One Loop Energy of Short Strings on $A d S_{5} \times S^{5}$

M. Beccaria,
G. V. Dunne,
G. M.,
A. Tirziu,
A. A. Tseytlin

Outline

Introduction

Wrapping and short operators

Semiclassical Strings

Folded string in $A d S_{3}$

Pulsating String in $R \times S^{2}$
Bohr-Sommerfeld-Maslov quantisation
Single-gap Lamé operators

Results and comments

The very beginning: $A d S_{5} \times S^{5}-\mathcal{N}=4$ SYM

Maldacena's conjecture states the equivalence II B string on $A d S_{5} \times S^{5}$ $\mathcal{N}=4$ SYM - Provided the Gauge/String coupling relation $\frac{4 \pi \lambda}{N_{c}} \equiv g_{s}$.

$$
\lambda=N_{c} g_{S Y M}^{2}
$$

First hint: symmetries
Isometries of $A d S_{5} \times S^{5}: S O(4,2) \times S O(6)$ bosonic part of $\operatorname{PSU}(2,2 \mid 4) \mathcal{N}=4 \mathrm{SYM}$

States on both sides of the duality labelled by the eigenvalues of the Casimir $S O(4,2) \times S O(6):\left[E=\Delta, S_{1}, S_{2}, J_{1}, J_{2}, J_{3}\right]$ (first three $S O(4,2)$, the others $\left.S O(6)\right)$

The Basic Prediction of the conjecture: Energy of a string state $E \Leftrightarrow \Delta$ eingenvalue of the Dil. operator (scaling dimensions) for the dual gauge O in $\mathcal{N}=4 \mathrm{SYM}$

$$
E\left(g_{s}, \frac{R^{2}}{\alpha^{\prime}}\right)=\Delta\left(\lambda, \frac{1}{N_{c}}\right)
$$

Large N_{c} Limit, BPS, almost BPS

First simplification: Large N_{c} limit $\left(\frac{4 \pi \lambda}{N_{c}} \equiv g_{s}\right) N_{c} \rightarrow \infty, \quad g_{s} \rightarrow 0$, free String theory (the topology of the worldsheet is a cylinder) and planar gauge theory (only single trace gauge invariant operators)

$$
\sim N_{c}^{3}, \quad N_{c}, \quad N_{c}^{4}, \quad N_{c}^{2}
$$

Still difficult ... we have some perturbative understanding of the two sides in opposite regimes

- String theory $\sqrt{\lambda}=\frac{R^{2}}{\alpha^{\prime}}=(\text { NL } \sigma \text {-model coupling })^{-1} \gg 1$
- Gauge theory $\lambda=g_{Y M}^{2} N_{c} \ll 1$

An exception: BPS states $\left(\operatorname{Tr} Z^{L}\right)$: susy protected, trivial λ dependence, easy to check the correspondence

The Next step: Not BPS but Near to BPS ...

Almost BPS and Far from BPS

BMN or diluted limit: The idea is to take some state with large charge " J "- almost BPS with impurity: the relevant quantity is an "effective" coupling $\lambda^{\prime}=\lambda / J^{2} ; \sigma-$ model corrections are suppressed.

Dual String state almost pointlike,
 rotating along a big circle with large angular momentum J in S^{5}

$$
J, N_{c} \rightarrow \infty \quad \frac{J}{N} \text { fixed } \quad \lambda^{\prime}=\frac{\lambda}{J^{2}} \text { fixed } \quad E-J \text { and } \Delta-J \text { fixed }
$$

BMN suggests: Simple solutions in $A d S_{5} \times S^{5}$ duals of "long" SYM
Generalise to far from BPS states: (more "impurities"), but still some large charge
More complete dictionary between "simple" gauge theory operators and "simple", macroscopic solitonic string solutions.

If both string energies and scaling dimensions can be doubly expanded in λ / J^{2} and $1 / J$, we have a chance to compute both expansion and compare!

How to compute? Bethe Ansatz \& Integrability

Δ : class. dim. $\Delta_{0}+$ anomalous $\Delta(g)$... diagonalisation \mathcal{D} ?
Planar, 1-loop \mathcal{D} on $\mathfrak{s o (6)}$ single trace operators \equiv (generalised) Spin chain Hamiltonian \mathcal{H}

Simple Integrable system: Algebraic Bethe Ansatz to solve! Based on the analysis of the scattering of elementary excitations along the chain. Integrable system \equiv factorizable S-matrix

Fully generalised to the complete $\mathfrak{p s u}(2,2 \mid 4)$ algebra
All loop Asymptotic Bethe Ansatz Equations
Integrability links the two sides of AdS/CFT and test it!

$$
0<\lambda<\infty
$$

fast rotation

Wrapping Corrections

ABA equations are correct only for L large! Finite size corrections associated to the "wrapping interactions": the interaction range increases withe the loop order ... at some point ($g^{2 L}$) interaction "overlaps". Bethe ansatz is scattering based ... needs asymptotic states

Exp. suppressed with the size of the chain
Gauge/spin chain description
 String theory/ σ-model

QFT: virtual particles propagating and scattering around the cylinder:

Using Lüscher formulae $\Rightarrow \mathrm{LO}$ \& NLO (g) finite size corrections.

Applied to AdS/CFT: wrapping for Konishi

$$
\text { Very hard to generalize to generic states (} S \text {-matrix, bound states ...) }
$$

TBA, Y and T

Thermodynamical Bethe Ansatz

On the "string side": The spectrum of the theory at finite volume can be computed through thermodynamic quantities in a "mirror model" with large volume techniques at finite temperature

Trick: Double Wick rotation \Rightarrow
thermodynamics \Rightarrow Put the theory on torus $R \gg L \Rightarrow$ Find the free energy in the infinite volume but finite temperature \Rightarrow Switch the meaninig of time and space directions on the torus \Rightarrow interpret the free energy as the ground state in finite volume $L=\frac{1}{T}$

$$
\mathcal{Z}=\sum_{n} \mathrm{e}^{-E_{n}(R) T}=\sum_{n} \mathrm{e}^{-E_{n}^{\mathrm{mirror}}(T) R}
$$

$A d S / C F T$: The mirror theory is not equivalent to the original one (light cone gauge!)

