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Outline of the talk

• Motivations for Higgsless models

• Example of breaking the EW symmetry without Higgs (BESS)

• Linear moose: effective description for extra gauge bosons

• Unitarity bounds and EW constraints

• Degenerate BESS model (DBESS)

• The continuum limit

•The continuum limit of DBESS

•The four site model, possibility of detection @ the LHC.

• Summary and conclusions

(Based on papers by A. Deandrea, J. Bechi, R.C., F. Coradeschi, S. De Curtis, D. Dolce, D. 
Dominici, F. Feruglio, M. Grazzini, R. Gatto)
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Problems of the Higgs sector

Consider the Higgs potential 2 2 4V( |φ +λφ) = -μ | |φ |
2

2 2
H2

μλ = , m = , <2λv
v

φ >= v

The evolution of the coupling (neglecting gauge fields and fermions 
contributions) shows up a Landau pole at MLp

2

2 2
H H

1λ(M) =
1 3 M- log

λ(m ) 4π m

2 2 2
H4π v /3m

Lp H= m eM

● Or MLp pushed to infinity, but then λ goes to 0, triviality!

● Or there is a physical cutoff at a scale M < MLp. From this we get a bound on 
mH , from λ(M)>0
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2
2 2
H

H

4π 1vm M3 log
m

<H 2

2 2
H

1λ(m ) <
3 Mlog

4π m
If the cutoff is big (M ~ 1016 GeV), λ(mH) is small (~ 0.2). The theory is 
perturbative, but the Higgs acquires a mass of order

2 2
H 2

λδ
8π

=m M

with M of the order of MGUT. The naturalness problem follows and to avoid 
it,the quadratic divergences  should cancel (SUSY).
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If there is new physics at a scale  M of order of TeV,  then the theory has a 
natural cutoff at M. Then  mH ~ M and  λ(mH) is large (~3 - 4). The theory is 
nonperturbative.

1)   λ << 1 new particles lighter than 1 TeV (SUSY)
2)   λ >> 1 new particles around 1 TeV

⇒
⇒

In the following the second option 
will be considered:                          

new strong physics at the TeV scale
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Symmetry Breaking
● Since we are considering a strongly interacting theory: an effective 
description of the SB

● We need to break SU(2)LxU(1) down to U(1)em. The SB sector should be 
of the type

L emU(1)
G H,

G S , HU(2) U(1)⊗ ⊃
⇒

⊃
● In the SM the SB sector is the Higgs sector with

L R VSU(2G = SU(2) , H = SU) (2)⊗
● If the SB sector is strongly interacting one can describe it at low 
energies making use of a general σ model of the type G/H

● For instance, in the case SU(2)LxSU(2)R/SU(2)V the model can be 
described in terms of a field Σ in SU(2) transforming as

†
L L L R RRg Σg , g SU(2) , g SU(2)Σ → ∈ ∈
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● The breaking is produced by 0 | | 0 1〈 Σ 〉 =

( )
2

μ † iπ·τ /v
μ

vL Tr , = e =π,
4

0Σ Σ Σ= ∂ ∂

● In this way one could describe also an explicit  breaking SU(2)LxSU(2)R to 
SU(2) x U(1) through an explicit SU(2)R breaking term (the ρ-parameter is the 
standard one)

( )
2 2 2μ † † μ

μ 3
v vL = Tr + (ρΣ Σ Σ-1) Tr(T
4 2

Σ)∂⎡ ⎤∂ ∂ ⎣ ⎦

● The strong dynamics is completely characterized by the transformation 
properties of the field Σ which can be summarized in the following moose 
diagram.
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● The model can be easily gauged to SU(2)xU(1) introducing the gauge 
covariant derivatives

μ μ μ μWD = Big g+ - iΣ Σ Σ Σ′∂
● With W and B the gauge fields of SU(2) and U(1) respectively. Notice 
that with respect to the strong dynamics described by the σ model, the 
interactions with W and B are to be considered as perturbations. 

● The σ model can be obtained as the formal limit of the SM for MH
going to infinity.

( )
22

μ † † 2H
μ 2

μν μν
μν μν

1 M 1L M M +

+ (

= Tr D D - TrM M - v
4 8v 2

1 1TrF F TrFW) (W) + (B) (B)F
2 2

⎛ ⎞
⎜ ⎟
⎝ ⎠

● Through the definition M = SΣ, with S is singlet field having  a vev 
fixed to v in the limit of large Higgs mass. 

