

Seminari teorici del venerdì

Naples - January 28th, 2011

Enrico Borriello

Università degli Studi di Napoli "Federico II" & INFN Sezione di Napoli

Dark Matter Electron Anisotropy: A universal upper limit

Based on Borriello, Maccione, and Cuoco arXiv:10120041

Outline

Part 1: Dark Matter

- The content of the Universe
- Candidates
- Detection techniques

Part 2: DM Galactic Substructures

- N-body simulations
- Detectability at γ -rays energies
- Detectability at radio wavelenghts
- Angular power spectrum of γ -rays

Part 3: DM electron anisotropy

- Definition of dipole anisotropy
- Fermi LAT upper limit
- Limit cases
- Clumpiness and anisotropy
- Universality of the DM electron anisotropy upper limit

Part 4: Astrophysical implications

- Two possibilities
- AP dominated anisotropy scenario
- Excluding the DM interpretation of a forthcoming anisotropy detection

Part 1: Dark Matter

The content of the Universe

Larson et al. arXiv:1001.4635

22.7 %.

Baryonic matter4.5 %Atoms, ordinary matter

Dark matter No interaction with light Only gravitational effect

Dark energy 72.8 % "Anti-gravity" accelerated expansion of he Universe

dark energy 72.8 %

baryonic matter 4.5 %

dark matter

22.7 %

Naples - January 28th, 2011

Candidates

Feng arXiv:1003.0904

	WIMPs	SuperWIMPs	Light gravitino	Hidden DM	Sterile neutinos	Axions
Motivation	Gauge hierar. prob.	Gauge hierar. prob.	Gauge hierar. & NP flavor prob.	Gauge hierar. & NP flavor prob.	Neutino masses	Strong CP
Naturally correct Ω	Yes	Yes	No	Possible	No	No
Production mechanism	Freeze out	Decay	Thermal	Various	Various	Various
Mass range	GeV - TeV	GeV - TeV	eV - keV	GeV - TeV	keV	µeV - meV
Temperature	Cold	Cold/Warm	Cold/Warm	Cold/Warm	Warm	Cold
Collisional	t	t	1, +	\checkmark	ナ	t
CMB & BBN	×	1	×	\checkmark	×	+
Dir. detection		t	X	\checkmark	×	-
Ind. detection		\checkmark	X	\checkmark	1	ナ
Colliders	✓	 ✓ 	✓	✓	+	+

Detection techniques

Direct detection		- CAN CAL
Phenomenon:	Interaction of the DM with the visible matter	
Experiments:	Underground laboratories	
Phys. observable:	Energy recoil of a nucleus	

Inirect detection	
Phenomenon:	DM annihilation or decay
Experiments:	Space telescopes
Phys. observable:	Cosmic ray spectrum

Colliders

Phenomenon:	Production of DM
Experiments:	Particle accelerators
Phys. observable:	Missing transverse momentum

Detection techniques: Indirect detection

Detection techniques: Indirect detection

Detection techniques: Indirect detection

Ackermann et al. ArXiv:1008.3999

Naples - January 28th, 2011

Detection techniques: Indirect detection

Adriani et al. ArXiv:0810.4995

Naples - January 28th, 2011

Detection techniques: Indirect detection

Adriani et al. ArXiv:1007.0821

Part 2: DM galactic substructures

DM galactic substructures N-body simulations

Diemand et al. arXiv:0805.1244 Springer at al. arXiv:0809.0898

Numerical simulations: **smooth** and **homogeneous** Universe before a redshift of z = 100.

Then, the tiny **fluctuations** of the matter distribution began to **collapse** because of gravity.

The first objects to form are Earth-mass dark-matter **subhaloes**.

Stable against gravitational disruption: over **10**¹⁷ clumps survive.

Mass distribution: ~ m^{-2} .

DM galactic substructures N-body simulations

800 kpc³

Diemand et al. arXiv:0805.1244 Springer at al. arXiv:0809.0898

The highest mass objects: 10¹⁰ M_e (10% of the mass of the Milky Way)-

Equipartition in mass among the smooth halo and the subhaloes distri_ bution is found if the results are extra_ polated till Earth mass substructures.