Y/T-system

For integrable models TBA equations are related to universal Y-system
Set of functional equations for functions $Y_{a, s}(u)$

$$
\frac{Y_{a, s}^{+} Y_{a, s}^{-}}{Y_{a+1, s} Y_{a-1, s}}=\frac{\left(1+Y_{a, s+1}\right)\left(1+Y_{a, s-1}\right)}{\left(1+Y_{a+1, s}\right)\left(1+Y_{a-1, s}\right)}
$$

Y -system \equiv Hirota bilinear equation

$$
\begin{gathered}
T_{a, s}^{+} T_{a, s}^{-}=T_{a+1, s} T_{a-1, s}+T_{a, s+1} T_{a, s-1} \\
Y_{a, s}=\frac{T_{a, s+1} T_{a, s-1}}{T_{a+1, s} T_{a-1, s}}
\end{gathered}
$$

" T " lattice for $\mathfrak{p s u}(2,2 \mid 4)$
$T_{a, s}(u)$ defined on

Solution of the Y-system $\Rightarrow E_{g s}$ (can be extended to excited states!)

$$
E=\sum_{j} \varepsilon_{1}\left(u_{4, j}\right)+\sum_{a=1}^{\infty} \int_{-\infty}^{\infty} \frac{d u}{2 \pi i} \frac{\partial \varepsilon_{a}^{*}}{\partial u} \log \left(1+Y_{a, 0}^{*}(u)\right)
$$

... is the problem solved?

Not so easy ... Y-system in principle describes the anomalous dimensions of any physical operator at any coupling ... but
Very difficult to extract infomation from the TBA/Y-system

Weak Coupling

- Konishi LO and NLO Wrapping from Y (OK with Luscher, and explicit diagrammatic)
- 4-loop $\Delta_{w}^{(8)}=324+864 \zeta(3)-1440 \zeta(5)+5$-loop order
$\Delta_{w}^{(10)}=-11340+2592 \zeta(3)-5184 \zeta(3)^{2}-11520 \zeta(5)+30240 \zeta(7)$
- Very few other results for the β-deformed SYM, and some orbifold

Strong Coupling

Strong coupling Y-system seems very hard to handle ... Only few numerical results ... Given a short operator $\left(\operatorname{Tr} \Phi \mathcal{D}_{+}^{S} \Phi\right)$... which is the dual string state? How can we compute Δ at strong coupling?

back to earth: semiclassical strings

What can we do in the strong coupling limit?
The quantisation of the Mestaev-Tseytlin string action still is a hard (and unsolved) problem ... but classical string solutions are known!

This is already non trivial! The integrability of the classical model is the key!

Idea: Short operators \Leftrightarrow Short Strings
 ... Take a classical solution, and try semiclassical quantisation

- Not rigorous, without pretending generality
- The hope is that of providing some "useful" hint on the structure of anomalous dimension at strong coupling analysing some "simple" classical solution

Two methods: Using "standard" QFT techniques:

- Not "explicitly" based on classical integrability of the string sigma model ... (but integrability will appear! at the one-loop level integrable finite gap Lamé equation)

Algebraic curve: Alternative approach, more formal, integrability based

Semiclassical Expansion

- Semiclassical strings are defined in the limit of "large" charges
- The charge essentially measures the length of the string:
e.g. rotating string, the rotation (angular momentum) balances the contracting effect of the string tension
- We will consider simple cases, only one charge different from zero

We want short strings \Rightarrow Small charges!

We may expand at large λ with $\mathcal{I}=\frac{J}{\sqrt{\lambda}}$ fixed, (the semiclassical string limit) and re-expand then in the limit $g \ll 1$, i.e. $J \ll \sqrt{\lambda}$

$$
\begin{gathered}
\mathcal{E}_{k}=\sqrt{g}\left[a_{0, k}+a_{1, k} \mathcal{I}+a_{2, k} I^{2}+\ldots\right], \quad k=\text { loop order } \\
E=\sqrt{\sqrt{\lambda} J}\left[a_{0,0}+\frac{a_{1,0}+a_{0,1}}{\sqrt{\lambda}}+\frac{a_{2,0} J^{2}+a_{1,1} J+a_{0,2}}{(\sqrt{\lambda})^{2}}+\ldots\right]
\end{gathered}
$$

\sim near flat space expansion $E(\sqrt{\lambda}, \mathcal{g})=2 \sqrt{n-1} \lambda^{1 / 4}+\sum_{k=0}^{\infty} \frac{b_{k}}{\left(\lambda^{1 / 4}\right)^{k}}$
The same structure! Not rigorous ... but promising

Set up: Metsaev-Tseytlin Action I

For quadratic fluctuations we can consider the reduced action

$$
I=-\frac{\sqrt{\lambda}}{2 \pi} \int d^{2} \xi\left[\mathscr{L}_{B}+\mathscr{L}_{F}\right], \quad \sqrt{\lambda}=\frac{R^{2}}{\alpha^{\prime}} .
$$

The bosonic Lagrangian is

$$
\mathscr{L}_{B}=\frac{1}{2} \sqrt{-g} g^{a b}\left[G_{m n}^{\left(A d S_{5}\right)}(X) \partial_{a} X^{m} \partial_{b} X^{n}+G_{m^{\prime} n^{\prime}}^{\left(S^{5}\right)}(Y) \partial_{a} Y^{m^{\prime}} \partial_{b} Y^{n^{\prime}}\right] .
$$

We take $\xi^{a}=(\tau, \sigma)$ with periodicity in σ. The metric on $A d S_{5} \times S^{5}$ is as usual

$$
\begin{aligned}
d s_{A d S_{5}}^{2} & =d \rho^{2}-\cosh ^{2} \rho d t^{2}+\sinh ^{2} \rho\left(d \theta^{2}+\cos ^{2} \theta d \phi_{1}^{2}+\sin ^{2} \theta d \phi_{2}^{2}\right) \\
d s_{S^{5}}^{2} & =d \gamma^{2}+\cos ^{2} \gamma d \varphi_{3}^{2}+\sin ^{2} \gamma\left(d \psi^{2}+\cos ^{2} \psi d \varphi_{1}^{2}+\sin ^{2} \psi d \varphi_{2}^{2}\right)
\end{aligned}
$$

The fermionic Lagrangian is

$$
\mathscr{L}_{F}=i\left(\sqrt{-g} g^{a b} \delta^{I I}-\varepsilon^{a b} s^{I J}\right) \bar{\theta}^{I} \rho_{a} D_{a} \theta^{I}+o\left(\theta^{4}\right)
$$

where $I, J=1,2$ are the indices of the spacetime fermions, $s^{I J}=\operatorname{diag}(1,-1)$.