*
0 -

*
- 0

φ -φ1M =
φ φ2

⎡ ⎤
⎢ ⎥
⎣ ⎦
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The field Σ describes the Goldstone fields giving mass to W and Z:
they are related to the longitudinal modes. The interesting amplitude is 
WLWL to WLWL strictly related to the physics of the GBs.

Within the SM no bad high-energy behaviour for light Higgs:
• The quartic divergence is cancelled by the gauge contributions
• The quadratic part is cancelled by the Higgs boson contribution

μL
μ

W

p
M

ε ≈in the high energy limit E >> MW
4 2

2 2
4 4
W W

g p sg
M M

≈

γ 2 2
2 2 2

4 4
W W

s s s= -g- sin θ
s M M

e

Derivative coupling

2
2 2

2 4
W

2
2 2 2 2 2

Z

Z4 4
W W

s scos θ
s - M M

s sg cos θ - g cos θM
M

-g

M

≈

≈ −

Z

2
2g uge
W

aT sg
M

≈ −
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2 2
2 2 2 2 2 2 H

2 4 4
H W W W

2
2 2 H

2 2

4

W W

1 s s Mg v) g (gv) + g( =
s - M M M M

s M= g + g

( v)

M M

g≈

2
2 H

gauge Higgs 2
W

MgT = T  T
M

+ ≈

H

2
2 H

0 2
W

2
2 2 2W
H 2

1 M= g 1
16π M

MM 16π = 4

| a

πv (1 TeV)
g

| ≤

≤ ≈

⇓

2
2g uge
W

aT sg
M

≈ −
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An important result is the Equivalence Theorem (Cornwall, Levin & 
Tiktopoulos, 1974; Vayonakis, 1976):  

for E>>MW the scattering amplitudes can be evaluated by replacing the 
longitudinal vector bosons with the corresponding Goldstone bosons

Goldstones Gau

22 2
2H H H

2 2
H W

ge Higgs
M M Mλ + λ λ = g =

s - M
T

M
T

v
T ⎛ ⎞

⎟ +≈ ≈ =⎜
⎝ ⎠
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2 S0 H ME1 s= 1 4 π 1v
16π v

.7 Λ| a | TeV =≤ ≤ ≈⇒

2
HGoldstones 2 2s

H

2
H

<<M

sλ + λ
s

M
-

T
M v

≈ ⎯⎯⎯→ −

In the limit MW
2<< s << MH

2, the WL WL (or Goldstone) amplitude can be 
represented by the non-linear σ model

( )
2

μ † iπ·τ /v
μ

vL , = e
4

= ∂ ∂Σ Σ Σ

This coincides with the amplitude that can be extracted from the non-
linear lagrangian expanding at the 4th order in the pion fields

Since the form of the effective lagrangian depends only on the symmetries, 
this result is generally valid (this is the content of the Low Energy Theorem, 
LET, see Chanowitz, Golden, Georgi, 1987). 

Due to unitarity violation, the validity of this description is up to
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● We can explore the possibility of further bound states as, for instance,
vector resonances

● The vector resonances help to improve the energy behaviour of the LET 
amplitudes. This amounts to postpone the unitarity bound

● --- very important ----we have to satisfy  the stringent experimental bounds 
coming from LEP and SLC data

● Try to learn from QCD, though we will not adopt the point of view of TC
theories, that is scaling QCD up to energies of interest here

Summarizing, what have we learned so far? If we assume that the SB 
sector is strongly interacting, then:

● The low energy effective action of the strongly interacting sector is 
completely fixed by the symmetries (these can be postulated but must 
describe at least the breaking  SU(2)xU(1) to U(1)em)

● This allows  to determine the behaviour at low energy                    
description  valid up to E ~ 1.7 TeV.

Can we say something else about the strong dynamics to go beyond this 
low energy approximation?
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Enlarging the σ model

● We will start enlarging the non-linear σ model by introducing vector 
resonances. One of the virtues of doing this is that unitarity properties 
improve (as it is known from QCD). Of course one has to be consistent 
with the non-linear realization. This could be done by standard 
techniques, but a tool which is very useful is the one of hidden gauge 
symmetries (Bando, Kugo et al. 1985).

Strategy:
● Introduce a non-dynamical gauge symmetry together with a set of 
new scalar fields. 

● The scalar fields can be eliminated by using the local symmetry and 
the theory is equivalent to the non linear model. 

● Promoting the local symmetry to a dynamical one allows to introduce 
in a simple way dynamical vector resonances (the gauge fields of the 
new gauge interaction).  

