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GR applied to the Universe expansion: succesfull theory
tested from MeV down to low redshifts (z = 1) +
inflation paradigm

BBN
CMB anisotropies
Large scale inhomogeneities (Power spectrum, BAO)

Very accurate probes today (WMAP, SDSS,...) and in
the near future (Planck, weak lensing,...)

Two regimes of the theory raise questions:

* High energy: quantum gravity at Planck scale E = my,
* Low energy: the Cosmological Constant/Dark Energy
athHO’(ZSI)
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High energy

E atE - mp, = 10" GeV quantum gravity effects are expected to be
relevant (trapped surfaces DFR): imprints on inflation?

*flatness;
~ eperturbation spectrum close to HZ, n, = 0.963 * 0.012 (WMAP)
~ egaussianity.

A
Comoving
scale

Observable large scale today
. maybe sub-Planckian initially.

Bunch-Davis vacuum?
- Mode creation mechanism;
| change of dispersion relation w(k).
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Low energy

robust evidence for late acceleration of the Universe
expansion (SN-Ia)atz<i1and @ E = H,

Supernova Cosmology Project
Amanullah, et al., Ap.J. (2010)
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A new inﬂation? 1.2 Compilation |
Brans-Dicke (now popular as F(R)) ? Samaes

1.0

Cosmological constant today: e
the long standing hierarchy problem




The zero - point energy density

. hw, .
flat spacetime: E regularize

= 8  ”
normal ordering - subtraction

(@ - QO (preferred vacuum state, ¢

Poincare’ invariance)

curved spacetime: no preferred vacuum state (in general)
regularization and renormalization?



Effects of zero-point energy:
the Casimir effect
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E®), (a,8): Minkowski vacuum

E® (a,8): boundary conditions

Ern (a) = limg (E® (a,8) — E©®),(a,5))
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Vacuum ren
plates fluctuations E (Cl) =
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Regularization schemes on
curved spacetimes

General attitude: try to keep relativistic invariance

[ - dimensional regularization (Akhmedov 2002)

i L T(-d/2 T
__M4 df kz o mz i M4 (d(-1)/2 ) -
2(47) T T(-d/2)\ u




Il - adiabatic renormalization (see e.g. Birrel & Davis 1982)

mode expansion

Kot wz(k)Xk =0

Al e—i f Wdn'
WKB AT

adiabatic parameter | @ 1n/t, T 8
Expand T,; in inverse power of t

L= Er_ntab
n
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On FRWL, subtraction of terms n=o0 (Minkowski) & 2,4
(still divergent)

T(ren)ab = Z:n>4 L= tnab|

=1

[I1 - ADM inspired renormalization (Maggiore 2010)

Cut-off regularization p(k,A), e.g. u(k,A) = ®(A-k) in the
comoving frame

subtract terms still present in the Minkowski limit (like
definition of energy (mass) as eigenvalue of Hamiltonian
in ADM, or Casimir effect procedure)




* A seen as a “physical” scale (Planck mass) a’ la Wilson;

» a slightly different adiabatic renormalization procedure;
only Minkowski term subtracted

* Breaking of Lorentz invariance: broken by a preferred
frame anyway (comoving frame).

a!
04279, +kp, =

k comoving momentum




A cut off in physical momentum p=k/a
Example: de Sitter phase
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Breaking of Lorentz invariance T,=Ag,



A Paradox

Consider e.g. a de Sitter phase, H = const.

o« H” = const.