Set up: Metsaev-Tseytlin Action II

$D_{M}^{I I}$ is the 10d covariant derivative appearing in the supergravity equations of motion in terms of the spin connection and RR 5 -form

$$
D_{M}^{I J}=\left(\partial_{M}+\frac{1}{4} \omega_{M}^{A B} \Gamma_{A B}\right) \delta^{I J}-\frac{1}{8 \cdot 5!} F_{A_{1} \ldots A_{5}} \Gamma^{A_{1} \ldots A_{5}} \Gamma_{M} \varepsilon^{I J}
$$

For 10d MW spinors, and using the specific form of F

$$
\begin{aligned}
D_{a} \theta^{I} & =\left(\mathrm{D}_{a} \delta^{I J}-\frac{i}{2} \varepsilon^{I I} \Gamma_{*} \rho_{a}\right) \theta^{I} \\
\mathrm{D}_{a} & =\partial_{a}+\frac{1}{4} \partial_{a} X^{M} \omega_{M}^{A B} \Gamma_{A B} \\
\Gamma_{*} & =i \Gamma_{01234}, \quad \Gamma_{*}^{2}=1
\end{aligned}
$$

Fixing κ symmetry with $\theta^{1}=\theta^{2}$ we have the further simplification

$$
\begin{aligned}
\mathscr{L}_{F} & =-2 i \bar{\theta} D_{F} \theta \\
D_{F} & =-\rho^{a} \mathrm{D}_{a}-\frac{i}{2} \varepsilon^{a b} \rho_{a} \Gamma_{*} \rho_{b} .
\end{aligned}
$$

Example I: Rotating folded string in AdS_{3}

$$
d s^{2}=-\cosh ^{2} \rho d t^{2}+d \rho^{2}+\sinh ^{2} \rho d \phi^{2}
$$

Classical closed string solution given by

$$
t=\kappa \tau, \quad \phi=\omega \tau, \quad \rho=\rho(\sigma)=\rho(\sigma+2 \pi),
$$

κ, ω are constant parameters. The equation of motion and its solution in conformal gauge

$$
\begin{aligned}
& \rho^{\prime 2}=\kappa^{2} \cosh ^{2} \rho-w^{2} \sinh ^{2} \rho, \\
& \sinh \rho(\sigma)=\frac{k}{\sqrt{1-k^{2}}} \operatorname{cn}\left(\omega \sigma+\mathbb{K} \mid k^{2}\right) \quad \rho^{\prime}(\sigma)=\kappa \operatorname{sn}\left(\omega \sigma+\mathbb{K} \mid k^{2}\right)
\end{aligned}
$$

ρ varies from 0 to its maximal value $\rho_{0}: \operatorname{coth}^{2} \rho_{0}=\frac{\omega^{2}}{\mathrm{k}^{2}} \equiv 1+\eta \equiv \frac{1}{k^{2}}$

Small spin or short string limit: $\rho_{0} \rightarrow 0$, i.e. $\eta \rightarrow \infty$ or $k \rightarrow 0$ In the "short string" limit, when the string is rotating in the small central $(\rho=0)$ region of $A d S_{3}$, the spin is small and the parameter η is large

$$
\mathcal{E}_{0}=\sqrt{2 \mathcal{S}}\left(1+\frac{3}{8} \mathcal{S}+\ldots\right) \quad \mathcal{S} \ll 1
$$

1-loop corrections: Strategy

Leading quantum correction to the energy of this solution:

- expanding the action to quadratic order in fluctuations near the classical solution

$$
\widetilde{I}=-\frac{\sqrt{\lambda}}{4 \pi} \int d \tau \int_{0}^{2 \pi} d \sigma\left(\tilde{\mathscr{L}}_{B}+\tilde{\mathscr{L}}_{F}\right)
$$

- All the fluctuation operators have Lamé form:

$$
\left[-\partial_{x}^{2}+2 k^{2} \operatorname{sn}^{2}\left(x \mid k^{2}\right)\right] f(x)=\Lambda f(x) \quad x \sim \sigma
$$

semi-classical problem is governed by simple (finite-gap) operators. Everything can be computed analytically in a closed form!

- Semiclassical Quantization: "find a way to relate the eigenfrequences of the fluctuation aroud the classical solution to 1-Loop Energy"
Folded String: Stationary (simple) $\Rightarrow 2 \mathrm{~d}$ effective action

The folded string is simple! rigid spinning string! solution is stationary, the coeff. in the fluct. Lagrangian do not depend on τ.

Switching to Euclidean time, the 1-loop correction $\Rightarrow 2 \mathrm{~d}$ effective action Γ by dividing over the time interval $(t=\kappa \tau)$

$$
E_{1}=\frac{\Gamma}{\kappa \mathcal{T}}, \quad \mathcal{T} \equiv \int d \tau \rightarrow \infty, \quad \Gamma=-\ln Z
$$

Z ratio of the fermionic and bosonic determinants.

Since the above rigid spinning string solution is stationary, (τ ind. fluctuation Lagrangian) the relevant 2 -d functional determinants may be reduced to 1 -d determinants

$$
\ln \operatorname{det}\left[-\partial_{\sigma}^{2}-\partial_{\tau}^{2}+M^{2}(\sigma)\right]=\mathcal{T} \int_{-\infty}^{+\infty} \frac{d \Omega}{2 \pi} \ln \operatorname{det}\left[-\partial_{\sigma}^{2}+\Omega^{2}+M^{2}(\sigma)\right]
$$

Exact Solution Lamé eq. \Rightarrow analytic expressions for the fluctuation determinants \Rightarrow expansions in the small spin /short string limit.

Example II: Pulsating String in $R \times S^{2}$

$$
d s^{2}=-d t^{2}+d \psi^{2}+\sin ^{2} \psi d \phi^{2} \quad t=\kappa \tau, \quad \psi=\psi(\tau), \quad \phi=m \sigma,
$$

EQM and the conformal gauge constraint

$$
\ddot{\psi}+m^{2} \sin \psi \cos \psi=0 \quad \dot{\psi}^{2}+m^{2} \sin ^{2} \psi=\kappa^{2}
$$

The classical solution $\sin \psi(\tau)=\frac{\kappa}{m} \operatorname{sn}\left(m \tau \left\lvert\, \frac{\kappa^{2}}{m^{2}}\right.\right), \quad|\sin \psi| \leq \sin \psi_{0}=\frac{\kappa}{m}$ Energy and the oscillation number

$$
\mathcal{E}=\frac{E}{\sqrt{\lambda}}=\kappa, \quad \mathcal{N}=\frac{N}{\sqrt{\lambda}}=\int_{0}^{2 \pi} \frac{d \psi}{2 \pi} \sqrt{\kappa^{2}-m^{2} \sin ^{2} \psi}
$$

Short string expansion of the classical energy

$$
\mathcal{E}(\mathcal{N})=\sqrt{2 m \mathcal{N}}\left(1-\frac{\mathcal{N}}{8 m}-\frac{5 \mathcal{N} \mathcal{N}^{2}}{128 m^{2}}+\ldots\right)
$$

Almost the same strategy:

- Expand the action around the classical solution and find fluctuation operators
- Show that they are Lamé

$$
\left[-\partial_{x}^{2}+2 k^{2} \operatorname{sn}^{2}\left(x \mid k^{2}\right)\right] f(x)=\Lambda f(x)
$$

- Time-dependent case ($x \sim \tau$!) ... Quantisation of time-periodic solitons
- Bohr-Sommerfeld-Maslov semiclassical quantisation

The 1-loop correction to their energy is determined in a more complicated way than just by summing characteristic frequencies! No more determinants! ... we will need "stability angles"