● The new vector resonances are massive due to the breaking of the 
local symmetry implied by the non-linear realization.
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In order yo realize this program, we do the following:

● Introduce a mapping g(x) from the space-time to the group G:
g(x) G∈

● Contruct a lagrangian invariant under

0 0g(x)h(x), gg(x) g'(x G, h() = g x) H, H G∈ ∈ ⊂→

μ μL(g, L(g',g) = g')∂ ∂
● L depends only on the fields defined on the coset G/H. In fact, locally

ξ(x)h(x), ξg(x) = G / H, h H∈ ∈
and using the invariance of L:

The theory formulated in G with the (non-dynamical) local symmetry H
is equivalent to the non-linear model formulated over G/H

1
μ μL(g, ξ), g(x) g(g) x)= L(ξ, ( )h x−∂ ∂ →
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The BESS model
The simplest enlargement of the non-linear model based on SU(2)xSU(2)/SU(2) 
is the BESS (Breaking Electroweak Symmetry Strongly) model (RC, De Curtis, 
Dominici & Gatto, 1985, 1987, + Feruglio 1988) which introduces a local group 
G1=SU(2) with two scalar fields L and R transforming as

†
1 1 2 2

†
L R 1(x) g ((x)h (x), h(x) (x)g , hx) GΣ → Σ Σ ∈→ Σ

Introduce covariant derivatives, with V the gauge field associated to the 
local group G1

1 1 1 2 2
†

μ μ μ μ μ μ 2D  = V , D  = V = -V- V ,Σ ∂ Σ + Σ Σ ∂ Σ Σ

2 † μ 2 † μ
1 μ 1 1 μ2 2 2L = f Tr D +D Σ Σ Tr D DΣf Σ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

and  build up the invariant lagrangian (this is not the most general one):
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Also in this case the transformation properties of the fields can be 
condensed in a moose diagram

Notice that in L we have inserted only terms corresponding to the 
two links. In principle there is another invariant coupling of the type

† μ †
1 μ 1 2 2(Σ D Σ ΣTr )( )D Σ⎡ ⎤⎣ ⎦

which we will not consider  here.

2
2 † μ 2 μ †

μ 1 1 1
2 2

1

2 2

2

f D + fV - Σ D
f
Σ=

+ f
Σ Σ

Since V is not a dynamical field, it can be eliminated throught  its e.o.m.
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Substituting inside L one gets back the usual non-linear σ model 
after the identifications

† † †
1 2 L 1 2 r L R 2 2 2

21
2

4 1 1 1Σ = Σ Σ Σ h hΣ g Σg = +
v f f f

g = g→ =

On the other hand, we can make V a dynamical field and by construction 
the lagrangian will preserve the total symmetry. It is enough to introduce 
the kinetic term for V in a gauge invariant way

2 2
2 † μ 2 † μ μν

1 μ 1 1 μ μν2
1D Σ Σ Tr D Σ Σ TrL = f Tr D + f [F (V)F (V ]D - )
2

⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

This model describes 6 scalar fields and 3 gauge bosons. After the breaking 
of SU(2)LxSU(2)RxSU(2)local to SU(2) we get 3 Goldstone bosons (necessary to 
give mass to W and Z after gauging the EW group) and 3 massive vector 
bosons with mass

( )2 2 2 2
V 1 2 1 1M , g = gauge couplin= f + f g g of V
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LEP I  puts very stringent bounds on models of new physics. These limits, 
assuming universality among different generations, are coded  in 3 
parameters (using GF, mZ and α as input parameters)

W

2
2
W Z

W 2 2
Z F Z

m 1 1 πα(m )Δr : = + -
m 2 4 2 )m ΔrG (1-

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

And from the modifications of the Z couplings to fermions:

( )μ μ
neutral V A 5 μ

θ θ

Δe= - 1+ ψ g γ γ γL ψZ
s c

+ g
2
ρ⎛ ⎞

⎜ ⎟
⎝ ⎠

( )2 2 2 Z
θ θ

2

θ 2
F

V 3 L θ em 3

Z

A L

=

1 1g = (T )

1 1 πα(m )s 1+ , c = + -
2

- s Q , g = - (T

4 2G
k

)

s

2

m
Δ

2

Electroweak corrections
(Burgess et al.; Anichini, RC, De Curtis)
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It is usual to introduce another set of parameters εi, i=1,2,3 (Altarelli, Barbieri, 
1991), or S,T,U (Peskin, Takeuchi, 1990), much more convenient on the 
theoretical side

