise to
projections

AΓ0

P10←− AΓ1

P21←− AΓ2

P32←− AΓ3

P43←− . . .
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I Consider next a corresponding system of spectral triples

(B,H,D)Γ0 ↔ (B,H,D)Γ1 ↔ (B,H,D)Γ2 ↔ . . .

which are compatible with the maps between graphs.

I This requirement restricts the choice of D.

I At the level of a graph Γ, a compatible operator has the form

D =
∑
k

akDk

where the sum runs over different copies of G and where

Dk(ξ) =
∑
a

eak · deak
(ξ) ξ ∈ L2(G ,Cl(TG ))

where deak
are left-translated vectorfields on the k’th copy of

G and eak are elements in the Clifford algebra (next slide).
The an’s are free parameters related to the level of refinement
(The sum over copies of G is wrt a change of variables).
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I To accommodate this Dirac operator we extend the Hilbert
space HΓ

HΓ = L2(G n,Cl(T ∗G n)⊗Ml(C))

involving now the Clifford bundle over G n.

I One copy of SU(2): Cl(T ∗G) = Cliff (3) generated by three
elements ea,

{ea, eb} = 2δab , 〈ea〉 = 0 , 〈eaeb〉 = δab , . . .

I Several copies of SU(2): graded tensor product.
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The limit

I In the limit of repeated subdivisions, this gives us a
candidate for a spectral triple

(B,H,D)Γi −→ (B,H,D)A

I Result: For a compact Lie-group G the triple (B,H,D)A is a
semi-finite? spectral triple:

. D’s resolvent (1 + D2)−1 is compact (wrt. trace) and

. the commutator [D, b] is bounded

provided the sequence {ai} approaches ∞.

?semi-finite: everything works up to a symmetry group with
a trace (CAR algebra) [Carey, Phillips, Sukochev].
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What physical interpretation does this
spectral triple construction have?
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Spaces of connections

I Take the limit of intermediate spaces AΓ

A�

:= lim
Γ←−
AΓ (∼ G∞)

I There is a natural map (A is the space of smooth
connections)

χ : A → A�

, χ(∇)(εi ) = Hol(∇, εi )

where Hol(∇, εi ) is the holonomy of ∇ along εi .

I Result: χ is a dense embedding A ↪→ A�

I This shows that the spectral triple is a geometrical
construction over the configuration space A.

I This result mirrors the result in LQG based on piece-wise
analytic graphs.

I This result holds for many different systems of ordered
graphs. Fx triangulations with barycentric subdivisions.



Coupling Matter to
Quantum Gravity

via Spectral Triples

Jesper Møller Grimstrup

Outline of talk

Noncommutative
Geometry

Ashtekar variables and
holonomy loops

Loop Quantum Gravity

The Project

The construction

- - - - - - -

Spaces of Connections

The Poisson structure of
GR

The choice of basepoint

The 3D Dirac operator

The Dirac Hamiltonian

Many particle states

A bosonic sector

The spectral action

Connes Distance
Formula

Discussion

Spaces of connections

I Take the limit of intermediate spaces AΓ

A�

:= lim
Γ←−
AΓ (∼ G∞)

I There is a natural map (A is the space of smooth
connections)

χ : A → A�

, χ(∇)(εi ) = Hol(∇, εi )

where Hol(∇, εi ) is the holonomy of ∇ along εi .

I Result: χ is a dense embedding A ↪→ A�

I This shows that the spectral triple is a geometrical
construction over the configuration space A.

I This result mirrors the result in LQG based on piece-wise
analytic graphs.

I This result holds for many different systems of ordered
graphs. Fx triangulations with barycentric subdivisions.



Coupling Matter to
Quantum Gravity

via Spectral Triples

Jesper Møller Grimstrup

Outline of talk

Noncommutative
Geometry

Ashtekar variables and
holonomy loops

Loop Quantum Gravity

The Project

The construction

- - - - - - -

Spaces of Connections

The Poisson structure of
GR

The choice of basepoint

The 3D Dirac operator

The Dirac Hamiltonian

Many particle states

A bosonic sector

The spectral action

Connes Distance
Formula

Discussion

Spaces of connections

I Take the limit of intermediate spaces AΓ

A�

:= lim
Γ←−
AΓ (∼ G∞)

I There is a natural map (A is the space of smooth
connections)

χ : A → A�

, χ(∇)(εi ) = Hol(∇, εi )

where Hol(∇, εi ) is the holonomy of ∇ along εi .

I Result: χ is a dense embedding A ↪→ A�

I This shows that the spectral triple is a geometrical
construction over the configuration space A.

I This result mirrors the result in LQG based on piece-wise
analytic graphs.

I This result holds for many different systems of ordered
graphs. Fx triangulations with barycentric subdivisions.