- Solve Lamé: "stability angles" for the pulsating string [and determinants (for the folded string)]
- Compute the energy and expand in the "short limit"

Quadratic fluctuation Lagrangian I

$A d S_{5}$ directions are represented by a free massless "ghost" field plus four free massive fields $\left(k=1,2,3,4 ; \partial_{a} \partial^{a}=-\partial_{\tau}^{2}+\partial_{\sigma}^{2}\right)$

$$
L_{A d S}^{(2)}=-\frac{1}{2}\left(\dot{\beta}^{2}-\beta^{\prime 2}\right)+\frac{1}{2}\left(\dot{y}_{k}^{2}-y_{k}^{\prime 2}-\kappa^{2} y_{k} y_{k}\right)
$$

S^{5} fluctuations $\left(\xi, \eta, z_{1}, z_{2}, z_{3}\right)$

$$
\begin{aligned}
L_{S}^{(2)}=\frac{1}{2}\left(\dot{\xi}^{2}-\xi^{\prime 2}-M_{\xi}^{2} \xi^{2}\right)+ & \frac{1}{2}\left(\dot{\eta}^{2}-\eta^{\prime 2}-M_{\eta}^{2} \eta^{2}\right)+m \cos \psi\left(\xi \eta^{\prime}-\xi^{\prime} \eta\right) \\
& +\frac{1}{2}\left(\dot{z}_{i}^{2}-z_{i}^{\prime 2}-M^{2} z_{i}^{2}\right)
\end{aligned}
$$

where the background-dependent masses are

$$
M^{2}=\kappa^{2}-2 m^{2} \sin ^{2} \psi, \quad M_{\xi}^{2}=\kappa^{2}+m^{2} \cos (2 \psi) \quad M_{\eta}^{2}=m^{2} \cos (2 \psi)
$$

Solving the Virasoro constraints one can show that the coupled system (ξ, η) is equivalent to a decoupled system of one massless mode + of the massive mode with the Lagrangian

$$
L=\frac{1}{2}\left(\dot{g}^{2}-g^{\prime 2}-\tilde{M}^{2} g^{2}\right) \quad \tilde{M}^{2}=\kappa^{2}\left(1-\frac{2}{\sin ^{2} \psi}\right)
$$

Quadratic fluctuation Lagrangian II

Starting form the fermionic fluctuation Lagrangian
in the standard $\theta^{1}=\theta^{2}$ kappa symmetry

$$
\mathcal{L}_{F}=-2 i \bar{\vartheta}\left(-\rho^{a} D_{a}-\frac{i}{2} \varepsilon^{a b} \rho_{a} \Gamma_{*} \rho_{b}\right) \vartheta
$$

After some computations ...

$$
D_{F}=\Gamma_{0} \partial_{\tau}-\Gamma_{9} \partial_{\sigma}+\Gamma_{079} \dot{\psi}
$$

We are interested in eigenvalues and determinant \Rightarrow take the square of the simpler operator

$$
\tilde{D}_{F} \equiv \Gamma_{09} D_{F}=\Gamma_{9} \partial_{\tau}-\Gamma_{0} \partial_{\sigma}-\Gamma_{7} \dot{\psi} .
$$

Diagonalizing Γ_{97} (i.e. replacing it by $\pm i$) we get the following second order fermionic operator

$$
\tilde{D}_{F \pm}^{2}=\partial_{\tau}^{2}-\partial_{\sigma}^{2}+M_{ \pm}^{2} \quad M_{ \pm}^{2}=\dot{\psi}^{2} \pm i \ddot{\psi}
$$

Taking into account the specific form of the solution $\psi(\tau)$

$$
M_{ \pm}^{2} \sim k^{2} \mathrm{cn}^{2}\left(x \mid k^{2}\right) \mp i k \operatorname{sn}\left(x \mid k^{2}\right) \operatorname{dn}\left(x \mid k^{2}\right)
$$

UV check

UV Check on the resulting fluctuation Lagrangian:
UV finiteness of the 1-loop partition func-
tion: In conformal gauge \Leftrightarrow sum of the
effective mass-squared terms for bosons
equals that for the fermions

$$
\begin{aligned}
\operatorname{AdS}: & 4 \times \kappa^{2}, \\
S^{5}: & 3 \times\left(\kappa^{2}-2 m^{2} \sin ^{2} \psi\right), \\
& 1 \times\left(m^{2} \cos (2 \psi)-m^{2} \cos ^{2} \psi\right), \\
& 1 \times\left(\kappa^{2}+m^{2} \cos (2 \psi)-m^{2} \cos ^{2} \psi\right), \\
F: & -8 \times\left(\kappa^{2}-m^{2} \sin ^{2} \psi\right)
\end{aligned}
$$

... indeed sums to zero.

$$
\begin{array}{rlll}
\text { AdS }: & 4 \times \kappa^{2}, & \text { In static gauge: Sum proportional to the } \\
S^{5}: & 3 \times\left(\kappa^{2}-2 m^{2} \sin ^{2} \psi\right), & & \text { Euler density of the induced metric ... this } \\
& 1 \times \kappa^{2}\left(1-\frac{2}{\sin ^{2} \psi}\right), & \begin{array}{l}
\text { is proportional to the Euler number which }
\end{array} \\
& : & -8 \times\left(\kappa^{2}-m^{2} \sin ^{2} \psi\right) & \begin{array}{l}
\text { vanishes for the cylinder topology under } \\
\text { discussion. }
\end{array}
\end{array}
$$

and the sum is $2 m^{2} \sin ^{2} \psi-2 \frac{\mathrm{k}^{2}}{\sin ^{2} \psi}=\sqrt{-g} R^{(2)}$

Expand the action around the classical solution and find fluctuation operators

- Show that they are Lamé

$$
\left[-\partial_{x}^{2}+2 k^{2} \operatorname{sn}^{2}\left(x \mid k^{2}\right)\right] f(x)=\Lambda f(x)
$$

- Time-dependent case ($x \sim \tau$!) ... Quantisation of time-periodic solitons
- Bohr-Sommerfeld-Maslov semiclassical quantisation

The 1-loop correction to their energy is determined in a more complicated way than just by summing characteristic frequencies! No more determinants! ... we will need "stability angles"

- Solve Lamé: "stability angles" for the pulsating string [and determinants (for the folded string)]
- Compute the energy and expand in the "short limit"

Lamé form of fluctuation operators

S^{5} modes z_{i} with mass $M^{2}=\kappa^{2}-2 m^{2} \sin ^{2} \psi: \quad O_{I}=-\partial_{\tau}^{2}+2 m^{2} \sin ^{2} \psi-\kappa^{2}-n^{2}$

$$
O_{I}=m^{2}\left[-\partial_{x}^{2}+2 k^{2} s^{2}\left(x \mid k^{2}\right)-\Lambda\right], \quad x=m \tau, \quad k^{2}=\frac{\kappa^{2}}{m^{2}}, \quad \Lambda=\frac{\kappa^{2}+n^{2}}{m^{2}}
$$