2
2 2 2θ

1 2 θ W θ 3 θ 2θ
2θ

s= Δρ, = c Δρ + Δr - 2s Δk,    = c Δρ + c Δk    
c

   ε ε ε

At the lowest order in the EW corrections the parameters ε1 and ε2 vanish if 
the SB sector has a SU(2) custodial symmetry (as it is the case for the BESS 
model). At the same order, ε3 has a convenient dispersive representation

[ ]
2

3 VV AA VV(AA) V(A) V(A) 020

g ds= - ImΠ (s) - ImΠ (s) , Π J J=
4π s

∞
〈 〉∫ε

Assuming vector dominance:

( )2 2 μ μ
VV(AA) V(A) V V(A) V(A)Π (s) = -π g δ s - M , 0 | J | V(I )gm ) (kk〈 〉 = ε

2 2
V(A) 1 2 1= (fg f )g±

In the BESS model the decay coupling constants of the vector meson are:
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1 2f

2 22 2 2 2
V 1 2

3 4 2 2 2
V 1 1 2 1

=f

f
(f

g g g f 1 g= =
4 M g + f ) 4 g

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠

→
⎝

⎯⎯
⎠

⎯ε

In the BESS model we get (assuming standard fermions not directly 
coupled to the vector boson V):

for g1 ~ g -> 5 g, we get

-2
1 3 1 3= g = 0.25, gg = 5g = 10⇒ ⇒ε ε

Experimentally ε3 of order 10-3,  we need an unnatural value of g1
bigger than 10g-16g  (not allowed by unitarity, see later).
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A possible way out: couple directly the vector bosons V to the fermions 
introducing the following fields: †

L 1 L R 2 Rχ = Σ ψ , χ = Σ ψ
Then, we can add two invariant terms

μ μ
L μ μ μ L R μ μ μ Rb bi iχ iγ +- V (B - L)Y χ χ i' γ + (- V B - L)Y χ

2 2
∂ ∂⎛ ⎞ ⎛ ⎞+⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
The b’ coupling is very much constrained by the KL-KS mass difference 
and it is generally ignored. 

The b coupling gives rise to a contribution to ε3 which, if b>0, is of 
opposite sign with respect to the gauge one 

2

3
1

1 g b=
4 g 2

-
⎛ ⎞
⎜ ⎟
⎝ ⎠

ε ~ε exp -3
3 10

If a direct coupling of V to fermions is present, we can satisfy the bound 
but at the expenses of some fine tuning: for g1~5 g,  b should be fixed  at 
the level of  2x10-3. Furthermore the new VB’s would be fermiophobic.
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● Let us now generalize the moose construction:  general structure 
given by many copies of the gauge group G intertwined by link 
variables Σ.

● Condition to be satisfied in order to get a Higgsless SM before 
gauging the EW group is the presence of 3 GB and all the moose 
gauge fields massive.

● Simplest example:  Gi = SU(2). Each Σi describes three scalar 
fields. Therefore, in a connected moose diagram,  any site (3 gauge 
fields) should absorb one link (3 GB’s) giving rise to a massive 
vector field. We need:

Breaking the EW Symmetry without 
Higgs Fields

# of links = # of sites +1
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● Example:

● The model has two global symmetries related to the beginning 
and to the end of the moose, that we will denote explicitly by GL and 
GR .

● The SU(2)L x SU(2)R global symmetry can be gauged to the standard 
SU(2)xU(1) leaving us with the usual 3 massive gauge bosons,  W and 
Z,  the massless photon and 3K massive vectors. 

● The BESS model can be view as a 3-site model (K=1), and its generalization 
(RC, De Curtis, Dominici, Gatto, Feruglio, 1989) can be recast in a 4-site model 
(K=2) (see also Foadi,Frandsen,Ryttov,Sannino, 2007)

†
1 1 1

†
i i-1 i i

K+ K

L

R1 K+1
†

Σ Σ U

Σ U Σ U

Σ U Σ

U

U

⇒

⇒

⇒
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Electro-weak corrections for the linear 
moose

K K 1
4 i i 2 †

moose i i i2
i 1 i 1i

1S d x Tr F F f Tr (D )(D )
2g

+
μν

μν μ μ
= =

⎛ ⎞
⎡ ⎤ ⎡ ⎤= − + Σ Σ⎜ ⎟⎣ ⎦ ⎣ ⎦

⎝ ⎠
∑ ∑∫

● If the vector fields are heavy enough one can derive a low-energy 
effective theory for the SM fields after gauging

( ) ( ) ( ) ( )L RSU 2 SU 2 SU 2 U 1⊗ ⇒ ⊗
One has to solve finite difference equations along the link-line in 
terms of the SM gauge fields at the two ends (the boundary)
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( )
( )