Coupling Matter to
Quantum Gravity

via Spectral Triples

Jesper Møller Grimstrup

Outline of talk

Noncommutative
Geometry

Ashtekar variables and
holonomy loops

Loop Quantum Gravity

The Project

The construction

- - - - - - -

Spaces of Connections

The Poisson structure of
GR

The choice of basepoint

The 3D Dirac operator

The Dirac Hamiltonian

Many particle states

A bosonic sector

The spectral action

Connes Distance
Formula

Discussion

Spaces of connections

I Take the limit of intermediate spaces AΓ

A�

:= lim
Γ←−
AΓ (∼ G∞)

I There is a natural map (A is the space of smooth
connections)

χ : A → A�

, χ(∇)(εi ) = Hol(∇, εi )

where Hol(∇, εi ) is the holonomy of ∇ along εi .

I Result: χ is a dense embedding A ↪→ A�

I This shows that the spectral triple is a geometrical
construction over the configuration space A.

I This result mirrors the result in LQG based on piece-wise
analytic graphs.

I This result holds for many different systems of ordered
graphs. Fx triangulations with barycentric subdivisions.



Coupling Matter to
Quantum Gravity

via Spectral Triples

Jesper Møller Grimstrup

Outline of talk

Noncommutative
Geometry

Ashtekar variables and
holonomy loops

Loop Quantum Gravity

The Project

The construction

- - - - - - -

Spaces of Connections

The Poisson structure of
GR

The choice of basepoint

The 3D Dirac operator

The Dirac Hamiltonian

Many particle states

A bosonic sector

The spectral action

Connes Distance
Formula

Discussion

Spaces of connections

I Take the limit of intermediate spaces AΓ

A�

:= lim
Γ←−
AΓ (∼ G∞)

I There is a natural map (A is the space of smooth
connections)

χ : A → A�

, χ(∇)(εi ) = Hol(∇, εi )

where Hol(∇, εi ) is the holonomy of ∇ along εi .

I Result: χ is a dense embedding A ↪→ A�

I This shows that the spectral triple is a geometrical
construction over the configuration space A.

I This result mirrors the result in LQG based on piece-wise
analytic graphs.

I This result holds for many different systems of ordered
graphs. Fx triangulations with barycentric subdivisions.



Coupling Matter to
Quantum Gravity

via Spectral Triples

Jesper Møller Grimstrup

Outline of talk

Noncommutative
Geometry

Ashtekar variables and
holonomy loops

Loop Quantum Gravity

The Project

The construction

- - - - - - -

Spaces of Connections

The Poisson structure of
GR

The choice of basepoint

The 3D Dirac operator

The Dirac Hamiltonian

Many particle states

A bosonic sector

The spectral action

Connes Distance
Formula

Discussion

Spaces of connections

I Take the limit of intermediate spaces AΓ

A�

:= lim
Γ←−
AΓ (∼ G∞)

I There is a natural map (A is the space of smooth
connections)

χ : A → A�

, χ(∇)(εi ) = Hol(∇, εi )

where Hol(∇, εi ) is the holonomy of ∇ along εi .

I Result: χ is a dense embedding A ↪→ A�

I This shows that the spectral triple is a geometrical
construction over the configuration space A.

I This result mirrors the result in LQG based on piece-wise
analytic graphs.

I This result holds for many different systems of ordered
graphs. Fx triangulations with barycentric subdivisions.
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The Poisson structure of GR

I Recall the Poisson bracket between
loop and flux variables in LQG:

{F a
S (E ), hC (A)} = ±hC1 (A)σahC2 (A)

C2

S

C1

I First, for an edge εi corresponding to the i ′th copy of G in
G n we find

[deai
,∇(εi )] = [deai

, gi ] = giσ
a

where σa are generators of the Lie algebra g.

I Next, the commutator between deai
and the loop

L = {ε1, ...εi , ...εn} is

[deai
, fL] = ∇(ε1) . . . [deai

,∇(εi )] . . .∇(εn)

I In short: the action of deai
is to insert a Lie algebra

generators at a vertex in the loop.
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I This resembles the Poisson structure between loop and flux
variables: a Lie-group generator is inserted into a loop in an
intersection point.

I Thus, the left-invariant vector field corresponds to a
flux-operator sitting at the endpoint of the corresponding
edge.

I This means that D can be
interpreted as a sum of flux
operators, one for each copy of G .

ε2

ε1

Si

vi

I The corresponding surfaces are ’dummy’ in the sense that
only the intersection points play any role in the following.
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I In the continuum limit of repeated subdivisions the spectral
triple contains information equivalent to a representation of
the Poisson brackets of General Relativity:

I the holonomy loops build the algebra.
I the flux operators are stored in the Dirac type operator.