S^{5} mode with mass $\tilde{M}^{2}=\kappa^{2}\left(1-\frac{2}{\sin ^{2} \psi}\right): \quad O_{I I}=m^{2}\left[-\partial_{x}^{2}+2 \mathrm{~ns}^{2}\left(x \mid k^{2}\right)-\Lambda\right]$
$\mathrm{ns}\left(z \mid k^{2}\right)=k \operatorname{sn}\left(z+i \mathbb{K}^{\prime} \mid k^{2}\right)$

$$
O_{I I}=m^{2}\left[-\partial_{x}^{2}+2 k^{2} \operatorname{sn}^{2}\left(x \mid k^{2}\right)-\Lambda\right], \quad x \equiv m \tau+i \mathbb{K}^{\prime} \quad, \quad k=\frac{\kappa}{m} \quad, \quad \Lambda=\frac{\kappa^{2}+n^{2}}{m^{2}}
$$

The fermion op. with the mass $M_{ \pm}^{2}=\dot{\psi}^{2} \pm i \ddot{\psi}: \quad O_{I I I}^{ \pm}=-\partial_{\tau}^{2}-\dot{\psi}^{2} \mp i \ddot{\psi}-n^{2}$.
This operator is non-hermitian, but is PT-symmetric and has a real spectrum
Does not look like the standard single-gap Lamé operator ... rescaling of x and a Gauss/Landen/Jacobi Transformations

$$
\begin{aligned}
& O_{I I I}^{ \pm}=\bar{m}_{ \pm}^{2}\left[-\partial_{X}^{2}+2 \bar{k}_{ \pm}^{2} \operatorname{sn}^{2}\left(\overline{\mathrm{X}} \mid \bar{k}_{ \pm}^{2}\right)-\Lambda\right], \overline{\mathrm{X}} \equiv \bar{m}_{ \pm} \tau+\frac{1}{2} \mathbb{K}\left(\bar{k}_{ \pm}^{2}\right) \\
& \bar{k}_{ \pm}^{2}= \pm 4 \frac{\frac{i \kappa}{m} \sqrt{1-\frac{\kappa^{2}}{m^{2}}}}{\left(\sqrt{1-\frac{\kappa^{2}}{m^{2}}} \pm \frac{i \kappa}{m}\right)^{2}}, \quad \Lambda=\frac{n^{2}}{\bar{m}_{ \pm}^{2}+\bar{k}_{ \pm}^{2}}, \quad \bar{m}_{ \pm}=\frac{m}{2}\left(\sqrt{1-\frac{\kappa^{2}}{m^{2}}} \pm i \frac{\kappa}{m}\right)
\end{aligned}
$$

Expand the action around the classical solution and find fluctuation operators

Show that they are Lamé

$$
\left[-\partial_{x}^{2}+2 k^{2} \operatorname{sn}^{2}\left(x \mid k^{2}\right)\right] f(x)=\Lambda f(x)
$$

- Time-dependent case ($x \sim \tau!$) ... Quantisation of time-periodic solitons
- Bohr-Sommerfeld-Maslov semiclassical quantisation The 1 -loop correction to their energy is determined in a more complicated way than just by summing characteristic frequencies! No more determinants! ... we will need "stability angles"
- Solve Lamé: "stability angles" for the pulsating string [and determinants (for the folded string)]
- Compute the energy and expand in the "short limit"

Bohr-Sommerfeld-Maslov quantisation I

Semiclass. quant. of (class. integrable, time-periodic) Hamiltonian

Classical integrability
$\exists n$ functions $F_{i}, \in \mathcal{C}\left(T^{*} X\right)$ such that:

- $d F_{1} \wedge \cdots \wedge d F_{n} \neq 0$, almost everywhere,
- $\left\{F_{i}, F_{j}\right\}=0$,
- $H=H\left(F_{1}, \ldots, F_{n}\right)$.

Semi-classical integrability
\exists quantum extensions \widehat{F}_{i} of $F_{i}\left(\widehat{F}_{i} \xrightarrow{\hbar \rightarrow 0} F_{i}\right)$

- $d F_{1} \wedge \cdots \wedge d F_{n} \neq 0$, almost everywhere,
- $\left[\widehat{F}_{i}, \widehat{F}_{j}\right]=O\left(\hbar^{3}\right)$
- $\widehat{H}=H\left(\widehat{F}_{1}, \ldots, \widehat{F}_{n}\right)+O\left(\hbar^{2}\right)$

Define n-tori (Liouville tori), action variables I_{i}, angle variables φ_{i} (the coor. of the torus)
We want to solve the semiclassical problem

$$
\widehat{F}_{i} \psi=f_{i} \psi+O\left(\hbar^{2}\right)
$$

WKB-like solution \exists iff BSM quantisation condition is satisfied

$$
\frac{1}{2 \pi \hbar} \int_{\gamma_{i}} p \cdot d q=N_{i}+\frac{\mu_{i}}{4}+O(\hbar), \quad i=1, \ldots, n,
$$

N_{i} action variables, $\left\{\gamma_{i}\right\}$ cycles of a Liouville torus, μ_{i} Maslov indices they generalise the familiar

Bohr-Sommerfeld-Maslov quantisation II

If the class. torus $p<n$ non trivial cycles \Rightarrow change in the BSM q. condition

$$
\frac{1}{2 \pi \hbar} \int_{\gamma_{k}} p \cdot d q=N_{k}+\frac{\mu_{k}}{4}+\sum_{\alpha=p+1}^{n}\left(n_{\alpha}+\frac{1}{2}\right) \frac{v_{\alpha}^{(k)}}{2 \pi}+O(\hbar)
$$

The stability angles account the fluct. transverse to the codimension p invariant torus

$$
\begin{aligned}
& v_{\alpha}^{(k)} \text { found studying small fluctuations ... } \\
& \text { they are nothing but the usual eigenfre- } \\
& \text { quencies for fluctuations around static soli- } \\
& \text { tons }
\end{aligned}
$$

Superstring periodic \mathcal{T} solutions: 1-dimensional integrable system with invariant tori embedded in the string phase space

$$
\mathcal{E}=\mathcal{E}_{c l}(\mathcal{N})+\frac{1}{2 \sqrt{\lambda}} \frac{1}{\mathcal{T}} \sum_{v_{s}>0} v_{s}+O\left(\frac{1}{(\sqrt{\lambda})^{2}}\right)
$$

Fluctuation operators are all of the single-gap Lamé form - "Schroedinger-like" periodic potential Stability angles \sim quasi momentum

