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The very beginning: AdS5×S5 - N = 4 SYM
Maldacena’s conjecture states the equivalence II B string on AdS5×S5 -
N = 4 SYM - Provided the Gauge/String coupling relation 4πλ

Nc
≡ gs .

λ = Ncg2
SYM

First hint: symmetries
Isometries of AdS5×S5: SO(4,2)×SO(6)
bosonic part of PSU(2,2|4) N = 4 SYM

States on both sides of the duality labelled by the eigenvalues of the
Casimir SO(4,2)×SO(6): [E = ∆,S1,S2, J1, J2, J3] (first three SO(4,2), the others SO(6))

The Basic Prediction of the conjecture: Energy of a string state E ⇔ ∆

eingenvalue of the Dil. operator (scaling dimensions) for the dual gauge
O in N = 4 SYM

E(gs,
R2

α′
) = ∆(λ,

1
Nc

)

Weak-Strong duality ... Difficult to test!



Large Nc Limit, BPS, almost BPS

First simplification: Large Nc limit ( 4πλ

Nc
≡ gs) Nc → ∞, gs → 0,

free String theory (the topology of the worldsheet is a cylinder) and
planar gauge theory (only single trace gauge invariant operators)

∼ N3
c , Nc, N4

c , N2
c

Still difficult ... we have some perturbative understanding of the two
sides in opposite regimes

• String theory
√

λ = R2

α′ = (NL σ-model coupling)−1 � 1

• Gauge theory λ = g2
YMNc � 1

An exception: BPS states (TrZL): susy protected, trivial λ dependence,
easy to check the correspondence

The Next step: Not BPS but Near to BPS . . .



Almost BPS and Far from BPS
BMN or diluted limit: The idea is to take some state with large charge
“J”- almost BPS with impurity: the relevant quantity is an “effective”
coupling λ′ = λ/J2; σ−model corrections are suppressed.

Tr(Z . . .ZXZ . . .Z︸ ︷︷ ︸
J

)
Dual String state almost pointlike,
rotating along a big circle with large
angular momentum J in S5

J,Nc → ∞
J
N fixed λ′ = λ

J2 fixed E− J and ∆− J fixed

BMN suggests: Simple solutions in AdS5×S5 duals of “long” SYM

Generalise to far from BPS states: (more “impurities”), but still
some large charge

More complete dictionary between “simple” gauge theory operators
and “simple”, macroscopic solitonic string solutions.

If both string energies and scaling dimensions can be doubly expanded in λ/J2 and 1/J ,
we have a chance to compute both expansion and compare!



How to compute? Bethe Ansatz & Integrability
∆: class. dim. ∆0 + anomalous ∆(g) ... diagonalisation D ?
Planar, 1-loop D on so(6) single trace operators ≡ (generalised)
Spin chain Hamiltonian H

Simple Integrable system: Algebraic Bethe Ansatz to solve! Based
on the analysis of the scattering of elementary excitations along
the chain. Integrable system ≡ factorizable S-matrix S(2→ 2)⇒ S(n→ n)

Fully generalised to the complete psu(2,2|4) algebra
All loop Asymptotic Bethe Ansatz Equations

Integrability links the two sides of AdS/CFT and test it!

Tr ΦDS
+Φ



Wrapping Corrections
ABA equations are correct only for L large!
Finite size corrections associated to the “wrapping
interactions”: the interaction range increases withe the
loop order ... at some point (g2L ) interaction “overlaps”.
Bethe ansatz is scattering based ... needs asymptotic states

Exp. suppressed with the size of the chain

Gauge/spin chain description String theory/σ−model

QFT: virtual particles propagating and
scattering around the cylinder:

Using Lüscher formulae ⇒ LO & NLO (g ) finite
size corrections.

Applied to AdS/CFT: wrapping for Konishi

Very hard to generalize to generic states (S-matrix, bound states ...)



TBA, Y and T
Thermodynamical Bethe Ansatz

On the “string side”: The spectrum of the theory at finite volume can be
computed through thermodynamic quantities in a “mirror model” with
large volume techniques at finite temperature

Trick: Double Wick rotation ⇒
thermodynamics ⇒ Put the theory on torus
R� L ⇒ Find the free energy in the infinite
volume but finite temperature ⇒ Switch the
meaninig of time and space directions on the
torus ⇒ interpret the free energy as the
ground state in finite volume L = 1

T

Z = ∑
n

e−En(R)T = ∑
n

e−Emirror
n (T)R

AdS/CFT : The mirror theory is not equivalent to the original one
(light cone gauge!)



