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Chiral effective theory

The chiral lagrangian is a non-renormalizable theory describing accurately pion physics at
low energies.

It contains a (infinite) number of operators organized according to the number of derivatives

L = f2
πTr ∂µU∂

µU† + α1Tr ∂µU∂
µU†∂νU∂

νU† + α2Tr ∂µU∂νU
†∂µU∂νU† + . . .

U = exp iπ̃/fπ

L = O(p2) + O(p4) + O(p6) + ...

Pions are the Goldstone bosons associated to the (global) symmetry breaking pattern of
QCD

SU(2)L × SU(2)R → SU(2)V

Locality, symmetry and relevance (in the RG sense) are the only guiding principles to
construct L.

The effective lagrangian still has the full symmetry

U → LUR†
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Loops

ANπ (pi) =

∫

d4k

(2π)4
(

1

fπ
)Nπ

(k2)NV (
1

k2
)NP

Consider e.g. ππ → ππ scattering. Nπ = 4, NV = 2 and NP = 2

ANπ ∼ 1

16π2f2
π

p4

This counting works to all orders and IR divergences are absent (Weinberg)

At each order in perturbation theory the divergences that arise can be eliminated by
redefining the coefficients in the higher order operators, e.g.

αi → αi +
ci

ε

Also logarithmic non-local terms necessarily appear. For instance (in a two-point function)
they appear in the combination

1

ε
+ log

−p2
µ2
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Unitarity

The cut provided by the log is absolutely required by unitarity. Let us separate

S = I + iT.

The identity corresponds to having no interaction at all.

Unitarity implies

S†S = I = I + i(T − T †) + T †T.

i(T − T †) = −T †T.

Loops are essential, even for effective theories. There is no such thing as a ‘classical
effective theory’.

Universita di Napoli, 22.03.10 – p. 5/32



Chiral counting

The lowest-order, tree level contribution is ∼ p2

f2
π

The one-loop chiral corrections is ∼ p4

16π2f4
π

⇒ The counting parameter in the loop (chiral) expansion is

p2

16π2f2
π

Each chiral loop gives an additional power of p2

O(p2n) counts as p2n

Soft breaking terms: Tr µm(U + U†)

⇒ m counts as p2.

All coefficients in the chiral lagrangian are nominally of O(Nc).

Loops are automatically suppressed by powers of Nc, but enhanced by logs.
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The gravity analogy

Einstein-Hilbert action shares several aspects with the chiral lagrangian (non-renormalizable,
dimension two, massless quantum,...)

L = M2
P

√
−gR + Lmatter

κ2 ≡ 2

M2
P

= 32πG

MP will play a role very similar to fπ

R contains two derivatives of the dynamical variable gµν

Rµν = ∂νΓα
µα − ∂αΓα

µν + Γα
βνΓβ

µα − Γα
βαΓβ

µν

Γγ
αβ =

1

2
gγρ

(

∂βgρα + ∂αgρβ − ∂ρgαβ

)

R ∼ ∂∂g

In the chiral language, the Einstein-Hilbert action is O(p2) (i.e. most relevant).
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Why Einstein-Hilbert

Arguably, these considerations alone, in particular relevance in the RG sense (and not
renormalizability) are the ones that single out Einstein-Hilbert action (in front e.g. of R2).

Einstein-Hilbert action has all the ingredients for being an effective theory describing the long
distance properties of some unknown dyamics

Are gravitons just Goldstone bosons of some broken symmetry?
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Quantum corrections in gravity

Analogous to the weak field expansion in pion physics

U = I + i
π(x)

fπ
+ ...

one writes

gµν ≡ ηµν + κhµν

gµν = ηµν − κhµν + κ2hµλh ν
λ + . . .

so κ↔ 1
fπ

Curvatures:

Rµν =
κ

2

[

∂µ∂νh
λ
λ + ∂λ∂

λhµν − ∂µ∂λh
λ
ν − ∂λ∂νh

λ
µ

]

+ O(h2)

R = κ
[

�hλ
λ − ∂µ∂νh

µν
]

+ O(h2)

indices are raised and lowered with ηµν . This can be done around any fixed background
space time metric.
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Gauge fixing and field equations

Green functions do not exist without a gauge choice and it is most convenient to use
harmonic gauge

∂λhµλ =
1

2
∂µh

λ
λ

The field equations

Rµν − 1

2
gµνR = −8πGTµν ,

√
gTµν ≡ −2

δ

δgµν
(
√
gLm)

reduce in this gauge to

�hµν = −16πG

(

Tµν − 1

2
ηµνT

λ
λ

)

