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LEARNING AS A PHENOMENON 
OCCURRING IN A CRITICAL STATE
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Neuronal avalanches
Beggs & Plenz (J. Neuroscience 2003, 2004) have measured spontaneous local 
field potentials continuously using a 60 channel multielectrode array in mature 

organotypic cultures of rat cortex in vitro and  in vivo (PNAS 2008, 2009)

They have shown that spontaneous activity has an avalanche mode:

Several avalanches (active  electrodes) of 
all size per hour

Activity initiated at one electrode may 
spread later to other electrodes in a not 
necessarily contiguous manner

Avalanche size distribution is a power law 
with an exponent close to -3/2

Avalanche duration distribution is a power 
law with an exponent close to -2.0

Critical state optimizes
information transmission

∆t temporal resolution of binning



Avalanche activity found also in dissociated rat cortical neurons 
(V. Pasquale et al, Neuroscience 2008)

Neuronal avalanche behavior depends on time scale of observation
Neuronal cultures developing in vitro organize differently and 
exhibit different dynamic state (critical, subcritical, supercritical)
Critical behaviour depends on the interplay between spiking and 
bursting activity

Similar scaling behavior found for dissociated rat hippocampal
neurons and leech ganglia (A. Mazzoni et al PLoS ONE 2007)



ØBy a mapping onto a connected graph, the 
short path length and the high clustering
coefficient network is small-world

efficient information transmission with a 
small number of long range connections.
ØDegree distribution broad scale  
(in vitro only 240 neurons)

Morphology of neuronal networks
Ø The morphology of networks of living neurons has been studied in vitro

(Shefi et al, PRE2002) development of neurites in an ensemble of few 
hundreds neurons from the frontal ganglion of adult locusts. 

Ø After few days the cultured neurons have developed an elaborated
network with hundreds of connections



Scale-free Brain Functional Network
Eguiluz, Chialvo, Cecchi, Baliki, and Apkarian (PRL 
2005) measured by MRI the functionality 
network in humans performing different tasks

Correlation coefficient between magnetic 
resonance activity in any  pair of voxels, 
averaged over time

Two voxels are functionally correlated if 
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SELF-ORGANIZED CRITICALITY
Bak, Tang, Wiesenfeld, PRL 1987

Sand pile

Dynamical systems spontaneously evolving toward a critical state
without parameter tuning               no characteristic event size

threshold=4

…by adding at random one grain…

Size and duration distributions

behave as power laws
P(s) ~ s-1

P(T) ~ T-0.5



Fundamental ingredient: separation of time scales

Fast scale: propagation of an avalanche

Slow scale: adding a grain

SOC applied to many natural phenomena

v Slides and avalanches

v Earthquakes

v Solar flares

v Fluctuations in confined plasma

v Biological evolution



Physiological ingredients
Ø A neuron is characterized by a membrane potential and is 

connected to other neurons via excitatory or inhibitory synapses
Ø A neuron fires when the membrane potential reaches a given 

threshold (-55mV), then goes back to rest potential (-70mV)
Ø Connected neurons receive charge and change their membrane 

potential according to the presynaptic neuron potential change
Ø After firing a neuron goes through the refractory period, time 

during which the neuron is unable to answer to any stimulus, 
regardless its intensity



Donald Hebb (1904-1985) 
and "Hebbian synaptic plasticity"

The conjuction of activity at the presynaptic and postsynaptic neuron leads 
to increased synaptic activity: neurons that fire together wire together

"Let us assume that the persistence or repetition of a reverberatory activity 
(or "trace") tends to induce lasting cellular changes that add to its stability…

When an axon of cell A is near enough to excite a cell B and repeatedly or 
persistently takes part in firing it, some growth process or metabolic change 
takes place in one or both cells such that A's efficiency, as one of the cell 

firing B, is increased“

From: Hebb DO, The organization of behavior : a neuropsychological theory; New 
York, Wiley,1949. 
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MODEL FOR BRAIN PLASTICITY

We introduce within SOC the main ingredients of neural activity:

Threshold firing, Neuron refractory period, Activity dependent synaptic plasticity

We assign to each neuron a potential vi and to each synapse a strength gij

A neuron fires when the potential is at or above 

threshold vmax (-55mV) distributing charge to the 

connected neurons proportionally to the strength

of each synapse 

Synapses can be excitatory or inhibitory (i.e. at the postsynaptic neuron the 

potential can be added or subtracted)