Current numerical resolution: $10^{4.5} M_{\odot}$ Via Lactea II $10^4 M_{\odot}$ Aquarius

Detectability at γ -rays energies

Pieri et al. arXiv:arXiv:0908.0195

DM particle: Neutralino DM mass: 40 GeV Annihilation rate: 3×10^{-26} cm³ s⁻¹ Energy treshold: 3 GeV Annihilation channel: $\chi + \chi \rightarrow b$ quarks $\rightarrow \pi^0 \rightarrow \gamma + \gamma$

Full sky map of the number of photons produced by DM annihilation

Observable clumps:

Via Lactea II 9.2 \pm 2.6 at 3 σ

E. Borriello

Naples - January 28th, 2011

Detectability at radio wavelenghts

Borriello et al. arXiv:arXiv:0809.2990

Clumps from 10⁷ to 10¹⁰ $M_{\rm sun}$

flux density (GeV cm⁻² s^{-1} Hz⁻¹)) 10^{-18} (10^{-21} O 10^{-24} \cdot 10^{-27} At $v \approx 23$ GHz (1st WMAP band) the flux is order 10⁻²³ GeV cm⁻²s⁻¹Hz⁻¹ (100 GeV $\tilde{\chi}_1$)

 e^{\pm} diffuse in a ~1 kpc radius sphere:

 $\Omega \sim 0.1 \text{ sr}$ (d ~ 5 kpc)

 $Flux/\Omega \sim 10^{-22} \text{ GeV cm}^{-2}\text{s}^{-1}\text{Hz}^{-1}\text{sr}^{-1}$

Experiment	Sensitivity
	GeV cm ⁻² s ⁻¹ Hz ⁻¹ sr ⁻¹
WMAP	1 O ⁻¹⁸
ALMA	10-19

Angular power spectrum of γ -rays

Siegal-Gaskins arXiv:0807.1328

Fluctuation of the radiation intensity coming from the angular region Ω :

$$\delta I(\Omega) = \frac{I(\Omega) - \langle I \rangle}{\langle I \rangle} = \sum_{lm} a_{lm} Y_{lm}(\Omega)$$

Angular power spectrum of $\delta I(\Omega)$:

$$C_l = \langle |a_{lm}|^2 \rangle = \frac{\sum_m |a_{lm}|^2}{2l+1}$$

Naples - January 28th, 2011

Angular power spectrum of γ -ray emission

Siegal-Gaskins arXiv:0807.1328

Fluctuation of the radiation intensity coming from the angular region Ω :

$$\delta I(\Omega) = \frac{I(\Omega) - \langle I \rangle}{\langle I \rangle} = \sum_{lm} a_{lm} Y_{lm}(\Omega)$$

Angular power spectrum of $\delta I(\Omega)$:

$$C_l = \langle |a_{lm}|^2 \rangle = \frac{\sum_m |a_{lm}|^2}{2l+1}$$

DM particle: Neutralino (MSSM)

DM mass: 85 GeV Annihilation rate: 3 × 10⁻²⁶ cm³ s⁻¹ Energy treshold: 10 GeV

Annihilation channel:

 $\chi + \chi \rightarrow$ quarks $\rightarrow \pi^0 \rightarrow \gamma + \gamma$

Intelude: Why electron anisotropy could be better?

A lot of uncertainty affects every attempt to detect the DM

Its **nature** (mass, rate of annihilation or decay, etc.)

Spiked or cored galactic mass **density** profile?

Smooth or clumpy distribution

DM electron intrinsic anisotropy will be defined in terms of a ratio in which the two term vary in a coherent way with respect to integrated unknowns. Any multiplicative factors is simplified.

Electrons and positrons can travel only few kpc. Almost no difference among spiked and cored profiles

etc...