The momentum space propagator is relatively simple in this gauge. Around Minkowski:

iDµναβ =
i

q2 + iε
Pµν,αβ Pµν,αβ ≡ 1

2

[

ηµαηνβ + ηµβηνα − ηµνηαβ

]

In addition one needs to include the gauge-fixing and ghost part

Lgf =
√
ḡ

(

Dνhµν − 1

2
Dµh

λ
λ

) (

Dσh
µσ − 1

2
Dµhσ

σ

)

,Lgh =
√
ḡη∗µ

[

DλD
λḡµν − Rµν

]

ην

It is plain that perturbative calculations in quantum gravity are manifestly difficult.
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Divergences

The following two results are well known

L(div)
1loop = − 1

16π2ε

{

1

120
R̄2 +

7

20
R̄µνR̄

µν

}

(t Hooft and Veltman)

L(div)
2loop = − 209κ2

5760(16π2)

1

ε
R̄αβ

γδR̄
γδ

ησR̄
ησ

αβ

(Goroff and Sagnotti)

It is less well appreciated that the two results are on a different footing. The result of ’t Hooft
and Veltman

– is gauge dependent

– vanishes when the field equation in empty space are used

– gives a net divergence when Tµν 6= 0, but the result is, in principle, incomplete.

The one-loop counterterms computed by ’t Hooft and Veltman are largely irrelevant from the
point of view of effective lagrangians (they vanish on shell).
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de Sitter space-time

In de Sitter space

S =
1

16πG

∫

dx
√
−g(R− 2Λ)

Γdiv
eff = − 1

16π2ε

∫

dx
√
−g[c1RµνRµν + c2Λ2 + c3RΛ + c4R2].

The constants ci are actually gauge dependent and only a combination of them is gauge
invariant.

Using the equations of motion (in absence of matter) Rµν = gµνΛ, the previous equation
reduces to the (gauge-invariant) on-shell expression

Γdiv
eff =

1

16π2ε

∫

dx
√
−g 29

5
Λ2.

If we set Λ = 0 above, we get the well-known ’t Hooft and Veltman divergence

Γdiv
eff = − 1

16π2ε

∫

dx
√
−g[ 7

20
RµνRµν +

1

120
R2].
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Counterterms and power counting

Exactly as the chiral lagrangian Einstein-Hilbert requires an infinite number of counterterms

L = M2
P

√
−gR + α1

√
−gR2 + α2

√
−g(Rµν)2 + α3

√
−g(Rµναβ)2 + . . .

The divergences can be absorbed by redefining the coefficients just as before

αi → αi +
ci

ε

The expansion parameter is a tiny number in normal circumstances

p2/16πM2
P

or

∇2/16π2M2
P , R/16π2M2

P

The most effective of all effective actions!!
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Why we need genuine loop effects
Consider

L =
2

κ2
R+ cR2 + (matter)

The equation of motion is

�h+ κ2c2��h = (8πGT )

The Green function for this equation has the form

G(x) =

∫

d4q

(2π)4
eiq·x

q2 + κ2cq4

=

∫

d4q

(2π)4

[

1

q2
− 1

q2 + 1/κ2c

]

e−iq·x

Leading to a correction to Newton’s law

V (r) = −Gm1m2

[

1

r
− e−r/

√
κ2c

r

]

Experimental bounds indicate c < 1074. If c was a reasonable number there would be no
effect on any observable physics at terrestrial scales.

Note that if c ∼ 1,
√
κ2c ∼ 10−35m. The curvature is so small that R2 terms are irrelevant at

ordinary scales
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Why we need genuine loop effects II
However using the full solution of the wave equation is not compatible with the effective
lagrangian philosophy (higher orders in κ are sensitive to higher curvatures we have not
considered). The leading behaviour of the correction is

e−r/
√

κ2c

r
→ 4πκ2cδ3(~r)

1

q2 + κ2cq4
=

1

q2
− κ2c+ · · ·

Thus

V (r) = −Gm1M2

[

1

r
+ 128π2Gcδ3(~x)

]

Totally unobservable, even as a matter of principle.

Of course, apart from the divergences there are finite pieces and non-local pieces since in DR
we get at the one-loop level 1

ε
+ log

−p2
µ2

Or, in position space 1

ε
+ log

∇2

µ2
, ∇ = covariant derivative.