( )

( )
( )

2 2 2 2
1 1 2 1 2 2

2 2 2 2 2
1 2 2 2 2 3 2 3 3

2 2 2 2
2 3 3 3 3 4

2

2 2 2 2
K 1 K 1 K K 1 K K

2 2 2 2
K 1 K K K K K 1

g f f g g f
g g f g f f g g f

g g f g f f
M

g f f g g f
g g f g f f

− − −

− +

⎡ ⎤+ −⎢ ⎥
⎢ ⎥− + −⎢ ⎥
⎢ ⎥− +⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥+ −⎢ ⎥
⎢ ⎥

− +⎢ ⎥⎣ ⎦
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Low-energy limit

From this, after a finite renormalization one can evaluate the EW parameters 
εi. Or else, use the dispersive representation and V-dominance:
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● From vector mesons saturation one gets

22 2 K
2 2 2 -2 2nV nA i i

3 1 K 1 K+1 2 1K4 4 2
n i=1n n i

2i K+1 K+1

i i i i2 2 2
j=1 i=1 i=1i i

gg g (1- y )yε = - = g g g f f (M ) = g
4 m m g

f 1 1y = x , x = , = x = 1
f f f

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

⇒

∑ ∑

∑ ∑ ∑

● Since i 30 y 1 ε 0≤ ≤ ⇒ ≥ (follows also from 
positivity of M2)

● Example:
2

i c i c 3 2
c

1 g K(K + 2)f = f , g = g ε =   
6 g K +1

⇒

• Notice that ε3 increases with K (more convenient small K)
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● Possible solution:

i
-2
2 1K2Cut a link, with f 0,  M  becomes block diagonal an (M )d 0= =

= 03ε

Add a Wilson line:
K KU 1 2 1+= Σ Σ Σ Σ

Particular example: D-
BESS model                   
(R.C. De Curtis, Dominici, Feruglio, 
Gatto, Grazzini 1995,1996)

The theory has a custodial symmetry 
ensuring ε3 = 0 (Inami , Lim, Yamada, 1992)

[ ]L RSU(2) SU(2)⊗

Groups connected through weak gauging
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Unitarity bounds for the linear moose

● We evaluate the scattering of longitudinal gauge bosons using 
the equivalence theorem, that is using the amplitude for the 
corresponding GB’s. 

● We choose the following parametrization for the Goldstone fields 
(we are evaluating WLWL-scattering)

2
i

K+1

2 2
i=

if /2f

1 i
i e , 1 1=

f f
π⋅τΣ = ∑

● The resulting 4-pion amplitude is given by

(Chivukula, He; Papucci, Muck, Nilse, Pilaftis, Ruckl;                              
Csaki, Grojean, Murayama, Pilo, Terning)
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• In the low-energy limit, mW << E << mv, we get the LET:

4 K 1

6
i 1 i

f 1A u
4 f+ − + −

+

π π →π π
=

= − ∑

• In the high-energy limit

34 K 1

2 2 2
i 1 i

f 1 u uA u
4 f 4f v+ − + −

+

π π →π π
=

⎛ ⎞
= − = − = −⎜ ⎟

⎝ ⎠
∑

Best unitarity limit

i c 2 2
uf = f A = -

(K +1) v
→

U HSMΛ = (K +1)Λ 1.7(K +1)TeV≈

( )
4 4K 1 K

1 1
ij 2 ij 2 ij6

i 1 i, j 1i

ij i j 2 2 2 2
i i 1 j j 1

f u fA L (u t)(s M ) (u s)(t M )
4 f 4

1 1 1 1L g g
f f f f

+ − + −

+
− −

π π →π π
= =

+ +

= − + − − + − −

⎛ ⎞⎛ ⎞
= + +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑ ∑
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• By taking into account all the vectors and using the equivalence 
theorem, the amplitudes for the Goldstones are given by

( )
i i i

i i

i
i

i f
2

/ 2
i

uA
4f

e + − + −
π ⋅τ

π π →π π
→ −Σ =

• The unitarity limit is determined by the smallest link coupling. 
By taking all equal (see also Chivukula, He, 2002)

Unitarity limit

i c 2
uf = f A -

(K +1)v
⇒ ⇒

1/2 1/2
U HSMΛ = (K +1) Λ 1.7(K +1) TeV≈

max max c
V V W

c c
W

gM < Λ , but roughly M 2 K M
g

g g2 K M < 1.7 KTeV < 10
g g

U ≈

⇓

⇒

Hardly compatible with 
electro-weak experimental 
constraints
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Delocalizing fermions