Y/T-system
For integrable models TBA equations are related to universal Y -system

Set of functional equations for functions Ya,s(u)

Y+
a,sY−a,s

Ya+1,sYa−1,s
=

(1+Ya,s+1)(1+Ya,s−1)
(1+Ya+1,s)(1+Ya−1,s)

Y-system ≡ Hirota bilinear equation

T+
a,sT−a,s = Ta+1,sTa−1,s +Ta,s+1Ta,s−1

Ya,s = Ta,s+1Ta,s−1
Ta+1,sTa−1,s

“T” lattice for psu(2,2|4)

Ta,s(u) defined on

Solution of the Y-system ⇒ Egs (can be extended to excited states!)

E = ∑
j

ε1(u4,j)+
∞

∑
a=1

Z
∞

−∞

du
2πi

∂ε∗a
∂u

log
(
1+Y∗a,0(u)

)



... is the problem solved?

Not so easy ... Y-system in principle describes the anomalous
dimensions of any physical operator at any coupling ... but

Very difficult to extract infomation from the TBA/Y-system

Weak Coupling

• Konishi LO and NLO Wrapping from Y (OK with Luscher, and
explicit diagrammatic)

• 4-loop ∆
(8)
w = 324+864ζ(3)−1440ζ(5) + 5-loop order

∆
(10)
w =−11340+2592ζ(3)−5184ζ(3)2−11520ζ(5)+30240ζ(7)

• Very few other results for the β-deformed SYM, and some orbifold

Strong Coupling

Strong coupling Y-system seems very hard to handle ...
Only few numerical results ... Given a short operator (TrΦDS

+Φ) ... which is the dual
string state? How can we compute ∆ at strong coupling?



back to earth: semiclassical strings
What can we do in the strong coupling limit?

The quantisation of the Mestaev-Tseytlin string action still is a hard (and
unsolved) problem ... but classical string solutions are known!

This is already non trivial! The integrability of the classical model is the key!

Idea: Short operators Short Strings
... Take a classical solution, and try semiclassical

quantisation
• Not rigorous, without pretending generality

• The hope is that of providing some “useful” hint on the structure of anomalous
dimension at strong coupling analysing some “simple” classical solution

Two methods: Using “standard” QFT techniques:
• Not “explicitly” based on classical integrability of the string sigma model ... (but

integrability will appear! at the one-loop level integrable finite gap Lamé equation)

Algebraic curve: Alternative approach, more formal, integrability based



Semiclassical Expansion
• Semiclassical strings are defined in the limit of “large” charges

• The charge essentially measures the length of the string:
e.g. rotating string, the rotation (angular momentum) balances the contracting
effect of the string tension

• We will consider simple cases, only one charge different from zero

We want short strings ⇒ Small charges!
We may expand at large λ with J = J√

λ
fixed, (the semiclassical string

limit) and re-expand then in the limit J � 1, i.e. J �
√

λ

Ek =
√

J
[
a0,k +a1,kJ +a2,kJ 2 + . . .

]
, k = loop order

E =
√√

λ J
[
a0,0 + a1,0J+a0,1√

λ
+ a2,0J2+a1,1J+a0,2

(
√

λ)2 + . . .
]

∼ near flat space expansion E(
√

λ,J ) = 2
√

n−1 λ1/4 +∑
∞
k=0

bk
(λ1/4)k

The same structure! Not rigorous ... but promising



Set up: Metsaev-Tseytlin Action I

For quadratic fluctuations we can consider the reduced action

I =−
√

λ

2π

Z
d2

ξ [LB +LF ] ,
√

λ =
R2

α′
.

The bosonic Lagrangian is

LB =
1
2
√
−g gab

[
G(AdS5)

mn (X)∂aXm
∂bXn +G(S5)

m′n′ (Y)∂aYm′
∂bYn′

]
.