I Point: the spectral triple construction captures information
about the kinematical part of GR.
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The choice of basepoint

I Notice: The choice of basepoint matters when one works
with the noncommutative algebra of holonomy loops - in
contrast to traced loops/Wilson loops (LQG).

I Let L be a loop based in v0. To
shift L to a loop L′ based in v1 we
need a parallel transport between
v0 and v1

L′ = Up(v0, v1)LU∗p (v0, v1)

v0

v1

where p = {εi1 , εi2 , . . . , εin} is a path from v0 to vi and Up
the corresponding parallel transport along p

Up(v0, v1) = gi1 · gi2 · . . . · gin

I Aim: to find states which exhibit an independency on the
choice of basepoint.
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I Introduce the operators

Ũp = Ũi1 Ũi2 · . . . · Ũin

with

Ũi =
i

2

(
eai σ

a + ie1
i e

2
i e

3
i

)
gi

associated to the path p = {εi1 , εi2 , . . . , εin} .

I These operators are unitary and mutually orthogonal

〈Ũp|Ũp′〉 =

{
1 if p = p′

0 if p 6= p′

due to the elements of the Clifford algebra in Ũi .
I Recall that

[D,∇(εi )] = an
(
eai giσ

a
)

which suggest that Ũp is something like an n-form.
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I Consider now the object

ξk(ψ) =
1

N

∑
i

Ũpiψ(vi )U−1
pi

where ψ(vi ) is an arbitrary 2x2 matrix associated to the
vertex vi (to become a spinor), and where the sum runs over
vertices in Γk\Γk−1.

I We find that
〈ξk |L|ξk〉 = 〈ξk |Tr(L)|ξk〉

which means that the dependency on the basepoint is
absent on these states.

I These states are gauge covariant objects.
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Semi-Classical States

I Pick a point (A,E ) in phase-space (Ashtekar variables).

Coherent states φt,k(E ,A) in L2(AΓk
) are given by (t ∼ l2

P)

Φt,k
(E ,A) =

∏
i

φt,i(E ,A)

where φt,i(E ,A) are coherent states on the i ’th copy of G

satisfying [Hall 1994]:

lim
t→0
〈φ̄t,i(E ,A)|∇(εi )|φt,i(E ,A)〉 = Hol(εi ,A)

lim
t→0
〈φ̄t,i(E ,A)|tdeai

|φt,i(E ,A)〉 = i2−2kE a
n (vi+1)

I Consider now states

Ψt
k(ψ,E ,A) = ξk(ψ)Φt,k

(A,E)

I This is a natural sequence of states {Ψt
k} assigned to each

level of subdivision of lattices .
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The Dirac operator in 3 dimensions

I The expectation value of D on the states Ψt
k will only

involve terms of the form (due to Clifford elements)

〈Ũi1 Ũi2 . . . Ũinψ(vi )...|eain+1
deain+1

|Ũi1 Ũi2 . . . Ũin+1ψ(vi+1)...〉

→ points ”one step apart” are coupled.

I The expectation value of D on the states Ψt
k gives

lim
k→∞

lim
t→0
〈Ψt

k |tD|Ψt
k〉

=
1

2

∫
Σ

d3xψ∗(x) (σaEm
a ∇m +∇mσ

aEm
a )ψ(x)

provided we set an = 23n and write gi ' 1 + Ai and
∇i = ∂i + [Ai , ·].

I This is the expectation value of the spatial Dirac operator on
a 3d manifold Σ.

I Important: the gravitational variables emerges from our
loop/flux operators.
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The Dirac Hamiltonian

I To obtain the Dirac Hamiltonian we need the lapse and shift
fields. There are several ways these fields can be introduced
in the spectral triple construction.

I One way: introduce the modified Dirac type operator

DM :=
∑

ake
i
kdeik

Mk

where Mk is an arbitrary two-by-two self-adjoint matrix
associated to the k’th edge.

I The expectation value of DM on the states Ψt
k gives now

lim
k→∞

lim
t→0
〈Ψt

k |tDM |Ψt
k〉

=

∫
Σ

d3xψ∗(x)

(
1

2
(NσaEm

a ∇m + N∇mσ
aEm

a ) + Nm∂m

)
ψ(x)

+ zero order terms.

provided we write Mi = N(x)12 + Na(x)σa.

I This is the principal part of the Dirac Hamiltonian in 3+1 D.
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Comments

I This suggest that these semi-classical states should be
interpreted as one-fermion states in a given foliation and
given background gravitational fields.

I The semi-classical analysis seems to single out cubic lattices
− the lattices play the role of a coordinate system.

I The semi-classical analysis determines the sequence {an} of
scaling parameters.

I The lattice ”disappear” in this limit and the symmetries are
restored. (return to ”connection picture”).

I The fermion ”emerge” from the matrix factor in the Hilbert
space.