• Left- and right-handed fermions, ψL (R) are coupled to the ends of 
the moose, but they can coupled to any site by using a Wilson line

i

i † † † i i
L i i 1 1 L L i

i i
L i L

L

i
iig A g '(B L)Y

, U

b
2

μ
μ μ μ

−χ = Σ Σ Σ

⎛ ⎞χ γ ∂ + + − χ⎜ ⎟
⎝

χ

⇓

⎠

ψ → χ

(We avoid 
delocalization of the 
right-handed fermions. 
Small terms since they 
could contribute to 
right-handed currents 
constrained by the KL-
KS mass difference)

(RC, De Curtis, Dolce, Dominici; Chivukula, Simmons, He, Kurachi)



34

2K

1 2 i i2
i

i3
i 1

g0, 0, y (1 y ) b
g=

⎛ ⎞
ε ≈ ε ≈ ε ≈ − −⎜ ⎟

⎝ ⎠
∑

• Two cases: 

i c i c i cf f , g g , b b= = =

(95% CL, with 
rad. corrs. as 
in the SM with 
1 TeV Higgs 
and mass 178 
GeV for the 
top)

• Possibility of agreement with EW data with some fine tuning
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Local cancellation
2

i i

2

i

i c

2

i c2
i

i

gb (1 y ), with g g , f

g ib
K

g

1
g 1

f=

⎛ ⎞= δ −⎜ ⎟+

=

⇓

⎝

− =

⎠

δ

(95% CL, with rad. 
corrs. as in the SM with 
1 TeV Higgs and mass 
178 GeV for the top)
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The continuum limit

2 2 2 2 i
i 5 ia 0 a 0 a 0

K , a 0, Ka R
blimag g (y), limaf f (y), lim b(y)
a→ → →

→ ∞ → → π

= = =

● The link couplings and a variable gauge coupling can be simulated 
in the continuum by a non-flat 5-dim metrics. More interestingly, in the 
continuum limit, the geometrical structure of the moose has an interpretation 
in terms of a geometrical Higgs mechanism in a pure 5-dimensional gauge 
theory.

● Quite clearly the moose picture for large values of K can be 
interpreted as the  discretization of a continuum theory along a fifth 
direction. The continuum limit is defined by
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•. Consider an abelian gauge theory in 4+1 dim

AB μν μ5
AB μν μ52 2 2

5 5

μ5 μ 5 5 μ

5

1 1 1L = - F F = - F F -

F = A

F F
2g 2 g

- A
g

∂ ∂

through the gauge transformation:      1
B B 5 B 5A A ( ) ( A )−⇒ − ∂ ∂

we get 5inx /R n
5 μ5 5 μ μ 5 μ

n

(A (x,A = 0, F = A , x ) e A (x))− ≈∂ ∑
With a compactified 5 dim on a circle S2 of length 2πR, the non 
zero eigenmodes  Aμ

n acquire a mass:

n
nM =
R

absorbing the mode A5
n

The zero mode remains massless and a GB is present
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• Massless modes can be eliminated compactifying on an orbifold, 
that is

2
5 5/ , :S Z Z x x→ −

• This allows to define fields as eigenstates of parity:

B 5 B 5A (x ,x ) A (x , x )μ μ= ± −

• Various possibilities, for instance by choosing:

BA odd no zero mode  only massive gauge bosons
                                                    in the spectrum

⇒ ⇒

By making the theory discrete along the fifth dimension one gets back 
the moose structure. In this case one speaks of a deconstructed 
gauge theory (Hill, Pokorski, Wang, 2001). 
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• A gauge field is nothing but a connection: a way of relating 
the phases of the fields at nearby points. Once we 
discretize the space the connection is naturally substituted 
by a link variable realizing the parallel transport between 
two lattice sites

5iaA
5

†

1 iaA e

1

−Σ ≈ − ≈

ΣΣ =

A generalized σ - model where 
the Higgs mechanism is 
realized in a standard way in 
terms of a Σ – field (chiral field)
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● More exactly:

i i

i 1 †
i 5 i i 1 i iU G

i 1 i i 1
i i i i 5

i i i i i
5 5 5 5

1 iaA , U U

D iA i A iaF

F A A i[A ,A ]