We take ξa = (τ,σ) with periodicity in σ. The metric on AdS5×S5 is as usual

ds2
AdS5

= dρ
2− cosh2

ρdt2 + sinh2
ρ(dθ

2 + cos2
θdφ

2
1 + sin2

θdφ
2
2),

ds2
S5 = dγ

2 + cos2
γdϕ

2
3 + sin2

γ(dψ
2 + cos2

ψdϕ
2
1 + sin2

ψdϕ
2
2).

The fermionic Lagrangian is

LF = i (
√
−g gab

δ
IJ − ε

ab sIJ )θ
I
ρa Daθ

J +o(θ4)

where I, J = 1,2 are the indices of the spacetime fermions, sIJ = diag(1,−1).



Set up: Metsaev-Tseytlin Action II
DIJ

M is the 10d covariant derivative appearing in the supergravity equations of motion in
terms of the spin connection and RR 5-form

DIJ
M =

(
∂M +

1
4

ω
AB
M ΓAB

)
δ

IJ − 1
8 ·5!

FA1...A5 Γ
A1...A5 ΓM ε

IJ .

For 10d MW spinors, and using the specific form of F

Daθ
I =

(
Da δ

IJ − i
2

ε
IJ

Γ∗ ρa

)
θ

J ,

Da = ∂a +
1
4

∂aXM
ω

AB
M ΓAB,

Γ∗ = iΓ01234, Γ
2
∗ = 1.

Fixing κ symmetry with θ1 = θ2 we have the further simplification

LF = −2 iθDF θ,

DF = −ρ
a Da−

i
2

ε
ab

ρa Γ∗ ρb.



Example I: Rotating folded string in AdS3
ds2 =−cosh2

ρ dt2 +dρ
2 + sinh2

ρ dφ
2

Classical closed string solution given by

t = κτ, φ = ωτ, ρ = ρ(σ) = ρ(σ+2π),

κ,ω are constant parameters. The equation of
motion and its solution in conformal gauge

ρ
′2 = κ

2 cosh2
ρ−w2 sinh2

ρ,

sinhρ(σ) =
k√

1−k2
cn(ωσ+K |k2) ρ

′(σ) = κsn(ωσ+K |k2)

ρ varies from 0 to its maximal value ρ0: coth2
ρ0 = ω2

κ2 ≡ 1+η≡ 1
k2

Small spin or short string limit: ρ0 → 0, i.e. η→ ∞ or k→ 0 In the “short
string” limit, when the string is rotating in the small central (ρ = 0) region
of AdS3, the spin is small and the parameter η is large

E0 =
√

2S
(

1+
3
8

S + ...
)

S � 1.



1-loop corrections: Strategy
Leading quantum correction to the energy of this solution:
• expanding the action to quadratic order in fluctuations near the

classical solution

Ĩ =−
√

λ

4π

Z
dτ

Z 2π

0
dσ(L̃B + L̃F )

• All the fluctuation operators have Lamé form:[
−∂

2
x + 2k2 sn2(x |k2)

]
f(x) = Λ f(x) x ∼ σ

semi-classical problem is governed by simple (finite-gap) operators.
Everything can be computed analytically in a closed form!

Integrability at work!!

• Semiclassical Quantization: “find a way to relate the
eigenfrequences of the fluctuation aroud the classical solution to
1-Loop Energy”

Folded String: Stationary (simple) ⇒ 2d effective action



The folded string is simple! rigid spinning string! solution is sta-
tionary, the coeff. in the fluct. Lagrangian do not depend on τ.

Switching to Euclidean time, the 1-loop correction ⇒ 2d effective action
Γ by dividing over the time interval (t = κτ)

E1 =
Γ

κT
, T ≡

Z
dτ→ ∞, Γ =− lnZ

Z ratio of the fermionic and bosonic determinants.

Since the above rigid spinning string solution is stationary, (τ ind. fluctuation Lagrangian)
the relevant 2-d functional determinants may be reduced to 1-d determinants

lndet[−∂
2
σ−∂

2
τ +M2(σ)] = T

Z +∞

−∞

dΩ

2π
lndet[−∂

2
σ +Ω

2 +M2(σ)]

Exact Solution Lamé eq. ⇒ analytic expressions for the fluctuation
determinants ⇒ expansions in the small spin /short string limit.