Independent solutions $f_{ \pm}(x)$

$$
f_{ \pm}(x+\mathcal{T})=e^{ \pm i v} f_{ \pm}(x) \quad v=p \mathcal{T}
$$

Remarks on single-gap Lamé operators I

Consider the following eigenvalue problem for an ordinary differential operator with a periodic potential

$$
O f \equiv\left[-\partial_{x}^{2}+V(x)\right] f(x)=\Lambda f(x), \quad V(x+L)=V(x)
$$

Assume quasi-periodic boundary conditions

$$
f(x+L)=e^{i \alpha} f(x), \quad \alpha \in[0,2 \pi) .
$$

Floquet-Bloch theory: two independent solutions $f_{ \pm}(x)=e^{ \pm i p(\Lambda) x} \chi_{ \pm}(x)$, where $\chi_{ \pm}(x)$ are periodic, so that under translation through one period the solutions $f_{ \pm}(x)$ change by a phase

$$
f_{ \pm}(x+L)=\mathrm{e}^{ \pm i p(\Lambda) L} f_{ \pm}(x)
$$

$p(\Lambda)$ is the quasi-momentum. The discriminant is $\Delta(\Lambda)=2 \cos (L p(\Lambda))$

Remarks on single-gap Lamé operators II

Quadratic fluctuation operators have "single-gap Lamé" form

$$
\left[-\partial_{x}^{2}+2 k^{2} \operatorname{sn}^{2}\left(x \mid k^{2}\right)\right] f(x)=\Lambda f(x)
$$

The two independent Bloch solutions

$$
f_{ \pm}(x)=\frac{H(x \pm \alpha)}{\Theta(x)} \mathrm{e}^{\mp x Z(\alpha)}
$$

H, Θ, Z are the Jacobi Eta, Theta and Zeta functions
Spectral parameter $\alpha=\alpha(\Lambda)$: related to the eigenvalue Λ by the transcendental equation:

$$
\operatorname{sn}\left(\alpha \mid k^{2}\right)=\sqrt{\frac{1+k^{2}-\Lambda}{k^{2}}} .
$$

Periodicity properties of the Jacobi functions \Rightarrow solutions $f_{ \pm}(x)$ acquire a phase under a shift through one period $2 \mathbb{K}$:

$$
f_{ \pm}(x+2 \mathbb{K})=-f_{ \pm}(x) \mathrm{e}^{\mp 2 \mathbb{K} Z(\alpha)} \equiv f_{ \pm}(x) \mathrm{e}^{2 i \mathbb{K} p(\alpha)}
$$

This defines the quasi-momentum as $p(\Lambda)=i Z\left(\alpha \mid k^{2}\right)+\frac{\pi}{2 \mathbb{K}}$

Remarks on single-gap Lamé operators III

Explicit expression for the quasi-momentum implies that we can write an explicit expression for the

- Functional determinant $\operatorname{det} O=\Delta(0)-2 \cos \alpha$
- Stability Angles (just rescaling by \mathcal{T})

The periodic Lamé potential has the special property that its band spectrum has only a single gap - three band edges

The periodic and the antiperiodic eigenvalues

$$
\Delta(\Lambda)= \begin{cases}+2 & \text { (periodic) } \\ -2 & \text { (antiperiodic) }\end{cases}
$$

The role of Integrability

Why everything is so simple (solvable Lamé)?

- The solution we considered are part of a more general class "finite gap" String Solutions, characterised by an "algebraic curve" \Leftrightarrow set of cuts on a Riemann surface (Point where the Bethe roots condensate in the continuum limit)
- Integrable system: given a solitonic solution \Leftrightarrow study the perturbated system by adding another "small soliton" (Bäcklund Transformation)

- Algebraic curve semiclassical quantization: deforming the cuts definining the algebraic curve (adding extra roots)

- Solution of the Lamé equation \Rightarrow Baker Akhiezer function

Expand the action around the classical solution and find fluctuation operators

Show that they are Lamé

$$
\left[-\partial_{x}^{2}+2 k^{2} \operatorname{sn}^{2}\left(x \mid k^{2}\right)\right] f(x)=\Lambda f(x)
$$

Time-dependent case ($x \sim \tau!$) ... Quantisation of time-periodic solitons

Bohr-Sommerfeld-Maslov semiclassical quantisation

Solve Lamé

- Compute the energy and expand in the "short limit"

Pulsating String: Stability angles I

- $\mathcal{E}=\mathcal{E}_{\mathrm{cl}}(\mathcal{N})+\frac{1}{2 \sqrt{\lambda}} \frac{1}{\mathcal{T}} \sum_{\mathrm{v}_{s}>0} \mathrm{v}_{s}+O\left(\frac{1}{(\sqrt{\lambda})^{2}}\right)$
- The period of the problem is $\mathcal{T}=\frac{4 \mathbb{K}}{m}$.
- We want the short string: small $\kappa \Leftrightarrow$ small semiclassical oscillation parameter \mathcal{N}
- compute exact stability angles (Lamé), expand, and then sum

4 massless $A d S_{5}$ fluctuations

$$
v_{A d s_{5}}=4 \mathbb{K} \sqrt{k^{2}+\frac{n^{2}}{m^{2}}} \quad k \equiv \frac{\kappa}{m}
$$

Expanding in small κ, i.e. in small k,

$$
\begin{aligned}
v_{A d S_{5}}= & \frac{2 \pi n}{m}+k^{2}\left(\frac{\pi m}{n}+\frac{\pi n}{2 m}\right)+\frac{\pi k^{4}\left(-8 m^{4}+8 m^{2} n^{2}+9 n^{4}\right)}{32 m n^{3}} \\
& +\frac{\pi k^{6}\left(16 m^{6}-8 m^{4} n^{2}+18 m^{2} n^{4}+25 n^{6}\right)}{128 m n^{5}}+\ldots
\end{aligned}
$$

Pulsating String: Stability angles II

S^{5} bosonic fluctuations (Type I and II)
$v_{s^{5}}= \pm 4 \mathbb{K}\left(i \mathbb{Z}\left(\alpha \mid k^{2}\right)+\frac{\pi}{2 \mathbb{K}}\right) \equiv \pm 4 \mathbb{K} i \mathbb{Z}\left(\alpha \mid k^{2}\right), \quad \operatorname{sn}\left(\alpha \mid k^{2}\right)=\sqrt{\frac{1+k^{2}-\Lambda}{k^{2}}}=\frac{1}{k} \sqrt{1-\frac{n^{2}}{m^{2}}}$.
define $a=\sqrt{1-\frac{n^{2}}{m^{2}}}$

$$
\mathbb{Z}\left(\left.\operatorname{sn}^{-1}\left(\left.\frac{a}{k} \right\rvert\, k^{2}\right) \right\rvert\, k^{2}\right)=i \int_{1}^{a / k} \frac{d t}{\sqrt{t^{2}-1}}\left(\sqrt{1-k^{2} t^{2}}-\frac{\mathbb{E}}{\mathbb{K}} \frac{1}{\sqrt{1-k^{2} t^{2}}}\right)
$$

