Dipartimento di Scienze Fisiche – Napoli, February 5th, 2010

Cosmography and Large Scale Structure by Higher Order Gravity: New Results

Salvatore Capozziello

UNIVERSITA' DI NAPOLI "FEDERICO II" and INFN sez. di Napoli

What about the Universe?

DATA

RESULTS

Supernovae Hubble Diagram

Galaxy power spectrum and BAO

Cosmic Microwave Background

Accelerating expansion

Low matter content

Spatially flat universe

SOLUTIONS WITHIN	SHORTCOMINGS			
Flatness	Inflationary Epoch			
Acceleration	Cosmological constant (∧CDM) Quintessence	120 orders of difference What kind?		
Low matter content	Dark Energy Dark Matter	Undetected components Coincidence problem Fine tuning problems		

Extended Theories of Gravity

SOLUTIONS OUTSIDE GENERAL RELATIVITY

MOTIVATIONS:

- General Relativity tested only up to Solar System
- Effective actions from fundamental field theories
- Inflationary models
- No need of dark components

REQUIREMENTS:

- Reproducing Newtonian Dynamics in Solar System
- Flat Rotation Curves of Spiral Galaxies by Baryonic constituents
- Reproducing Large Scale Structure (Galaxy Clusters scale)
- Successful Fit of SNeIa + CMB + BAO data
- Accelerated Hubble fluid and Dark Energy phenomenology

f(R) Theories of Gravity : Résumé

From Extended Theories of Gravity f(R) gravity

Gravity action :

$$\mathcal{A} = \int \sqrt{-g} ~ \left[f(R) + \mathcal{L}_M
ight] d^4 x$$

• Field equations :

$$f'(R)R_{\alpha\beta} - \frac{1}{2}f(R)g_{\alpha\beta} - f'(R)^{;\alpha\beta}(g_{\alpha\mu}g_{\beta\nu} - g_{\alpha\beta}g_{\mu\nu}) = \tilde{T}^{M}_{\alpha\beta}$$

Cosmological equations :

$$H^{2} = \frac{1}{3} \left[\frac{\rho_{m}}{f'(R)} + \rho_{curv} \right] \qquad 1^{\text{st}} \text{ Friedmann eq.}$$
$$2 \frac{\ddot{a}}{a} + \left(\frac{\dot{a}}{a} \right)^{2} = -(p_{curv} + p_{m}) \qquad 2^{\text{nd}} \text{ Friedmann eq.}$$

$$\rho_{\rm curv} = \frac{1}{f'(R)} \left\{ \frac{1}{2} [f(R) - Rf'(R)] - 3H\dot{R}f''(R) \right\}$$

Curvature Fluid :

$$w_{\text{curv}} = -1 + \frac{\ddot{R}f''(R) + \dot{R}[\dot{R}f'''(R) - Hf''(R)]}{[f(R) - Rf'(R)]/2 - 3H\dot{R}f''(R)}$$

Constraining Extended Theories of Gravity by Cosmography

e.g. Constraining f(R)-gravity by Cosmography
 Capozziello, S., Cardone, V., Salzano, V., PRD 78 (2008) 063504

Constraining f(R) – gravity by Clusters of Galaxies
 Capozziello, S., De Filippis, E., Salzano, V., MNRAS 394 (2009) 947

Cosmography

How can we discriminate?

- No a priori dynamical model = Model Independent Approach;
- Robertson Walker metric;
- Expansion series of the scale factor with respect to cosmic time:

$$\frac{a(t)}{a(t_0)} = 1 + H_0(t - t_0) - \frac{q_0}{2} H_0^2(t - t_0)^2 + \frac{j_0}{3!} H_0^3(t - t_0)^3 + \frac{s_0}{4!} H_0^4(t - t_0)^4 + \frac{l_0}{5!} H_0^5(t - t_0)^5 + O[(t - t_0)^6]$$

$$q(t) = -\frac{1}{a} \frac{d^2 a}{dt^2} \frac{1}{H^2} \qquad j(t) = \frac{1}{a} \frac{d^3 a}{dt^3} \frac{1}{H^3} \qquad s(t) = \frac{1}{a} \frac{d^4 a}{dt^4} \frac{1}{H^4} \qquad l(t) = \frac{1}{a} \frac{d^5 a}{dt^5} \frac{1}{H^5}$$
Deceleration Jerk Snap Lerk
error on less than 10% up to z = 1
error on less than 3% up to z = 2

Cosmography by f(R): How many parameters...