Example II: Pulsating String in R×S2

ds2 =−dt2 +dψ
2 + sin2

ψdφ
2 t = κτ, ψ = ψ(τ), φ = mσ ,

EQM and the conformal gauge constraint

ψ̈+m2 sinψcosψ = 0 ψ̇
2 +m2 sin2

ψ = κ
2

The classical solution sinψ(τ) = κ

m sn
(

mτ | κ2

m2

)
, |sinψ| ≤ sinψ0 = κ

m

Energy and the oscillation number

E =
E√
λ

= κ, N =
N√

λ
=

Z 2π

0

dψ

2π

√
κ2−m2 sin2

ψ

Short string expansion of the classical energy

E(N ) =
√

2mN
(

1− N
8m

− 5N 2

128m2 + . . .

)
.



Almost the same strategy:

• Expand the action around the classical solution and find
fluctuation operators

• Show that they are Lamé[
−∂

2
x + 2k2 sn2(x |k2)

]
f(x) = Λ f(x)

• Time-dependent case (x ∼ τ !) ... Quantisation of time-periodic
solitons

• Bohr-Sommerfeld-Maslov semiclassical quantisation
The 1-loop correction to their energy is determined in a more complicated way
than just by summing characteristic frequencies! No more determinants! ... we will
need “stability angles”

• Solve Lamé: “stability angles” for the pulsating string [and
determinants (for the folded string)]

• Compute the energy and expand in the “short limit”



Quadratic fluctuation Lagrangian I
AdS5 directions are represented by a free massless “ghost” field plus
four free massive fields (k = 1,2,3,4; ∂a∂a =−∂2

τ +∂2
σ)

L(2)
AdS =− 1

2
(β̇2−β

′2)+
1
2
(ẏ2

k −y′k
2−κ

2ykyk)

S5 fluctuations (ξ,η,z1,z2,z3)

L(2)
S = 1

2 (ξ̇2−ξ′2−M2
ξ

ξ2)+ 1
2 (η̇2−η′2−M2

η η2)+ m cosψ(ξη′−ξ′η)

+ 1
2 (ż2

i − z′i
2−M2z2

i )

where the background-dependent masses are

M2 = κ
2−2m2 sin2

ψ, M2
ξ

= κ
2 +m2 cos(2ψ) M2

η = m2 cos(2ψ)

Solving the Virasoro constraints one can show that the coupled system
(ξ,η) is equivalent to a decoupled system of one massless mode + of the
massive mode with the Lagrangian

L = 1
2 (ġ2−g ′2− M̃2 g2) M̃2 = κ2(1− 2

sin2
ψ

)



Quadratic fluctuation Lagrangian II
Starting form the fermionic fluctuation Lagrangian
in the standard θ1 = θ2 kappa symmetry

LF =−2 iϑ

(
−ρ

a Da−
i
2

ε
ab

ρa Γ∗ ρb

)
ϑ ,

After some computations ...

DF = Γ0∂τ−Γ9 ∂σ +Γ079ψ̇ .

We are interested in eigenvalues and determinant ⇒ take the square of
the simpler operator

D̃F ≡ Γ09 DF = Γ9∂τ−Γ0 ∂σ−Γ7ψ̇ .

Diagonalizing Γ97 (i.e. replacing it by ±i) we get the following second
order fermionic operator

D̃2
F± = ∂2

τ−∂2
σ +M2

± M2
± = ψ̇2± i ψ̈

Taking into account the specific form of the solution ψ(τ)

M2
± ∼ k2 cn2(x |k2)∓ i k sn(x |k2)dn(x |k2)



UV check
UV Check on the resulting fluctuation Lagrangian:

UV finiteness of the 1-loop partition func-
tion: In conformal gauge ⇔ sum of the
effective mass-squared terms for bosons
equals that for the fermions

AdS : 4×κ
2,

S5 : 3× (κ2−2m2 sin2
ψ),

1× (m2 cos(2ψ)−m2 cos2
ψ),

1× (κ2 +m2 cos(2ψ)−m2 cos2
ψ),

F : −8× (κ2−m2 sin2
ψ)

... indeed sums to zero.