I Note: for simplicity, we call the double limit limk→∞ limt→0

for the semi-classical limit.
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Many particle states

[soon to be published]

I Question: are there also ’many-particle states’ in H?

I Consider states of the form:

Ψt
k(ψ1, . . . , ψn,E ,A) := ξk(ψ1) . . . ξk(ψn)Φt,k

(A,E)

(anti-symmetrized)

I When we compute the expectation value of the Dirac type
operator DM on these states we obtain, in the semi-classical
limit, a system of fermions coupled to the gravitational field,
with an additional ”interaction” (here, n = 2, M = 12)

cl + cont.−→
∫

Σ

dx

∫
Σ

dyTr
(
U(y , x) (6∇ψ∗2 (x))ψ1(x)U−1(y , x)ψ∗1 (y)ψ2(y)

)
+ ’symmetric terms’
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I In the limit where gravity is ”turned off”

6∇ →6∂ , Ui → 12

a free, fermionic QFT emerge (provided certain signs are
chosen correctly).

I Thus, the spectral triple provides a link between canonical
quantum gravity and fermionic QFT.

I Question: what interactions (local, non-local) emerge
through perturbation around this flat limit?
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A bosonic sector

[work in progress]

I What about the pure gravity sector? The operator

HM =
∑
i

Mi [D
2, [D2, Li − L−1

i ]]

where Lk , k ∈ {1, 2, 3}, are loops in a plaquet in Γk\Γk−1,
will descent to the Hamilton

lim
k→∞

lim
t→0
〈Φt,k

(E ,A)|HM |Φt,k
(E ,A)〉 ∼

∫
Σ

NE i
aE j

bF c
ij ε

ab
c+NaEm

a E n
b F b

mn

with Mi = N12 + iNaσa .

I GR can be recovered in a classical limit

I Key question: does the constraint algebra close
(semi-classically)?
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I Consider the operator

DM + HM

and its expectation value on the states

Ψt
k(ψ1, . . . , ψn,E ,A)

I It turns out that the fermionic degrees of freedom vanish
from the HM -part. Thus, the semiclassical expectation value
of this operator gives a fermionic system coupled to gravity

lim
k→∞

lim
t→0
〈Ψt

k(ψ1, . . . , ψn,E ,A)|DM + HM |Ψt
k(ψ1, . . . , ψn,E ,A)〉

= ”Fermionic sector” + Hgravity

⇒ unified picture emerge.

I Question: Why the operator DM + HM?
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The spectral action

I The trace of heat-kernel resembles a partition function

Tr exp(−s(D)2) ∼
∫
A

[d∇] exp
(
−s(D)2

)

I This object is finite (appropriate choice of sequence {an}).

I Thus, one motivation for this spectral triple construction
might be that it ensures a finite partition function.

I The construction is well defined in any dimensions.
... work in progress.
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Connes Distance Formula

I Given a spectral triple (B,H,D) over a manifold M the
distance formula reads

d(ξx , ξy ) = sup
b∈B

{
|ξx(b)− ξy (b)|

∣∣|[D, b]| ≤ 1
}

where ξx , ξy are homomorphisms B → C. This can be
generalized to noncommutative spaces/algebras.

I Question: What about Connes distance formula for the
spectral triple (B,H,D) based on the algebra of loops? A
distance between field configurations? - Yes.

I If two configurations differ on a large scale, then the distance
between them will be ’large’ (difference weighted with small
a’s - large distance)

I If they differ only on short scales, then the distance will be
’small’ (difference weighted with large a’s - small distance).

I The spectral triple construction is a metric structure on a
configuration space of connections. This idea goes back to
Feynman, Singer ...
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Discussion

I We have found a semi-finite spectral triple (B,H,D) which
encodes the kinematics of quantum gravity.

- non-perturbative.
- background independent.

I This approach permits a well-defined semi-classical +
continuum limit.

I Matter couplings emerge naturally - the Dirac Hamiltonian is
an output.

I Also ’many-particle states’ reside in H. They entail non-local
fermion couplings in the semi-classical limit.

I In the ’flat-space-limit’ a free fermionic QFT emerge.

I A ”not too complicated” operator HM can be constructed.
This leads to the pure gravity Hamiltonian in the
semi-classical limit.

I The sum of the Dirac operator and HM entails in this limit a
system of interacting fermions coupled to gravity.
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Discussion

• Are the non-local fermionic interactions ”realistic”?

What
interaction do they generate when one perturbs around the
flat-space limit (free QFT)? - within the realm of local QFT?

• why do the states look the way they do? They resemble a
GNS construction around the states Φt,k

(E ,A).

• What principle determines the operator DM + HM?
- guess: Tomita-Takesake theory

• Can we take the continuum limit without the semi-classical
approximation?
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