- Definition: $H(t) = \frac{1}{a} \frac{da}{dt}, \ q(t) = -\frac{1}{a} \frac{d^2a}{dt^2} \frac{1}{H^2}, \ j(t) = \frac{1}{a} \frac{d^3a}{dt^3} \frac{1}{H^3}, \ s(t) = \frac{1}{a} \frac{d^4a}{dt^4} \frac{1}{H^4}, \ l(t) = \frac{1}{a} \frac{d^5a}{dt^5} \frac{1}{H^5}$ $H = -H^2(1+a)$ - Derivatives of H(t): $\ddot{H} = H^3(j + 3q + 2)$ $d^{3}H/dt^{3} = H^{4}[s - 4j - 3q(q + 4) - 6]$ $d^{4}H/dt^{4} = H^{5}\left[l - 5s + 10(q+2)j + 30(q+2)q + 24\right]$ $R_0 = -6H_0^2(1-q_0)$ - Derivatives of scalar curvature: $\dot{R}_0 = -6H_0^3(j_0 - q_0 - 2)$ $R = -6(\dot{H} + 2H^2)$ $\ddot{R}_0 = -6H_0^4 \left(s_0 + q_0^2 + 8q_0 + 6 \right)$ $d^{3}R_{0}/dt^{3} = -6H_{0}^{5}\left[l_{0} - s_{0} + 2(q_{0} + 4)j_{0} - 6(3q_{0} + 8)q_{0} - 24\right]$

Cosmography by f(R): What equations...?

- 1st Friedmann eq. :
$$H_0^2 = \frac{H_0^2 \Omega_M}{f'(R_0)} + \frac{f(R_0) - R_0 f'(R_0) - 6H_0 \dot{R}_0 f''(R_0)}{6f'(R_0)},$$

- 2nd Friedmann eq. :
$$-\dot{H}_0 = \frac{3H_0^2 \Omega_M}{2f'(R_0)} + \frac{\dot{R}_0^2 f'''(R_0) + (\ddot{R}_0 - H_0 \dot{R}_0) f''(R_0)}{2f'(R_0)},$$

- Derivative of 2nd Friedmann eq. :

$$\ddot{H} = \frac{\dot{R}^{2} f'''(R) + (\ddot{R} - H\dot{R}) f''(R) + 3H_{0}^{2} \Omega_{M} a^{-3}}{2 \left[\dot{R} f''(R) \right]^{-1} \left[f'(R) \right]^{2}} - \frac{\dot{R}^{3} f^{(iv)}(R) + (3\dot{R}\ddot{R} - H\dot{R}^{2}) f'''(R)}{2 f'(R)} - \frac{\left(d^{3} R/dt^{3} - H\ddot{R} + \dot{H}\dot{R} \right) f''(R) - 9H_{0}^{2} \Omega_{M} H a^{-3}}{2 f'(R)}$$

- Constraint from gravitational constant:

f(R) equations and Cosmographic Parameters

- Final solutions:

$$\frac{f(R_0)}{6H_0^2} = -\frac{\mathcal{P}_0(q_0, j_0, s_0, l_0)\Omega_M + \mathcal{Q}_0(q_0, j_0, s_0, l_0)}{\mathcal{R}(q_0, j_0, s_0, l_0)}$$
$$f'(R_0) = 1$$
$$\frac{f''(R_0)}{(6H_0^2)^{-1}} = -\frac{\mathcal{P}_2(q_0, j_0, s_0)\Omega_M + \mathcal{Q}_2(q_0, j_0, s_0)}{\mathcal{R}(q_0, j_0, s_0, l_0)}$$
$$\frac{f'''(R_0)}{(f_0 - q_0 - 2)\mathcal{R}(q_0, j_0, s_0, l_0)}$$

- Taylor expand *f*(*R*) in series of *R* up to third order (higher not necessary)

- Linear equations in f(R) and derivatives

is model dependent:

$$\Omega_M = 0.041$$
$$\Omega_M = 0.250.$$

f(R) derivatives and CPL models

"Precision cosmology"

Values of cosmographic parameters?