AdS : 4×κ
2,

S5 : 3× (κ2−2m2 sin2
ψ),

1×κ
2 (1− 2

sin2
ψ

),

F : −8× (κ2−m2 sin2
ψ)

In static gauge: Sum proportional to the
Euler density of the induced metric ... this
is proportional to the Euler number which
vanishes for the cylinder topology under
discussion.

and the sum is 2m2 sin2
ψ−2 κ2

sin2
ψ

=
√
−g R(2)



� Expand the action around the classical solution and find
fluctuation operators

• Show that they are Lamé[
−∂

2
x + 2k2 sn2(x |k2)

]
f(x) = Λ f(x)

• Time-dependent case (x ∼ τ !) ... Quantisation of time-periodic
solitons

• Bohr-Sommerfeld-Maslov semiclassical quantisation
The 1-loop correction to their energy is determined in a more complicated way
than just by summing characteristic frequencies! No more determinants! ... we will
need “stability angles”

• Solve Lamé: “stability angles” for the pulsating string [and
determinants (for the folded string)]

• Compute the energy and expand in the “short limit”



Lamé form of fluctuation operators
S5 modes zi with mass M2 = κ2−2m2 sin2

ψ: OI =−∂2
τ +2m2 sin2

ψ−κ2−n2

OI = m2
[
−∂2

x + 2k2 sn2(x |k2)−Λ

]
, x = mτ, k2 = κ2

m2 , Λ = κ2+n2

m2

S5 mode with mass M̃2 = κ2(1− 2
sin2

ψ

)
: OII = m2

[
−∂2

x + 2ns2(x |k2)−Λ

]
ns(z |k2) = k sn(z+ iK′ |k2)

OII = m2
[
−∂2

x + 2k2 sn2(x |k2)−Λ

]
, x ≡mτ+ iK′ , k = κ

m , Λ = κ2+n2

m2

The fermion op. with the mass M2
± = ψ̇2± i ψ̈: O±

III =−∂2
τ − ψ̇2∓ i ψ̈−n2.

This operator is non-hermitian, but is PT-symmetric and has a real spectrum

Does not look like the standard single-gap Lamé operator ... rescaling of x and a Gauss/Landen/Jacobi Transformations

O±
III = m̄2

±

[
−∂

2
x +2 k̄2

± sn2(x̄ | k̄2
±)−Λ

]
, x̄ ≡ m̄± τ+

1
2

K(k̄2
±)

k̄2
± =±4

iκ

m

√
1− κ2

m2(√
1− κ2

m2 ± iκ
m

)2 , Λ =
n2

m̄2
±+ k̄2

±
, m̄± =

m
2

(√
1− κ2

m2 ± i
κ

m

)



� Expand the action around the classical solution and find
fluctuation operators

� Show that they are Lamé[
−∂

2
x + 2k2 sn2(x |k2)

]
f(x) = Λ f(x)

• Time-dependent case (x ∼ τ !) ... Quantisation of time-periodic
solitons

• Bohr-Sommerfeld-Maslov semiclassical quantisation
The 1-loop correction to their energy is determined in a more complicated way
than just by summing characteristic frequencies! No more determinants! ... we will
need “stability angles”

• Solve Lamé: “stability angles” for the pulsating string [and
determinants (for the folded string)]

• Compute the energy and expand in the “short limit”



Bohr-Sommerfeld-Maslov quantisation I
Semiclass. quant. of (class. integrable, time-periodic) Hamiltonian

Classical integrability
∃ n functions Fi,∈ C(T∗X) such that:

• dF1∧·· ·∧dFn 6= 0, almost everywhere,

• {Fi,Fj}= 0,

• H = H(F1, . . . ,Fn).

Semi-classical integrability
∃ quantum extensions F̂i of Fi (F̂i

h̄→0−→ Fi )

• dF1∧·· ·∧dFn 6= 0, almost everywhere,

• [F̂i, F̂j ] = O(h̄3)

• Ĥ = H(F̂1, . . . , F̂n)+O(h̄2)

Define n-tori (Liouville tori), action variables Ii , angle variables ϕi (the coor. of the torus)

We want to solve the semiclassical problem

F̂i ψ = fi ψ+O(h̄2)

WKB-like solution ∃ iff BSM quantisation condition is satisfied

1
2πh̄

R
γi

p ·dq = Ni +
µi
4 +O(h̄), i = 1, . . . ,n ,

Ni action variables, {γi} cycles of a Liouville torus, µi Maslov indices they generalise the familiar

1/2 in the standard WKB



Bohr-Sommerfeld-Maslov quantisation II
If the class. torus p < n non trivial cycles ⇒ change in the BSM q. condition