Non-localities are due to the propagation of massless non-conformal modes, such as the
graviton itself.
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Quantum corrections to Newton law
Let us use ’chiral counting’ arguments to derive the relevant quantum corrections to Newton
law (up to a constant)

Propagator at tree level: 1
p2

One-loop corrections: 1
p2

(1 +A p2

M2

P

+B p2

M2

P

log p2)

Consider the interaction with an static source (p0 = 0) and let us Fourier transform
∫

d3x exp(i~p~x)
1

p2
∼ 1

r

∫

d3x exp(i~p~x)1 ∼ δ(~x)

∫

d3x exp(i~p~x) log p2 ∼ 1

r3

Thus the corrections are of the form

GMm

r
(1 + C

G~

r2
+ . . .)

We note that
[

Gm

c2

]

= L,

[

G~

c3

]

= L2

so C is a pure number.
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The inclusion of matter

A long controversy regarding the value of C exist in the literature (Donoghue, Muzinich,
Vokos, Hamber, Liu, Bellucci, Khriplovich, Kirilin, Holstein, Bjerrum-Bohr,...)

The commonly accepted result is obtained by considering the inclusion of quantum matter
fields (a scalar field actually) and considering all type of loops

Feynman rules

τµν = − iκ
2

(

pµp
′
ν + p′µpν − gµν [p · p′ −m2]

)

τηλ,ρσ =
iκ2

2

{

Iηλ,αδI
δ
β,ρσ

(

pαp′β + p′αpβ
)

−1

2

(

ηηλIρσ,αβ + ηρσIηλ,αβ

)

p′αpβ

−1

2

(

Iηλ,ρσ − 1

2
ηηληρσ

)

[p · p′ −m2]

}

with

Iµν,αβ ≡ 1

2
[ηµαηνβ + ηµβηνα]

Universita di Napoli, 22.03.10 – p. 17/32



The inclusion of matter II

LRR =
1

3849π3r3
(42RµνR

µν +R2)

LRT = − κ

8π2r3
(3RµνT

µν − 2RT )

LT T =
κ2

60πr3
T 2

Using the equation of motion

Rµν − 1

2
gµνR = −8πGTµν

⇒ Ltotal = − κ2

60πr3
(138TµνT

µν − 31T 2)

The final result is positive: gravity is more atractive at long distances

C =
41

10π

What happens for classical matter, e.g. a cloud of dust, is in my view still an open problem.
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Power counting in effective gravity

• 3-graviton coupling: ∼ κq2

• 4-graviton coupling: ∼ κ2q2

• (On-shell) matter– 1-graviton coupling: ∼ κm2

• (On-shell) matter– 2-graviton coupling: ∼ κ2m2

• Graviton propagator: ∼ 1
q2

• Matter propagator ∼ 1
mq

If we iterate the 4-graviton vertex to produce a one loop diagram we obtain schematically

Mloop ∼ κ4

∫

d4l

(2π)4
(l − p1)2(l − p22)2

l2(l− q)2

If this loop integral is regularized dimensionally, which does not introduce powers of any new
scale, the integral will be represented in terms of the exchanged momentum to the
appropriate power. Thus we have

Mloop ∼ κ4q4
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Power counting in effective gravity II
When matter fields are included in loops the situation is more subtle The tree level result is

Mtree = κ2 · m
2
1m

2
2

q2

Iterating this to form a loop

Mloop ∼ κ4m4
1m

4
2 ·

∫

d4l · 1

m1(l+ p)
· 1

m2(l+ p′)
· 1

(l + q′)2
· 1

(l + q)2

which by the same reasoning is

Mloop ∼ κ4 · m
3
1m

3
2

q2
∼ κ2 · m

2
1m

2
2

q2
· κ2m1m2

Here the expansion parameter appears as κ2m2 This issue has been studied by Donoghue

A(Nm,Ng) ∼ qD

D = 2 − Nm
E

2
+ 2NL −Nm

V +
∑

n

(n− 2)Ng
V [n] +

∑

l

l ·Nm
V [l]

If we disregard matter vertices this is identical to Weinberg’s result for chiral theories However
it is dangerous the negative Nm

V term appearing in D. Although no general proof exists yet,
Donoghue has been able to prove cancellation of the dangerous terms at the one-loop level
except for the terms leading to 1/r corrections (classical, non-linear)
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The use of equations of motion

In chiral lagrangians they allow to get rid of redundant operators

U�U† − (�U)U† = 0

Tr U�U† → 0

Notice that in gravity, the equation of motion mixes terms of different ‘chiral’ order