The two basic integrals are

$$
\begin{aligned}
& \int_{1}^{a / k} \frac{d t}{\sqrt{t^{2}-1}} \sqrt{1-k^{2} t^{2}}=i\left(\mathbb{E}\left(\left.\arcsin \frac{a}{k} \right\rvert\, k^{2}\right)-\mathbb{E}\right) \\
& \int_{1}^{a / k} \frac{d t}{\sqrt{t^{2}-1}} \frac{1}{\sqrt{1-k^{2} t^{2}}}=i\left(\mathbb{F}\left(\left.\arcsin \frac{a}{k} \right\rvert\, k^{2}\right)-\mathbb{K}\right)
\end{aligned}
$$

In order to expand at small k, we use the transformation

$$
\mathbb{E}\left(\left.\arcsin \frac{a}{k} \right\rvert\, k^{2}\right)=\frac{\mathbb{E}}{\mathbb{K}} \mathbb{F}\left(\left.\arcsin \frac{a}{k} \right\rvert\, k^{2}\right)+i \sqrt{1-a^{2}} \sqrt{1-\frac{k^{2}}{a^{2}}}\left(\frac{\Pi\left(a^{2} \mid k^{2}\right)}{\mathbb{K}}-1\right)
$$

The final result is remarkably simple: all incomplete elliptic integrals simplify.

$$
\mathbb{Z}\left(\left.\mathrm{sn}^{-1}\left(\left.\frac{a}{k} \right\rvert\, k^{2}\right) \right\rvert\, k^{2}\right)=i \sqrt{1-a^{2}} \sqrt{1-\frac{k^{2}}{a^{2}}}\left(1-\frac{\Pi\left(a^{2} \mid k^{2}\right)}{\mathbb{K}}\right) .
$$

Pulsating String: Stability angles III

$$
\begin{aligned}
v_{s^{5}}=-4 i \mathbb{K} \mathbb{Z}\left(\left.\mathrm{sn}^{-1}\left(\left.\frac{a}{k} \right\rvert\, k^{2}\right) \right\rvert\, k^{2}\right)= & \frac{2 \pi n}{m}+\frac{\pi k^{2} n}{2 m}+\frac{\pi k^{4} n\left(13 m^{2}-9 n^{2}\right)}{32 m(m-n)(m+n)} \\
& +\frac{\pi k^{6} n\left(45 m^{4}-62 m^{2} n^{2}+25 n^{4}\right)}{128 m(m-n)^{2}(m+n)^{2}}+\ldots
\end{aligned}
$$

The singularity at $n=m$ is only apparent, since it happens at $a=0$ where our derivation cannot be applied; the above expression is just zero at that point

Fermionic fluctuations

$$
\begin{gathered}
v_{F}= \pm 4 i \mathbb{K}\left[\frac{1}{2} \mathbb{Z}\left(\alpha(\beta) \mid k^{2}\right)+i \sqrt{\beta} \sqrt{1+\frac{16 \beta k^{2}}{(1-4 \beta)^{2}}}\right], \quad \alpha(\beta)=\mathrm{cn}^{-1}\left(\left.-\frac{1+4 \beta}{1-4 \beta} \right\rvert\, k^{2}\right), \quad \beta=\frac{n^{2}}{m^{2}} \\
v_{F}=\frac{2 \pi n}{m}+\frac{\pi n\left(3 m^{2}+4 n^{2}\right)}{2 m(2 n-m)(m+2 n)} k^{2}-\frac{\pi n\left(15 m^{6}-276 m^{4} n^{2}-304 m^{2} n^{4}+576 n^{6}\right)}{32 m(m-2 n)^{3}(m+2 n)^{3}} k^{4} \\
-\frac{\pi n\left(35 m^{10}-780 m^{8} n^{2}+9696 m^{6} n^{4}+9856 m^{4} n^{6}-28928 m^{2} n^{8}+25600 n^{10}\right)}{128 m(m-2 n)^{5}(m+2 n)^{5}} k^{6}+\ldots
\end{gathered}
$$

... and the Sum

$$
\begin{aligned}
\mathcal{E}_{1}=\frac{1}{2 \mathcal{T} \kappa} \sum_{n=-\infty}^{\infty} v_{n}= & 2+\kappa(1-4 \log 2)+\frac{1}{8} \kappa^{3}\left(3 \zeta_{3}+1+4 \log 2\right) \\
& +\frac{1}{4} \kappa^{5}\left(-\frac{63 \zeta_{3}}{16}-\frac{15 \zeta_{5}}{16}+\frac{7}{32}+\log 2\right)+O\left(\kappa^{7}\right)
\end{aligned}
$$

Check: The sum over n is convergent
... remember that we can organise the short string expansion of the energy as

$$
\begin{aligned}
& E=E\left(\frac{N}{\sqrt{\lambda}}, \sqrt{\lambda}\right)=\sqrt{\lambda} \mathcal{E}_{0}(\mathcal{N})+\mathcal{E}_{1}(\mathcal{N})+\frac{1}{\sqrt{\lambda}} \mathcal{E}_{2}(\mathcal{N})+\ldots, \\
& \mathcal{E}_{k}=\sqrt{2 \mathcal{N}}\left(a_{0 k}+a_{1 k} \mathcal{N}+a_{2 k} \mathcal{N}^{2}+\ldots\right)+c_{0 k}+c_{1 k} \mathcal{N}+\ldots .
\end{aligned}
$$

we thus find that for the pulsating string in $\mathbb{R} \times S^{2}$

$$
\begin{aligned}
E_{1} \equiv \mathcal{E}_{1}= & 2+\sqrt{2 \mathcal{N}}\left[1-4 \log 2+\left(\frac{3}{2} \log 2+\frac{3}{4} \zeta_{3}+\frac{1}{8}\right) \mathcal{N}\right. \\
& \left.+\left(\frac{25}{32} \log 2-\frac{135}{32} \zeta_{3}-\frac{15}{16} \zeta_{5}+\frac{11}{128}\right) \mathcal{N}^{2}+\ldots\right] .
\end{aligned}
$$

and finally

... can be re-written in terms of N and the string tension λ as follows

$$
\begin{aligned}
& E=\sqrt{2 N \sqrt{\lambda}}\left(a_{00}+\frac{a_{10} N+a_{01}}{\sqrt{\lambda}}+\ldots\right)+c_{01}+\ldots \\
& a_{00}=1, \quad a_{10}=-\frac{1}{8}, \quad a_{01}=1-4 \log 2, \quad c_{01}=2
\end{aligned}
$$

Apply the same strategy to other, simple, classical solutions!