After firing a neuron is set to zero resting potential (-70mV) and remains 
quiescent for one time step (refractory period), the action potential is not allowed 
to reverberate back to the cell body 
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The active synapses connecting neurons not at resting potential 
have their strength increased proportionally to the current

The avalanche goes on and at the end all inactive synapses have 
their strength reduced by the average strength increase per 
bond                    

α   is the parameter controlling synaptic plasticity
(represents the ensemble of all physiological factors 

influencing synaptic plasticity)

Network memorizes the most used paths, less used synapses atrophy
PRUNING
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PLASTICITY RULES



JS Andrade et al PRL 2005

Regular square lattice (no longer regular after pruning!)

Small world lattice (rewiring 1% bonds)

Eguiluz et al scale free network

Scale free Apollonian network

Morphology of the network



On a “trained” brain we monitor the total current flowing and the number of firing 
neurons as function of (microscopic) time                   avalanches of all size

TIME SIGNAL AND NEURAL AVALANCHES

We measure the avalanche size 
distribution for: 

different α

different external stimuli

regular, small world, scale free  networks

excitatory and inhibitory synapses

For external stimulus at random site
becomes 1.5±0.1         Beggs & Plenz

stable with respect to parameters 
and lattice type

The exponent is 1.2±0.1 for external 

stimulus at fixed input site



The avalanche duration distribution
has a power law behaviour with an

exponent -2.1±0.1

Apollonian network

Beggs & Plenz

Distribution of overall 
neuronal voltage variation 

during an avalanche

16000 neurons and 5% 
inhibitory synapses   

Eguiluz et al network



POWER SPECTRA AND EEG
In order to compare with numerical data, we calculate the power spectrum,
i.e. amplitude squared of the Fourier transform as function of the frequency,
and compare with experimental data from EEG of subject male resting with
eyes closed (Novikov et al, PRER 1997, power law exponent 0.795)

We find universal scaling with slope 0.8±0.1

Does not depend on:

Parameter α
Type of lattice
Initial conditions

.



Apollonian network

For zero plastic training the

spectrum             1/f  noise

•No characteristic time scale

•Superposition of signals with 
different relaxation times and 
same amplitude

Experimental data by Novikov et al

Slope < 1                 high frequency  

signals more relevant

also human gait (Ashkenazy et al Physica A 2002)



Many theoretical models proposed for learning 
from perceptron to attractor neural networks 

Two-state neurons, fully connected networks

Several algorithms for neuronal learning

Extremal dynamics and uniform negative feedback
the system learns by mistakes
no cooperative effects
operating in a critical state optimizes information transmission
learning changes functional connectivity and sculpts
spontaneous activity (Lewis et al PNAS 2010)

LEARNING



ØWe choose 
2 input (red)
and 1 output (black)
neurons at 

fixed distance kd
on a scale free 
network  where

Soma size is 
proportional to kin

[ ]100,minkkout ∈

LdA, Herrmann, PNAS 2010



Ø We test OR, AND, XOR and random rule with 3 inputs:
§ Set 1/0 at the input sites                 firing/not firing
§ Let the avalanche propagate
§ Check state of output neuron  (1 firing, 0 not firing)

Ø Non uniform negative feedback, plasticity parameter α:
§ If the answer is right, do nothing
§ If the answer is wrong, adjust the strength of synaptic 

connections involved in the avalanche propagation by

Good critic

d
α± distance from the 

output neuron

+ false negative

- false positive

Stick or carrot?



The percentage of success is higher for slower plastic adaptation

Lewis et al PNAS 2009
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The average and median learning times scale  as

The asymptotic percentage of success scales as

ατ /1≈

05.0−
∞ ≈ αS



Learning performance 
increases with the level of 
connectivity of the system

Learning performance 
decreases with the input-

output distance

005.0=α
XOR

4.0
mink≈ 3.0−≈ dk



Size Effects

Larger systems learn 

more efficiently

Second chance                    dependence on the initial state

Dumb systems have less hubs than smart ones

Memory depends on the rule and the intensity of perturbation



CONCLUSIONS
ØPower law behaviour for avalanche size and duration distribution

experimental data for spontaneous activity

ØUniversal scaling behaviour of spectra as 1/fβ in agreement with EEG

ØLearning  is a truly collective process

ØBetter learning performances for slower plastic adaptation
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