Rµν − 1

2
gµνR = −8πGTµν − gµνΛ

For instance, it is incorrect to use

Rµν = gµνΛ

in ’t Hooft and Veltman calculation. It just does not reproduce the de Sitter result.
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Gravity as a Goldstone phenomenon

We have given arguments why the Einstein-Hilbert action could be viewed as an effective
one

– Dimensionful coupling constant (Mpl ∼ fπ)

– Derivative couplings (
√−gR ∼ g∂∂g)

– Action based on RG criteria of relevance, not on renormalizability (unlike Yang-Mills)

– Power counting anologous to ChPT

– Massless quanta (π ↔ gµν )

– Obvious global symmetry to be broken (GL(D) ⊂ Diff )

As an entertainment we shall investigate a formulation inspired as much as possible in the
chiral symmetry breaking of QCD

– No a priori metric, only affine connection is needed (parallelism)

– Lagrangian is manifestly independent of the metric

– Breaking is triggered by fermion condensate
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Chiral Symmetry Breaking
A successful model for QCD is the so-called chiral quark model. Consider the matter part
lagrangian of QCD with massless quarks (2 flavours)

L = iψ̄ 6∂ψ = iψ̄L 6∂ψL + iψ̄R 6∂ψR

This theory has a global SU(2) × SU(2) symmetry that forbids a mass term M

However after chiral symmetry breaking pions appear and they must be included in the
effective theory. Then it is possible to add the following term

−Mψ̄LUψR −Mψ̄RU
†ψL

invariant under the full global symmetry

ψL → LψL, ψR → RψR, U → LUR†

Chiral symmetry breaking is characterized by the presence of a fermion condensate

< ψ̄ψ > 6= 0

To determine whether the condensate is zero or not one is to solve a ‘gap’-like equation in
some modelization of QCD, or on the lattice.

Integrating out the fermions reproduces the chiral effective lagrangian.
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SpontaneousGL(D) breaking

There is only one possible term bilinear in fermions that is invariant under Lorentz × Diff

ψ̄aγ
a∇µψ

µ

To define ∇ we only need an affine connection

∇µψ
µ = ∂µψ

µ + iωab
µ σabψ

µ + Γν
µνψ

µ

Note that no metric is needed at all to define the action if we assume that ψµ behaves as a
contravariant spinorial vector density under Diff, i.e. ∼ √

gψ.

We would like to find a non trivial condensate

< ψ̄aψ
µ > 6= 0, SO(D)L ×GL(D)R → SO(D)V

We have to include some dynamics to trigger symmetry breaking

SI = i

∫

d4x((ψ̄aψ
µ + ψ̄µψa)Ba

µ + cdet(Ba
µ))

Note that the interaction one also behaves as a density thanks to one of the Levi-Civita
symbol hidden in the determinant of B.

Note that the lagrangian is not hermitean ( = to euclidean fermion mass)
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Equations of motion et al

The equations of motion (in 2D) show that

< ψ̄aψ
µ + h.c. >∼ εabε

µνBb
ν

We conjecture Ba
µ ∼ ea

µ.

A 4-fermion interaction is induced (instantons?)

εµνε
ab(ψ̄aψ

µ + ψ̄µψa)(ψ̄bψ
ν + ψ̄νψb)

Fermions e-o-m:

γa∇µψ
µ + Ba

µψ
µ = 0

γa∇µψa +Ba
µψa = 0.

Energy-momentum tensor (traceless if wµ = 0):

Tµ
ν = iψ̄µγa∂νψa + iψ̄aγ

a∂νψ
µ − δµ

νL.

Universita di Napoli, 22.03.10 – p. 25/32



Propagator and renormalizability

We shall consider the above model in D = 2 for simplicity.

Note the peculiar ’free’ kinetic term γa ⊗ kµ

M =















iB11 k1 iB12 k2

k1 iB11 k2 iB12

iB21 −ik1 iB22 −ik2
ik1 iB21 ik2 iB22















The field Ba
µ shall develop a v.e.v. that we conventionally take to be

〈Ba
µ〉 = Mδa

µ.

The scale M plays then the role of a dynamically generated mass for the fermions (not
unlikely the ’constituent mass’ in chiral dynamics)

∆(k)ij =















iM k1 0 k2

k1 iM k2 0

0 −ik1 iM −ik2
ik1 0 ik2 iM















.
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Propagator and renormalizability II

The propagator of the fermion field can be written (in any number of dimensions) as

∆−1(k)ij =
−i
M

(δij − γi( 6k − iM)kj

k2 +M2
).