Cosmographic parameters

Dark energy parameters = equivalent f(R)

CPL approach: (Chevallier, Polarski, Linder)

Cosmographic

parameters:

$$w = w_0 + w_a(1-a) = w_0 + w_a z(1+z)^{-1}$$

$$q_0 = \frac{1}{2} + \frac{3}{2}(1-\Omega_M)w_0$$

$$j_0 = 1 + \frac{3}{2}(1-\Omega_M) [3w_0(1+w_0) + w_a]$$

$$s_0 = -\frac{7}{2} - \frac{33}{4}(1-\Omega_M)w_a - \frac{9}{4}(1-\Omega_M) [9 + (7-\Omega_M)w_a]w_0 + -\frac{9}{4}(1-\Omega_M)(16-3\Omega_M)w_0^2 - \frac{27}{4}(1-\Omega_M)(3-\Omega_M)w_0^3$$

$$l_0 = \frac{35}{2} + \frac{1-\Omega_M}{4} [213 + (7-\Omega_M)w_a]w_a + \frac{(1-\Omega_M)}{4} [489 + 9(82 - 21\Omega_M)w_a]w_0 + -\frac{9}{2}(1-\Omega_M) [67 - 21\Omega_M + \frac{3}{2}(23 - 11\Omega_M)w_a]w_0^2 + \frac{27}{4}(1-\Omega_M)(47 - 24\Omega_M)w_0^3 + -\frac{81}{2}(1-\Omega_M)(3-2\Omega_M)w_0^4$$

CPL Cosmography and f(R): the ACDM Model

 Λ CDM model:

$$(w_0, w_a) = (-1, 0)$$

$$q_0 = \frac{1}{2} - \frac{3}{2}\Omega_M; \quad j_0 = 1; \quad s_0 = 1 - \frac{9}{2}\Omega_M; \quad l_0 = 1 + 3\Omega_M + \frac{27}{2}\Omega_M^2$$
$$f(R_0) = R_0 + 2\Lambda, \qquad f''(R_0) = f'''(R_0) = 0,$$

 Λ CDM fits well many data

$$\begin{split} q_0 &= q_0^{\Lambda} \times (1 + \varepsilon_q), \qquad j_0 = j_0^{\Lambda} \times (1 + \varepsilon_j), \\ s_0 &= s_0^{\Lambda} \times (1 + \varepsilon_s), \qquad l_0 = l_0^{\Lambda} \times (1 + \varepsilon_l), \end{split}$$

$$\eta_{20} = f''(R_0) / f(R_0) \times H_0^4$$

$$\eta_{30} = f'''(R_0) / f(R_0) \times H_0^6$$

cosmographic values strictly depend on Ω_{M}

 (n_0)

$$\eta_{20} = \frac{64 - 6\Omega_M(9\Omega_M + 8)}{[3(9\Omega_M + 74)\Omega_M - 556]\Omega_M^2 + 16} \times \frac{\varepsilon}{27}$$
$$\eta_{30} = \frac{6[(81\Omega_M - 110)\Omega_M + 40]\Omega_M + 16}{[3(9\Omega_M + 74)\Omega_M - 556]\Omega_M^2 + 16} \times \frac{\varepsilon}{243\Omega_M^2}$$

$$\eta_{20} \simeq 0.15 \times \varepsilon \quad \text{for} \quad \Omega_M = 0.041$$

$$\eta_{20} \simeq -0.12 \times \varepsilon$$
 for $\Omega_M = 0.250$

 $\eta_{30} \simeq 4 \times \varepsilon$ for $\Omega_M = 0.041$

$$\eta_{30} \simeq -0.18 \times \varepsilon$$
 for $\Omega_M = 0.250$

CPL Cosmography and f(R): constant EoS case

- Constant EoS: $w_a = 0$

- Beware of divergences in the f(R) derivatives
- Small deviations from GR
- Large deviations for baryonic dominated universe