On the other hand Vv 7% =0

p+3H(p+P)=p+3Hp(1-1/3)=p+2Hp=0

To mantain covariant conservation of total T,, and for
consistency one should require that the zero-point
energy/momentum is coupled with other “species”

Ad hoc ? Maggiore 2010, Sloth 2010

But, does covariant conservation of T, hold, if we
cut off our theory at A ?
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Red-shift

>

a(t)
A is physical momentum scale. Flow of trans-Planckian

momenta at all time due to red-shift. Source term due to

mode creation! N S

Keski-Vakkuri & Sloth 2003
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Simple example: the A4 term

d —da“‘Afadkk3——4H +J
dt’o dt i 5 4

d
J=(Aa)’AN=a=4H
| ( ) dt 4
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Source term for the (renormalized) zero-point
energy/momentum tensor

VaTab _ Jb
A b (J ) (1) ,6) homogeneity and isotropy
Example: de Sitter
0+ 3Hp(1-1/3)=p+2Hp=J" =2Hp

p = const consistent with equation of
state since the system is not isolated

I

Same conclusion for matter and radiation dominated
Universes
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 Same result for more sophisticated cut-off procedure
with a non trivial momentum measure p(k), e.g.

u(k) = exp(-k/A)

» Effect negligible for standard matter and radiation,
characterized by a thermal distribution with
temperature T, at least for T<< A

H
27T

J' = N E(A) exp(-E(A)/T)
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Effective Einstein equation

Introducing the zero-point energy contribution T (Vb due |
to momenta up to A means that effective Einstein
equation should look like different

G"=8aGT"
V.G*=0=VT"

inconsistent for T 2> sourced by JP.

Effective Einstein equation
G+ =87 G (T + ;™)
simplest choice ~ Z®)b o 58 (5) g% .

VIV _8aGV TV =81 G J’
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defining the Cosmological non-Constant ¢

Friedmann equation in the FRWL case:

8nG
3

H2

P+ Py - 2f—po

Observational consequences?
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de Sitter phase: inflation

o-order pjs=const, p, =~ H? = const

1-order
8T G

S

H2

Pds"‘po(l 2log )]
0

or defining e

% 2
6 mp,

H® = SJ;GpdS(l 2Kk log )
0

logarithmically decreasing Hubble parameter




Consistent picture? For a logarithmic behaviour
still p, = H2?

Mode equation qbk"+2ﬁ ¢.'+k’¢, =0
a

for a Bunch-Davis vacuum

.| : 1
¢k(n) = E’\/E[l J3/2+K (kn) + Y3/2+K (kn)]m

w0 = (A H(n))? /1672 + O(x?)



Evolution of H leaves its imprint on the amplitude of scalar
perturbations @ horizon crossing, k=aH:

P(k) k3 = P(k,) k3 (1-2 x log k/k_)
n, = 1-2 k=1-2 (A/my,)?/(67)

for A=mp; n =o0.9

or viceversa using WMAP result n, = 0.963 + 0.012 (68 C.L.)
A/mp=0.5-0.7

“running” spectral index: dn./dlog(k) order x>
(WMAP observations fully consistent with a constant n,)



Late stages: zero-point energy as dark energy?

Friedmann equation during radiation and matter
domination

(1-x)H* = %;{)RM—ZK‘I‘@H2

a
2 = 87 G |( Pr i %a—%(/(l—l()\
3 \1-3k/2 /
2 = 87 G ( Py it %a—2x/(1—x)\
/

3 \1-5«/3

the extra term corresponds to a fluid with effective

equation of state 2k 1 A2
w=-1+ ? =] p=—



No solution (till now) of the coincidence problem:
.27 should be tuned to provide the correct ratio of

Q,, /Q, today

Using A/mp= 0.5 - 0.7 (from WMAP)

WDE — _0.96

A new relation:

WpE = ‘(2+ns)/3 o;oa

Hamann et al 2010
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Conclusions I

Puzzles:

* high and low energy regimes of cosmological models
(and General Relativity)
* Vacuum energy and hierarchy

Regularization and renormalization on curved spacetime
tricky. Ultimately, answers in (hopefully) future
experimental tests (as Casimir effect for Minkowski)




Conclusions I1

In a specific (reasonable) scheme, there is an intriguing
emerging role of the zero-point energy density

* grasping something about the ultraviolet behaviour of
gravity
n,=1-2 (A/myp)?/(6m) = 0.964

* describing a possible candidate for Dark Energy

Wpg = 1 - (A/mp)*/(9m) = - 0.96

WDE = _(2‘+ns)/3