1
2πh̄

R
γk

p ·dq = Nk + µk
4 +∑

n
α=p+1

(
nα + 1

2
)

ν
(k)
α

2π
+O(h̄)

The stability angles account the fluct. transverse to the codimension p invariant torus

ν
(k)
α found studying small fluctuations ...

they are nothing but the usual eigenfre-
quencies for fluctuations around static soli-
tons

Superstring periodic T solutions: 1-dimensional integrable system with
invariant tori embedded in the string phase space

E = Ecl(N )+ 1
2
√

λ

1
T ∑νs>0 νs +O( 1

(
√

λ)2 )

Fluctuation operators are all of the single-gap Lamé
form - “Schroedinger-like” periodic potential
Stability angles ∼ quasi momentum

Independent solutions f±(x)

f±(x +T ) = e±iν f±(x) ν = pT ,



Remarks on single-gap Lamé operators I

Consider the following eigenvalue problem for an ordinary differential operator with a
periodic potential

Of ≡
[
−∂

2
x +V(x)

]
f(x) = Λ f(x) , V(x +L) = V(x)

Assume quasi-periodic boundary conditions

f(x +L) = eiα f(x), α ∈ [0,2π).

Floquet-Bloch theory: two independent solutions f±(x) = e±i p(Λ)x χ±(x), where
χ±(x) are periodic, so that under translation through one period the solutions f±(x)
change by a phase

f±(x +L) = e±ip(Λ)L f±(x)

p(Λ) is the quasi-momentum. The discriminant is ∆(Λ) = 2cos(Lp(Λ))



Remarks on single-gap Lamé operators II
Quadratic fluctuation operators have “single-gap Lamé” form[

−∂
2
x + 2k2 sn2(x |k2)

]
f(x) = Λ f(x) ,

The two independent Bloch solutions

f±(x) =
H(x±α)

Θ(x)
e∓x Z(α) ,

H,Θ,Z are the Jacobi Eta, Theta and Zeta functions
Spectral parameter α = α(Λ): related to the eigenvalue Λ by the transcendental equation:

sn(α |k2) =

√
1+k2−Λ

k2 .

Periodicity properties of the Jacobi functions ⇒ solutions f±(x) acquire a phase under a
shift through one period 2K:

f±(x +2K) =−f±(x)e∓2KZ(α) ≡ f±(x)e2iKp(α) .

This defines the quasi-momentum as p(Λ) = iZ(α |k2)+ π

2K



Remarks on single-gap Lamé operators III
Explicit expression for the quasi-momentum implies that we can
write an explicit expression for the

• Functional determinant detO = ∆(0)−2cosα

• Stability Angles (just rescaling by T )

The periodic Lamé potential has the special property that its band spectrum has only
a single gap - three band edges

Λ1 = k2 , Λ2 = 1 , Λ3 = 1+k2

The periodic and the antiperiodic
eigenvalues

∆(Λ) =

{
+2 (periodic)
−2 (antiperiodic)



The role of Integrability
Why everything is so simple (solvable Lamé)?

• The solution we considered are part of a more general class “finite gap” String
Solutions, characterised by an “algebraic curve” ⇔ set of cuts on a Riemann
surface (Point where the Bethe roots condensate in the continuum limit)

• Integrable system: given a solitonic solution ⇔ study the perturbated system by
adding another “small soliton” (Bäcklund Transformation)

• Algebraic curve semiclassical quantization: deforming the cuts definining the
algebraic curve (adding extra roots)

• Solution of the Lamé equation ⇒ Baker Akhiezer function



� Expand the action around the classical solution and find
fluctuation operators

� Show that they are Lamé[
−∂

2
x + 2k2 sn2(x |k2)

]
f(x) = Λ f(x)

� Time-dependent case (x ∼ τ !) ... Quantisation of time-periodic
solitons

� Bohr-Sommerfeld-Maslov semiclassical quantisation
...

� Solve Lamé

• Compute the energy and expand in the “short limit”



Pulsating String: Stability angles I
• E = Ecl(N )+ 1

2
√

λ

1
T ∑νs>0 νs +O( 1

(
√

λ)2 )

• The period of the problem is T = 4K
m .