−
−∈

− −
μ μ μ μ μ

μ μ μ μ

Σ = − Σ ⎯⎯⎯→ Σ

Σ =∂ Σ − Σ + Σ =−

=∂ −∂ −

4 i i †
i i2 2

i5

a 1 1S d x Tr F F Tr (D )(D )
g 2 a

μν
μν μ μ

⎛ ⎞⎡ ⎤ ⎡ ⎤= − + Σ Σ⎜ ⎟⎣ ⎦ ⎣ ⎦⎝ ⎠
∑∫

● Sintetically described by a moose diagram (Georgi, 1986 –Arkani-Hamed, 
Cohen, Georgi, 2001)
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● In order to describe completely the moose structure including also the 
breaking, one needs also some kinetic terms on the branes plus BC’s. In the 
case of a conformally flat metrics along the fifth direction the complete action 
for a SU(2)-moose would be

πR
4 -A(z) a

πR
4 -A(z) a 2

2 a 2
μν μ5

3 2
μν μ2

0

0

2
5

ν2

1 1 1- d x dz e (F ) δ(z) + (F ) δ(z - πR)
4

1 1d x dz e (F ) ) +
4 g (z)

S = - - 2(F

g g'
⎡ ⎤
⎢ ⎥
⎣ ⎦

⎡ ⎤⎣ ⎦

∫

∫ ∫

∫
1,2 a
μ z μ 0= 0, A =B A 0C's : | |z R zπ= =∂

K K 1
4 i i 2 †

moose i i i2
i 1 i 1i

1S d x Tr F F f Tr (D )(D )
2g

+
μν

μν μ μ
= =

⎛ ⎞
⎡ ⎤ ⎡ ⎤= − + Σ Σ⎜ ⎟⎣ ⎦ ⎣ ⎦

⎝ ⎠
∑ ∑∫

i i-A -A2 2 2 2
5i i 5i i

1 a K+1 μ
μ μ a μ 3

ae = , e / a )/ g 1 / g ( = fg

= W τ / 2 =A YA τ, / 2 i-A 2 2
i c i c 5i c= f = g , e = 1, g

FLAT CA
=

:
f , g ag

SE

● Introducing the link variable
i
5-iaA

i , i = 1,Σ = e , K +1
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2 2 2

3 2 2 2
c c 5

1 g K(K + 2) 1 g 1 gε =     K  πR
6 g K 6 6a g

a
g

⇒ ⇒

Let us go back to the unitarity limit. The 5-dim theory has a natural cutoff 
proportional to 1/g5

2, say Λc, which can be related to the lattice spacing:

U HSM c HSMΛ ~ KΛ πRΛ Λ~

c
1 K ~ πRa = , KΛ πR
Λ

a
c

⇒ ⇒

If it would be possible to send a to zero (or  Λc to infinity), the unitarity 
cutoff  would go to infinity. In fact, in the continuum limit there is a 
complete cancellation of the terms increasing with the energy in the VB 
scattering (Csaki, Grojean, Murayama, Pilo, Terning). However the 5-
dimensional theory is not renormalizable, and therefore the cutoff Λc makes 
the longitudinal vector boson scattering amplitudes not unitary (see later)

Then, the unitarity cutoff will be
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The 5-dimensional cutoff turns out to be
3 2

c 2 2 2 2
5 4 5 4

24π 12π 1 1Λ = = =
g Rg g 2πRg

⎛ ⎞
⎜ ⎟
⎝ ⎠

Using
Wm < 1

R
It follows

2
W

c 2
4

12πΛ
g

m
>

HSM
c HSM HSM W2 2

4 4

π g g gΛΛ Λ Λ =
2

3>
g g 8 π

10 mπ ⎛ ⎞≈ ⎜ ⎟
⎝ ⎠

3

U c HSM HSM HSM
12π 20Λ ~ πRΛ Λ = Λ Λ
g g4 4

≈
and

The cutoff is  the smaller between the two. On the other hand

4

2 2

3
5

1 g 1 g= πR =
6 g 12 g

ε
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
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● Summarizing

c HSM U HSM2
4

2

3

4

4

10 , > 20 ,
g
g 1Λ Λ Λ Λ

g

1 g
12 g

ε

⎛ ⎞
> ⎜ ⎟

⎝ ⎠

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
● Therefore we could increase the cutoff of the theory within a 
perturbative context (g4 ~ g), but this would be unacceptable from 
the point of view of LEP bounds. On the contrary, if we want to 
satisfy the LEP bounds we need g4 ~ 10 g, making the cutoff of the 
order of ΛHSM. 

● Introducing fermions in the bulk one gets a positive contribution  
(Contino, Pomarol; Panico, Serone, Wulzer; Foadi Schmidt) in analogy to the 
discrete case. Therefore with the help of some fine tuning one can 
solve both problems.
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(F. Coradeschi, S. De Curtis, D. 
Dominici, 2010)
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Unitarity limit about 1 TeV as in the Higgsless SM. However 
one can introduce a composite Higgs field S on the IR 

brane. In this case the UL gets postponed.