Naively, because the coupling constant c is dimensionless in 2D, we would expect the model
to be renormalizable. However this expectation is jeopardized by the behaviour of the
propagator. Indeed the diagonalization of the kinetic term (plus induced mass) gives as
eigenvaules: M (twice), k +M and k −M . Therefore the propagator does not behave, in
general, as 1/k and therefore the usual counting rules do not apply.

The model proposed does not contain a metric and the number of counterterms that one can
write is extremely limited. In fact the metric will be generated after the breaking, but the
counterterms of a field theory do not depend on whether there is spontaneous breaking of a
global symmetry or not.
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The gap equation
Let us first consider the case where there is no connection at all (wµ(x) = 0). We can then
use homogeneity and isotropy arguments to look for constant solutions of the gap equation
associated to

Veff = ic det(Ba
µ) + 2

∫

dnk

(2π)n
Tr (log(γakµ + iBa

µ))

The extremum of Veff are found from

cnεaa2....anε
µµ2....µnBa2

µ2
. . . .Ban

µn
+ 2tr

∫

dnk

(2π)n
(γ ⊗ k + iB)−1|µa = 0

Notice that the equations are invariant under the permutation

Bij → Bσ(i)σ(j), ki → kσ(i), σεS2

The ‘gap equation’ to solve for constant values of Bij is (for D = 2)

cBij − 1

2π
Bij log

detB

µ
= 0 ⇒ detB 6= 0

A logarithmic divergence has been absorbed in c. The solution for the dynamical mass is

M = µeπc(µ), Veff = i
µ2e2πc(µ)

2π
, µ

dc

dµ
= − 1

2π

This term is the induced cosmological constant. The i is related to the change of signature.
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On the Palatini formalism

For non-zero connection (wµ 6= 0) the gap equation is not applicable and one needs to
derive the full effective action. Then one would minimize the fiels Ba

µ as a function of wµ.

Eventually we want to perform a double minimization with respect to Bµ and wµ.

2D gravity is rather peculiar and indeed the condition

wab
µ = ea

ν∂µE
νb + ea

νE
σbΓν

σµ,

that holds in any number of dimensions does not follow in 2D from any variational principle.
Einstein-Hilbert in 2D depends on wµ only through the exterior derivative dw which is linear
in the affine connection wµ. In fact the scalar curvature term

√
gR does not contain any

coupling between gµν and wµ. Adding higher derivatives does not help really as the
Riemann tensor contains only an independent component that can be ultimately related to
the scalar curvature.

If we are to reproduce 2D gravity, the metric should not be constrained by the connection.
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The effective action
Heat kernel calculation:

Da
µ = γa(∂µ + iwµσ3) +Ba

µ.

We shall consider the expansion around a fixed background preserving SO(D), but not the
full symmetry group G; that is Ba

µ = Mδa
µ, where for vanishing affine connection M can be

determined via the gap equation.

We decompose

Ba
µ = ξa

L bB̄
b
νξ

−1ν
R µ ,

where ξL ∈ SO(D), ξR ∈ GL(D). It is technically advantageous to absorb the matrices ξL
and ξR in the fermion fields (in QCD this is the so-called ’constituent’ quark basis

Db
µ = ξ† b

Laγ
a(∂ρ + iwρσ3)ξρ

R µ + B̄b
µ.

Effective action:

W = −1

2

∫ ∞

0

dt

t
tr

〈

x|e−tX |x
〉

,

Xνµ ≡ M†M,

with

M = iDb
µ, M† = iDνb
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The effective action II

The heat kernel provides a covariant expansion, which is reassuring, but is difficulted by two
problems:

Zero modes of the kinetic term

ψa → ψ′
a = (δb

a − 1

D
γaγ

b)ψb.

Another invariance of the free action is provided by redefining, in Fourier space,

ψµ(k) → ψ′ µ = Pµνψ
ν(k),

where kµPµν = 0

A given order in the t expansion does not correspond to a given order in external fields or
derivatives

It is better to use a diagramatic expansion in the external fields.
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The effective action III

The calculation is performed in the conformal gauge with

Ba
µ = Me−σ/2δa

µ.

Then

Seff =

∫

d2x

[

µ2 e
c̃

2π
e−σ − 1

48π

∂µσ∂µσ

2
+

(Wµν)2

24πM2
− w2

2π

]

+ ...

There is no relation between metric and connection (Palatini in 2D)

Minimization wrt wµ gives w = 0 at leading order in the 1/M2 expansion.

Dots correspond to higher curvatures.

All the expected features of 2D gravity are reproduced!
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