Part 3: Electron anisotropy

Definition of dipole anisotropy

e.g. Berezinskii et al., North Holland, 1990

I = cosmic rays intensity (# of particles/sr/cm²/s) Total flux: $\phi(E) = \int I(E) d \Omega$

Diffusion in the turbulent $GMF \rightarrow almost$ isotropic flux

Residual degree of anisotropy:

$$\delta = \frac{I_{max} - I_{min}}{I_{max} + I_{min}}$$

Dipole anisotropy: $I(E) = I_0(E) + \overline{I_1(E) \cos \theta}$

Anisotropy:

 $\delta = \frac{I_1}{I_1}$

Total flux: $\phi = 4 \pi I_0 = nv$

Flux from
$$z: \phi_z = \frac{4\pi}{3}h$$

 I_{max} θ I_{min}

Definition of dipole anisotropy

e.g. Berezinskii et al., North Holland, 1990

I = cosmic rays intensity (# of particles/sr/cm²/s) Total flux: $\phi(E) = \int I(E) d \Omega$

Diffusion in the turbulent $GMF \rightarrow almost$ isotropic flux

Residual degree of anisotropy:

$$\delta = \frac{I_{max} - I_{min}}{I_{max} + I_{min}}$$

Dipole anisotropy: $I(E) = I_0(E) + I_1(E) \cos \theta$

Anisotropy:

 $\delta = \frac{I_1}{I}$

Total flux: $\phi = 4 \pi I_0 = nv$

Flux from z:
$$\phi_z = \frac{4\pi}{3} I_1$$

In a diffusive approach:

$$\phi_z = -D_{zz} \frac{\partial n}{\partial z}$$

If the propagation is isotropic:

$$\vec{\delta} = \frac{3D(E)}{v} \frac{\vec{\nabla}\phi}{\phi}$$

Fermi LAT upper limit

Fermi LAT Collaboration, arXiv:1008.5119

Naples - January 28th, 2011

Limit cases

Clumpiness and anisotropy

Borriello et al. arXiv:arXiv:1012.0041

The ideal case:

Several MC simulation of the distribution of substructure.

Flux from each substructure. Sum over the distribution.

Mean over the realizations.

E. Borriello

The real case:

We are dealing with 10¹⁷ substructures!

We start evaluating the mean values analytically. We discover that the smooth halo and the small clumps do not contribute to the anisotropy.

10⁻⁶ o 10 M_☉ → mean flux, zero anisotropy

 $10 \circ 10^{10} \text{ M} \rightarrow 100 \text{ MC}$ realizations

$$\delta_{DM} = \frac{3 D(E)}{v} \frac{|\vec{\nabla} \phi_{DM}^{high mass}|}{\phi_{DM}^{smooth} + \phi_{DM}^{low mass} + \phi_{DM}^{high mass}}$$

Naples - January 28th, 2011

Universality of the DM electron anisotropy upper limit

Borriello et al. arXiv:arXiv:1012.0041

Naples - January 28th, 2011

Universality of the DM electron anisotropy upper limit

Borriello et al. arXiv:arXiv:1012.0041

Universality of the DM electron anisotropy upper limit

Borriello et al. arXiv:arXiv:1012.0041

Naples - January 28th, 2011

Universality of the DM electron anisotropy upper limit

Mass:

Naples - January 28th, 2011

Part 4: Astrophisical implications

Excluding the DM interpretation of a forthcoming anisotropy detection

AP anisotropy dominated scenario

Di Bernardo et al. ArXiv:1010.0174

$$\delta_{AP} > \delta_{DM}$$

Nearby pulsars (within 2 kpc, KRA diffusion setup) contribution is able to explain the excess seen by Fermi LAT with respect to a standard electron and positron astrophysical background.

The same model is able to perfectly reproduce the positron fraction observed by Pamela.

The associ_ ated electron anisotropy would be on the verge of being dete_ cted by Fermi I AT.

Excluding the DM interpretation of a forthcoming anisotropy detection

Excluding the DM interpretation of a forthcoming anisotropy detection

Conclusions:

- Dipole anisotropy can exceed the DM intrinsic upper limit only thanks to the contribution of non-standard astrophy_ sical sources.
- If a detection will be made by Fermi LAT in the next ten years, then this argument could be used as a criterion to deduce the presence of exotic astrophysical sources.
- The possibility that such a high degree of anisotropy could be entirely due to a near DM clump is ruled out.