U SU→
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Randall Sundrum case
(In both cases 

physical region below

the chosen unitarity 
limit)

Flat case

1 TeV > mS  > 300 GeV
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In preactice not much difference between the continuum 
and discrete moose models, for phenomenological 

reasons it is simpler the analysis made in the last case. 
The simplest possibility would be BESS (3-site model), 
but in order to respect the EW bounds one has to make 

the VB’s almost fermiophobic. However this is not a 
general feature, for instance, in the 4-site model one can 
satisfy the EW bounds without having fermiophobic new 

VB’s.
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(Accomando, De Curtis, Dominici, Fedeli, 2009)

G1 G2

GL GR

Σ1 Σ2 Σ3 (K=2)

• 5 new parameters {f1, f2, b1, b2, g1} related to their  masses and 
couplings to bosons and fermions (one is fixed to reproduce MZ)

The Higgsless 4-site Linear Moose model

• 2 gauge groups Gi=SU(2) with global symmetry SU(2)L⊗SU(2)R
plus LR symmetry: g2=g1, f3=f1 

• 6 extra gauge bosons W`1,2 and Z`1,2  (have definite parity when g=g`=0)

→1 2 1 2f ,f  M ,M 1 1 1M = f g

1>1
2

MM = M
z

1<1
2 2

1 2

fz =
f + 2f

1,2 1,2

2
c,n

2
1

eM  ~ M +O( )
g

charged and neutral gauge 
bosons almost degenerate
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Unitarity  and  EW precision tests

Unitarity and EWPT are     
not compatible !

A direct coupling of the 
new gauge bosons to 
ordinary matter must be 
included: b1,2 ≠ 0

O(e2/g1
2), b1=b2=0

The Higgsless 4-site Linear Moose model

2
4

1 2 3 2
1

g0 0, (1 z )
2g

⎛ ⎞
ε ≈ ε ≈ ε ≈ −⎜ ⎟

⎝ ⎠

1

2

M =  
M

UNITARITY
all channels

WLWL

EWPT
b1=b2=0

Best unitarity limit 
for f1=f2 or z=1/√3

2M =



51

EW precision tests

700 < M1 < 1600 GeV

The Higgsless 4-site Linear Moose model
2

2 4
1,2 3 2

1

gO(b , (1 z )
2g

b
2

)
⎛ ⎞

ε ≈ ε ≈ − −⎜ ⎟
⎝ ⎠Calculations O(e2/g1

2), exact in b1, b2
2

1 2 1 2

1 2

b +b - (b - b )zb =
1+b +bM2= M1/z

500 < M1 < 1000 GeV
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Total # of evts in a 10GeV-bin versus Minv(l+l-) for L=10fb-1. Sum over e,μ

The Higgsless 4-site Linear Moose model, Z`1,2 production

(500,1250)

(1000,1250)

3) b1=-0.08, b2=0.03

4) b1=0.07, b2=0

1) b1=-0.05, b2=0.09
2) b1=0.06, b2=0.02

Z = 0.4

Z = 0.8

M2= M1/z
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# of evts for the Z`1,2 DY production within |Minv(l+l-)-Mi|< Γi 

The Higgsless 4-site Linear Moose model, Z`1,2 production
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The Higgsless 4-site Linear Moose model, W`1,2 production

Total # of evts in a 10GeV-bin versus Mt(lν) for L=10fb-1. Sum over e,μ

(500,1250)

(1000,1250)

1) b1=-0.05, b2=0.09
2) b1=0.06, b2=0.02

3) b1=-0.08, b2=0.03

4) b1=0.07, b2=0

M2= M1/z

Z = 0.4

Z = 0.8
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The Higgsless 4-site Linear Moose model, W`1,2 production

# of evts for the W`1,2 DY-production for                   > 

The statistical significance for the W`s production is ~ a factor 2 bigger than for 
the Z`s but it is less clean.  

Neutral and charged channel are complementary
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Summary and Conclusions

● Extensions of the nonlinear σ model leads to moose theories.

● Simplest case: the linear moose.

● Higher dimensional gauge theories naturally suggest the possibility 
of Higgsless theories.

● Difficulties in EW corrections similar to TC models.

● EW corrections and unitarity bounds push in different directions.

● Possibility of easing the theory  delocalizing the fermions and 
using some fine tuning.
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