Pulsating string in $A d S_{3}$

$$
\begin{aligned}
& \sinh \rho(\tau)=\sqrt{R_{+}} \operatorname{cn}\left(x+\mathbb{K}\left(k^{2}\right) \mid k^{2}\right), \\
& x=m \sqrt{R_{+}-R_{-}} \tau \equiv w \tau, \quad R_{ \pm}=\frac{-m \pm \sqrt{m^{2}+4 \mathcal{E}_{0}^{2}}}{2 m} \\
& k^{2}=\frac{R_{+}}{R_{+}-R_{-}}=\frac{1}{2}\left(1-\frac{1}{\sqrt{1+\left(\frac{2 \mathcal{E}_{0}}{m}\right)^{2}}}\right) . \\
& N=\sqrt{\lambda} \mathcal{N}, \quad \mathcal{N}=\frac{1}{2 \pi} \oint d \rho \rho
\end{aligned}
$$

spinning folded string in $\mathbb{R} \times S^{2}$

$$
\begin{aligned}
& \sin \theta=\sqrt{q} \operatorname{sn}\left(w_{21} \sigma \mid q\right), \quad \cos \theta=\operatorname{dn}\left(w_{21} \sigma \mid q\right), \\
& q=\sin ^{2} \theta_{0}=\frac{\kappa^{2}-w_{1}^{2}}{w_{2}^{2}-w_{1}^{2}}, \quad w_{21}=\sqrt{w_{2}^{2}-w_{1}^{2}}=\frac{2}{\pi} \mathbb{K}(q) . \\
& \mathcal{E}_{0}=\kappa, \quad g_{1}=\frac{w_{1}}{w_{21}}{ }_{2} F_{1}\left(-\frac{1}{2}, \frac{1}{2}, 1, q\right), \\
& g_{2}=\frac{w_{2}}{w_{21}} \frac{q}{2}{ }_{2} F_{1}\left(\frac{1}{2}, \frac{3}{2}, 2, q\right) . \quad \frac{g_{1}}{w_{1}}+\frac{g_{2}}{w_{2}}=1 .
\end{aligned}
$$

Konishi multiplet vs. semiclassical strings (?)

folded in AdS_{3}

folded in RxS^{2}

pulsating RxS ${ }^{2}$

pulsating AdS_{3}

$$
\begin{aligned}
& E_{1}=2+\sqrt{2 g}\left[2-4 \log 2+\left(-\frac{1}{2}-\frac{3}{2} \log 2+\frac{3}{4} \zeta_{3}\right) g+\left(\frac{1}{64}-\frac{15}{32} \log 2+\frac{51}{32} \zeta_{3}-\frac{15}{16} \zeta_{5}\right) g^{2}+\ldots\right], \\
& E_{1}=1+\sqrt{2 \mathcal{S}}\left[\frac{3}{2}-4 \log 2+\left(-\frac{23}{16}+\frac{3}{2} \log 2+\frac{3}{4} \zeta_{3}\right) \mathcal{S}+\left(\frac{689}{256}-\frac{63}{32} \log 2-\frac{15}{32} \zeta_{3}-\frac{15}{16} \zeta_{5}\right) \mathcal{S}^{2}+\ldots\right], \\
& E_{1}=2+\sqrt{2 \mathcal{N}}\left[1-4 \log 2+\left(\frac{1}{8}+\frac{3}{2} \log 2+\frac{3}{4} \zeta_{3}\right) \mathcal{N}+\left(\frac{11}{128}+\frac{25}{32} \log 2-\frac{135}{32} \zeta_{3}-\frac{15}{16} \zeta_{5}\right) \mathcal{N}^{2}+\ldots\right], \\
& E_{1}=1+\sqrt{2 \mathcal{N}}\left[\frac{5}{2}-4 \log 2+\left(-\frac{37}{8}+\frac{5}{2} \log 2+\frac{3}{4} \zeta_{3}\right) \mathcal{N}\right. \\
& \left.+\left(\frac{3915}{256}-\frac{231}{32} \log 2-\frac{117}{32} \zeta_{3}-\frac{15}{16} \zeta_{5}\right) \mathcal{N}^{2}+\ldots\right],
\end{aligned}
$$

"Some" universality: Highest transcendentality terms are equal

Konishi multiplet vs. semiclassical strings (?)

Folded spinning string in $\mathbb{R} \times S^{2}$

$$
E=\sqrt{2 J \sqrt{\lambda}}\left(1+\frac{\frac{1}{8} J+2-4 \log 2}{\sqrt{\lambda}}+\ldots\right)+2+\ldots
$$

Folded spinning string in AdS_{3}

$$
E=\sqrt{2 S \sqrt{\lambda}}\left(1+\frac{\frac{3}{8} S+\frac{3}{2}-4 \log 2}{\sqrt{\lambda}}+\ldots\right)+1+\ldots
$$

Pulsating string in $\mathbb{R} \times S^{2}$

$$
E=\sqrt{2 N \sqrt{\lambda}}\left(1+\frac{-\frac{1}{8} N+1-4 \log 2}{\sqrt{\lambda}}+\ldots\right)+2+\ldots
$$

Pulsating string in $A d S_{3}$

$$
E=\sqrt{2 N \sqrt{\lambda}}\left(1+\frac{\frac{5}{8} N+\frac{5}{2}-4 \log 2}{\sqrt{\lambda}}+\ldots\right)+1+\ldots
$$

Summary and comments

- Exact structure of one-loop correction to energy for a class of classical string solutions (simple elliptic functions).
(Next in complexity to the simplest rational class, trigonometric functions)
- In all cases where there is only one charge/adiabatic invariant besides the energy the fluctuation operators can be decoupled and put into a single-gap Lamé type form.
- We have found the one-loop energies in the limit of small values of the semiclassical parameters small size of the string/ "near-flat" approximation
- The hope: This "short-string" limit may shed light on the structure of strong-coupling corrections to dimensions of "short" dual gauge theory operators for which the "wrapping" contributions are important.

Still to do ...

- The semiclassical approximation is based on assumption that $\sqrt{\lambda} \gg 1$ with semiclassical parameters like $\mathcal{S}=\frac{S}{\sqrt{\lambda}}, \mathcal{I}=\frac{J}{\sqrt{\lambda}}$ or $\mathcal{N}=\frac{N}{\sqrt{\lambda}}$ fixed, so that S, J or N are formally large. Still, taking the "short-string" limit in which $\mathcal{S}, \mathcal{I}, \mathcal{N} \rightarrow 0$ one may conjecture that that limit "commutes" with large the $\sqrt{\lambda}$ limit ... is this true?

```
Consider the Folded String case - Konishi operator:
structure of the semiclassical result OK, coefficient?
One would expect rational ... [Numerical by Gromov & C.]
```

- ... we start with class. solution with all charges $=0$ but one ... tricky! Add an additional momentum in S^{5} !
- Comparison, step by step, with the algebraic curve
- Classical solutions with two charges different from zero ... it seems very difficult ... in principle, the nice Lamé equation can be generalized to a many component one solved by Baker Akhiezer function

Thank you!
arorare = mach