CPL Cosmography and f(R) : varying EoS case

- General case: $w_a \neq 0; w_0 = -1$
- Beware of divergences in the f(R) derivatives
- Small deviations from GR
- Large deviations for baryonic dominated universe

Constraining f(R) models by Cosmography

- 1. Estimate (q(0), j(0), s(0), l(0)) observationally
- 2. Compute f(R0), f '(R0), f " (R0), f ""(R0)

- Procedure:

- 3. Solve for f(R) parameters from derivatives
- 4. Constraint f(R) models

- e.g. Double Power-Law:

$$f(R) = R(1 + \alpha R^n + \beta R^{-m})$$

Cosmography and data

- Cosmographic parameter from SNela:
 What we have to expect from data
- Fisher information matrix method:

$$q_0 = -0.90 \pm 0.65, \qquad j_0 = 2.7 \pm 6.7,$$

 $s_0 = 36.5 \pm 52.9, \qquad l_0 = 142.7 \pm 320.$

$$\chi^2(H_0, \mathbf{p}) = \sum_{n=1}^{\mathcal{N}_{SNeIa}} \left[\frac{\mu_{obs}(z_i) - \mu_{th}(z_n, H_0, \mathbf{p})}{\sigma_i(z_i)} \right]^2$$

 $F_{ij} = \left\langle \frac{\partial \mathcal{L}}{\partial \theta_i \partial \theta_j} \right\rangle$

- FM ingredients :

$$d_L(z) = \mathcal{D}_L^0 z + \mathcal{D}_L^1 \ z^2 + \mathcal{D}_L^2 \ z^3 + \mathcal{D}_L^3 \ z^4 + \mathcal{D}_L^4 \ z^5$$

$$\sigma(z) = \sqrt{\sigma_{\rm sys}^2 + \left(\frac{z}{z_{\rm max}}\right)^2 \sigma_m^2}$$

- Estimating error on g:

$$\sigma_g^2 = \left| \frac{\partial g}{\partial \Omega_M} \right|^2 \sigma_M^2 + \sum_{i=1}^{i=4} \left| \frac{\partial g}{\partial p_i} \right|^2 \sigma_{p_i}^2 + \sum_{i \neq j} 2 \frac{\partial g}{\partial p_i} \frac{\partial g}{\partial p_j} C_{ij}$$

- Survey: Davis (2007)

$$\sigma_{M} / \Omega_{M} = 10\%$$
; $\sigma_{sys} = 0.15$
 $N_{SNela} = 2000$; $\sigma_{m} = 0.33$
 $z_{max} = 1.7$
 $\sigma_{1} = 0.38$
 $\sigma_{2} = 5.4$
 $\sigma_{3} = 28.1$
 $\sigma_{4} = 74.0$
 $\sigma_{30} = 0.04$

- Snap like survey: $\sigma_{M} / \Omega_{M} = 1\%$; $\sigma_{sys} = 0.15$ $N_{SNela} = 2000$; $\sigma_{m} = 0.02$ $z_{max} = 1.7$ $\sigma_{1} = 0.08$ $\sigma_{2} = 1.0$ $\sigma_{3} = 4.8$ $\sigma_{4} = 13.7$ $\sigma_{30} = 0.008$

- Ideal PanSTARRS survey: $\sigma_{M} / \Omega_{M} = 0.1\%$; $\sigma_{sys} = 0.15$ $N_{SNela} = 60000$; $\sigma_{m} = 0.02$ $z_{max} = 1.7$ $\sigma_{1} = 0.02$ $\sigma_{2} = 0.2$ $\sigma_{3} = 0.9$ $\sigma_{4} = 2.7$ $\sigma_{30} = 0.0016$

Constraining Extended Theories of Gravity by Large Scale Structure

Constraining f(R) -gravity by Cosmography

Caporziello, S., Cardone, V., Salzano, V., PRD 78 (2008) 063504

e.g. Constraining f(R) - by Clusters of Galaxies
 Capozziello, S., De Filippis, E., Salzano, V. MNRAS 394 (2009) 947

f(R) gravity motivations

Clusters of galaxies dynamics

Fitting Mass Profiles

DATA:

- Sample: 12 clusters from Chandra (Vikhlinin 2005, 2006)
- Temperature profile from spectroscopy

- Gas density: modified beta-model $n_p n_e = n_0^2 \cdot \frac{(r/r_c)^{-\alpha}}{(1+r^2/r_c^2)^{3\beta-\alpha/2}} \cdot \frac{1}{(1+r^{\gamma}/r_s^{\gamma})^{\epsilon/\gamma}} + \frac{1}{(1+r^{\gamma}/r_s^{\gamma})^{\epsilon/\gamma}}$

- Galaxy density: $\rho_{gal}(r)$

$$\rho = \begin{cases} \rho_{gal,1} \cdot \left[1 + \left(\frac{r}{R_c}\right)^2\right]^{-\frac{3}{2}} & r < R_c \\ \rho_{gal,2} \cdot \left[1 + \left(\frac{r}{R_c}\right)^2\right]^{-\frac{2.6}{2}} & r > R_c \end{cases} \quad \rho_{CDgal} = \frac{\rho_{0,J}}{\left(\frac{r}{r_c}\right)^2 \left(1 + \frac{r}{r_c}\right)^2} \end{cases}$$

Table 1. Column 1: Cluster name. Column2: Richness. Column 2: cluster total mass. Column 3: gas mass. Column 4: galaxy mass. Column 5: cD-galaxy mass. All mass values are estimated at $r = r_{max}$. Column 6: ratio of total galaxy mass to gas mass. Column 7: minimum radius. Column 8: maximum radius.

name	R	$M_{cl,N}$ (M_{\odot})	M_{gas} (M_{\odot})	M_{gal} (M_{\odot})	M_{cDgal} (M_{\odot})	$\frac{gal}{gas}$	r_{min} (kpc)	r_{max} (kpc)
		· · · · ·	()	(),	,		· - /	< - <i>/</i>
A133	0	$4.35874 \cdot 10^{14}$	$2.73866 \cdot 10^{13}$	$5.20269 \cdot 10^{12}$	$1.10568 \cdot 10^{12}$	0.23	86	1060
A262	0	$4.45081 \cdot 10^{13}$	$2.76659 \cdot 10^{12}$	$1.71305 \cdot 10^{11}$	$5.16382 \cdot 10^{12}$	0.25	61	316
A383	2	$2.79785 \cdot 10^{14}$	$2.82467 \cdot 10^{13}$	$5.88048 \cdot 10^{12}$	$1.09217\cdot 10^{12}$	0.25	52	751
A478	2	$8.51832 \cdot 10^{14}$	$1.05583 \cdot 10^{14}$	$2.15567 \cdot 10^{13}$	$1.67513 \cdot 10^{12}$	0.22	59	1580
A907	1	$4.87657 \cdot 10^{14}$	$6.38070 \cdot 10^{13}$	$1.34129 \cdot 10^{13}$	$1.66533 \cdot 10^{12}$	0.24	563	1226
A1413	3	$1.09598 \cdot 10^{15}$	$9.32466 \cdot 10^{13}$	$2.30728 \cdot 10^{13}$	$1.67345 \cdot 10^{12}$	0.26	57	1506
A1795	2	$1.24313 \cdot 10^{14}$	$1.00530 \cdot 10^{13}$	$4.23211\cdot 10^{12}$	$1.93957 \cdot 10^{12}$	0.11	79	1151
A1991	1	$1.24313 \cdot 10^{14}$	$1.00530 \cdot 10^{13}$	$1.24608 \cdot 10^{12}$	$1.08241 \cdot 10^{12}$	0.23	55	618
A2029	2	$8.92392 \cdot 10^{14}$	$1.24129\cdot 10^{14}$	$3.21543 \cdot 10^{13}$	$1.11921\cdot 10^{12}$	0.27	62	1771
A2390	1	$2.09710 \cdot 10^{15}$	$2.15726 \cdot 10^{14}$	$4.91580\cdot 10^{13}$	$1.12141 \cdot 10^{12}$	0.23	83	1984
MKW4	-	$4.69503 \cdot 10^{13}$	$2.83207 \cdot 10^{12}$	$1.71153 \cdot 10^{11}$	$5.29855 \cdot 10^{11}$	0.25	60	434
RXJ1159	-	$8.97997 \cdot 10^{13}$	$4.33256 \cdot 10^{12}$	$7.34414 \cdot 10^{11}$	$5.38799 \cdot 10^{11}$	0.29	64	568