• We want the short string: small κ ⇔ small semiclassical
oscillation parameter N

• compute exact stability angles (Lamé), expand, and then sum

4 massless AdS5 fluctuations

νAdS5
= 4K

√
k2 +

n2

m2 k ≡ κ

m

Expanding in small κ, i.e. in small k,

νAdS5
=

2πn
m

+k2
(

πm
n

+
πn
2m

)
+

πk4 (
−8m4 +8m2n2 +9n4)

32mn3

+
πk6 (

16m6−8m4n2 +18m2n4 +25n6)
128mn5 + . . .



Pulsating String: Stability angles II
S5 bosonic fluctuations (Type I and II)

ν
S5 =±4K

(
iZ(α |k2)+

π

2K

)
≡±4K iZ(α |k2) , sn(α |k2) =

√
1+k2−Λ

k2 =
1
k

√
1− n2

m2 .

define a =
√

1− n2

m2

Z(sn−1(
a
k
|k2) |k2) = i

Z a/k

1

dt√
t2−1

(√
1−k2t2− E

K
1√

1−k2t2

)
.

The two basic integrals areZ a/k

1

dt√
t2−1

√
1−k2t2 = i (E

(
arcsin

a
k
|k2)−E

)
,

Z a/k

1

dt√
t2−1

1√
1−k2t2

= i
(
F(arcsin

a
k
|k2)−K

)
.

In order to expand at small k, we use the transformation

E(arcsin
a
k
|k2) =

E
K F(arcsin

a
k
|k2)+ i

√
1−a2

√
1− k2

a2

(
Π(a2 |k2)

K −1
)

.

The final result is remarkably simple: all incomplete elliptic integrals simplify.

Z(sn−1(
a
k
|k2) |k2) = i

√
1−a2

√
1− k2

a2

(
1− Π(a2 |k2)

K

)
.



Pulsating String: Stability angles III

ν
S5 =−4 iKZ(sn−1(

a
k
|k2) |k2) =

2πn
m

+
πk2n
2m

+
πk4n(13m2−9n2)

32m(m−n)(m +n)

+
πk6n(45m4−62m2n2 +25n4)

128m(m−n)2(m +n)2 + . . .

The singularity at n = m is only apparent, since it happens at a = 0 where our derivation
cannot be applied; the above expression is just zero at that point

Fermionic fluctuations

νF =±4 iK
[ 1

2
Z(α(β) |k2)+i

√
β

√
1+

16βk2

(1−4β)2

]
, α(β)= cn−1

(
− 1+4β

1−4β
|k2

)
, β =

n2

m2

νF =
2πn
m

+
πn(3m2 +4n2)

2m(2n−m)(m +2n)
k2− πn(15m6−276m4n2−304m2n4 +576n6)

32m(m−2n)3(m +2n)3 k4

− πn(35m10−780m8n2 +9696m6n4 +9856m4n6−28928m2n8 +25600n10)
128m(m−2n)5(m +2n)5 k6 + . . .



... and the Sum

E1 =
1

2T κ

∞

∑
n=−∞

νn = 2+κ(1−4 log2)+
1
8

κ
3
(

3ζ3 +1+4 log2
)

+
1
4

κ
5
(
− 63ζ3

16
− 15ζ5

16
+

7
32

+ log2
)

+O(κ7)

Check: The sum over n is convergent

... remember that we can organise the short string expansion of the energy as

E = E
( N√

λ
,
√

λ

)
=
√

λE0(N )+E1(N )+
1√
λ

E2(N )+ ... ,

Ek =
√

2N
(

a0k +a1k N +a2k N 2 + ...
)

+ c0k + c1k N + .... .

we thus find that for the pulsating string in R×S2

E1 ≡ E1 = 2+
√

2N
[
1−4 log2+

( 3
2

log2+
3
4

ζ3 +
1
8

)
N

+
( 25

32
log2− 135

32
ζ3−

15
16

ζ5 +
11
128

)
N 2 + ...

]
.



and finally ...
... can be re-written in terms of N and the string tension λ as follows

E =
√

2N
√

λ

(
a00 +

a10N +a01√
λ

+ . . .
)

+ c01 + . . .

a00 = 1, a10 =−1
8
, a01 = 1−4 log2, c01 = 2

Apply the same strategy to other, simple, classical solutions!
Pulsating string in AdS3 spinning folded string in R×S2

sinhρ(τ) =
√

R+ cn
(
x +K(k2) |k2)

,

x = m
√

R+−R− τ ≡ w τ , R± =
−m±

√
m2 +4E2

0
2m

k2 =
R+

R+−R−
=

1
2

(
1− 1√

1+
( 2E0

m

)2

)
.

N =
√

λ N , N =
1
2π

I
dρ ρ̇

sinθ =
√

q sn(w21 σ|q), cosθ = dn(w21 σ|q),

q = sin2
θ0 =

κ2−w2
1

w2
2 −w2

1
, w21 =

√
w2

2 −w2
1 =

2
π

K(q).

E0 = κ, J1 =
w1
w21

2F1
(
− 1

2
,

1
2

,1,q
)
,

J2 =
w2
w21

q
2 2F1

( 1
2

,
3
2

,2,q
)
.

J1
w1

+
J2
w2

= 1.



Konishi multiplet vs. semiclassical strings (?)

E1 = 2+
√

2J
[
2−4 log2+

(
− 1

2
− 3

2
log2+

3
4

ζ3

)
J +

( 1
64
− 15

32
log2+

51
32

ζ3−
15
16

ζ5

)
J 2 + . . .

]
,

E1 = 1+
√

2S
[ 3

2
−4 log2+

(
− 23

16
+

3
2

log2+
3
4

ζ3

)
S +

( 689
256

− 63
32

log2− 15
32

ζ3−
15
16

ζ5

)
S 2 + . . .

]
,

E1 = 2+
√

2N
[
1−4 log2+

( 1
8

+
3
2

log2+
3
4

ζ3

)
N +

( 11
128

+
25
32

log2− 135
32

ζ3−
15
16

ζ5

)
N 2 + . . .

]
,

E1 = 1+
√

2N
[ 5

2
−4 log2+

(
− 37

8
+

5
2

log2+
3
4

ζ3

)
N

+
( 3915

256
− 231

32
log2− 117

32
ζ3−

15
16

ζ5

)
N 2 + . . .

]
,

“Some” universality: Highest transcendentality terms are equal



Konishi multiplet vs. semiclassical strings (?)
Folded spinning string in R×S2

E =
√

2J
√

λ

(
1+

1
8 J +2−4 log2

√
λ

+ . . .
)

+2+ . . .

Folded spinning string in AdS3

E =
√

2S
√

λ

(
1+

3
8 S + 3

2 −4 log2
√

λ
+ . . .

)
+1+ . . .

Pulsating string in R×S2

E =
√

2N
√

λ

(
1+

− 1
8 N +1−4 log2

√
λ

+ . . .
)

+2+ . . .

Pulsating string in AdS3

E =
√

2N
√

λ

(
1+

5
8 N + 5

2 −4 log2
√

λ
+ . . .

)
+1+ . . . ,



Summary and comments

• Exact structure of one-loop correction to energy for a class of
classical string solutions (simple elliptic functions).
(Next in complexity to the simplest rational class, trigonometric functions)

• In all cases where there is only one charge/adiabatic invariant
besides the energy the fluctuation operators can be decoupled and
put into a single-gap Lamé type form.

• We have found the one-loop energies in the limit of small values
of the semiclassical parameters small size of the string/ “near-flat”
approximation

• The hope: This “short-string” limit may shed light on the structure
of strong-coupling corrections to dimensions of “short” dual gauge
theory operators for which the “wrapping” contributions are
important.



Still to do ...
• The semiclassical approximation is based on assumption that√

λ� 1 with semiclassical parameters like S = S√
λ
, J = J√

λ
or

N = N√
λ

fixed, so that S, J or N are formally large. Still, taking the
“short-string” limit in which S ,J ,N → 0 one may conjecture that
that limit “commutes” with large the

√
λ limit ... is this true?

Consider the Folded String case - Konishi operator:
structure of the semiclassical result OK, coefficient?
One would expect rational ... [Numerical by Gromov & C.]

• ... we start with class. solution with all charges = 0 but one ...
tricky! Add an additional momentum in S5!

• Comparison, step by step, with the algebraic curve

• Classical solutions with two charges different from zero ... it
seems very difficult ... in principle, the nice Lamé equation can be
generalized to a many component one solved by Baker Akhiezer
function



Thank you!
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