Fitting Mass Profiles

METHOD:

- Minimization of chi-square:

$$\chi^2 = \frac{1}{N - n_p - 1} \cdot \sum_{i=1}^{N} \frac{(M_{bar,obs} - M_{bar,theo})}{M_{bar,theo}}$$

- Markov Chain Monte Carlo:

$$\alpha(\mathbf{p}, \mathbf{p}') = min\left\{1, \frac{L(\mathbf{d}|\mathbf{p}')P(\mathbf{p}')q(\mathbf{p}', \mathbf{p})}{L(\mathbf{d}|\mathbf{p})P(\mathbf{p})q(\mathbf{p}, \mathbf{p}')}\right\}$$

Reject min < 1: - I new point out of prior new point with greater chi-square

Accept min = 1: new point in prior and less chi-square

accepted step Xa ★ rejected step X₁

Sample of accepted points Sampling from underlying probability distribution

- Power spectrum test convergence:

Discrete power spectrum from samples Convergence = flat spectrum

Results: gravitational length

- Differences between theoretical and observed fit less than 5%

- **Typical scale** in [100; 150] kpc range where is a turning-point:
 - Break in the hydrostatic equilibrium
 - Limits in the expansion series of f(R): $R R_0 << \frac{a_1}{a_2}$ in the range [19;200] kpc *Proper* gravitational scale (as for galaxies, see Capozziello et al MNRAS 2007)

• Similar issues in Metric-Skew-Tensor-Gravity (Brownstein, 2006): we have better and more detailed approach

Results

name	a_1	$[a_1-1\sigma,a_1+1\sigma]$	$\stackrel{a_2}{(\mathrm{kpc}^2)}$	$\begin{matrix} [a_2-1\sigma,\ a_2+1\sigma] \\ (\mathrm{kpc}^2) \end{matrix}$	$L \ (m kpc)$	$\begin{array}{c} [L-1\sigma,L+1\sigma] \\ (\mathrm{kpc}) \end{array}$
A133	0.085	[0.078, 0.091]	$-4.98\cdot10^3$	$[-2.38 \cdot 10^4, -1.38 \cdot 10^3]$	591.78	[323.34, 1259.50]
A262	0.065	[0.061, 0.071]	-10.63	[-57.65, -3.17]	31.40	[17.28, 71.10]
A383	0.099	[0.093, 0.108]	$-9.01\cdot10^2$	$[-4.10 \cdot 10^3, -3.14 \cdot 10^2]$	234.13	[142.10, 478.06]
A478	0.117	[0.114, 0.122]	$-4.61\cdot10^3$	$[-1.01 \cdot 10^4, -2.51 \cdot 10^3]$	484.83	[363.29, 707.73]
A907	0.129	[0.125, 0.136]	$-5.77\cdot10^3$	$[-1.54 \cdot 10^4, -2.83 \cdot 10^3]$	517.30	[368.84, 825.00]
A1413	0.115	[0.110, 0.119]	$-9.45\cdot10^4$	$[-4.26 \cdot 10^5, -3.46 \cdot 10^4]$	2224.57	[1365.40, 4681.21]
A1795	0.093	[0.084, 0.103]	$-1.54\cdot10^3$	$[-1.01 \cdot 10^4, -2.49 \cdot 10^2]$	315.44	[133.31, 769.17]
A1991	0.074	[0.072, 0.081]	-50.69	$[-3.42 \cdot 10^2, -13]$	64.00	[32.63, 159.40]
A2029	0.129	[0.123, 0.134]	$-2.10 \cdot 10^{4}$	$[-7.95 \cdot 10^4, -8.44 \cdot 10^3]$	988.85	[637.71, 1890.07]
A2390	0.149	[0.146, 0.152]	$-1.40 \cdot 10^{6}$	$[-5.71 \cdot 10^6, -4.46 \cdot 10^5]$	7490.80	[4245.74, 15715.60]
MKW4	0.054	[0.049, 0.060]	-23.63	$[-1.15 \cdot 10^2, -8.13]$	51.31	[30.44, 110.68]
RXJ1159	0.048	[0.047, 0.052]	-18.33	$[-1.35 \cdot 10^2, -4.18]$	47.72	[22.86, 125.96]

Results

name	<i>a</i> ₁	$[a_1 - 1\sigma, a_1 + 1\sigma]$	$\stackrel{a_2}{(\mathrm{kpc}^2)}$	$\begin{bmatrix} a_2 - 1\sigma, a_2 + 1\sigma \\ (\text{kpc}^2) \end{bmatrix}$	$L \ (m kpc)$	$\begin{array}{c} [L-1\sigma,L+1\sigma] \\ (\text{kpc}) \end{array}$
A133	0.085	[0.078, 0.091]	$-4.98\cdot10^3$	$[-2.38 \cdot 10^4, -1.38 \cdot 10^3]$	591.78	[323.34, 1259.50]
A262	0.065	[0.061, 0.071]	-10.63	[-57.65, -3.17]	31.40	[17.28, 71.10]
A383	0.099	[0.093, 0.108]	$-9.01\cdot10^2$	$[-4.10 \cdot 10^3, -3.14 \cdot 10^2]$	234.13	[142.10, 478.06]
A478	0.117	[0.114, 0.122]	$-4.61\cdot 10^3$	$[-1.01 \cdot 10^4, -2.51 \cdot 10^3]$	484.83	[363.29, 707.73]
A907	0.129	[0.125, 0.136]	$-5.77\cdot 10^3$	$[-1.54 \cdot 10^4, -2.83 \cdot 10^3]$	517.30	[368.84, 825.00]
A1413	0.115	[0.110, 0.119]	$-9.45\cdot10^4$	$[-4.26 \cdot 10^5, -3.46 \cdot 10^4]$	2224.57	[1365.40, 4681.21]
A1795	0.093	[0.084, 0.103]	$-1.54 \cdot 10^{3}$	$[-1.01 \cdot 10^4, -2.49 \cdot 10^2]$	315.44	[133.31, 769.17]
A1991	0.074	[0.072, 0.081]	-50.69	$[-3.42 \cdot 10^2, -13]$	64.00	[32.63, 159.40]
A2029	0.129	[0.123, 0.134]	$-2.10 \cdot 10^{4}$	$[-7.95 \cdot 10^4, -8.44 \cdot 10^3]$	988.85	[637.71, 1890.07]
A2390	0.149	[0.146, 0.152]	$-1.40 \cdot 10^{6}$	$[-5.71 \cdot 10^6, -4.46 \cdot 10^5]$	7490.80	[4245.74, 15715.60]
MKW4	0.054	[0.049, 0.060]	-23.63	$[-1.15 \cdot 10^2, -8.13]$	51.31	[30.44, 110.68]
RXJ1159	0.048	[0.047, 0.052]	-18.33	$[-1.35 \cdot 10^2, -4.18]$	47.72	[22.86, 125.96]

Results: expectations

- First derivative, : very well constrained . It scales with the system size

- Newtonian limit: $\phi(r) = -\frac{3GM}{4a_1r} \left(1 + \frac{1}{3}e^{-\frac{r}{L}}\right)$

Point like potential:

Cluster of Galaxies: $a_1 = 0.16 - L = 1000$ kpc

Galaxies: $a_1 = 0.4 - L = 100 \text{ kpc}$

Solar System: $a_1 = 0.75 - L = 1$ kpc

Newton Limit: $a_1 = 0.75 - L = 0$ kpc

Results

name	a_1	$[a_1 - 1\sigma, a_1 + 1\sigma]$	$\stackrel{a_2}{(\mathrm{kpc}^2)}$	$\begin{matrix} [a_2-1\sigma,\ a_2+1\sigma] \\ (\mathrm{kpc}^2) \end{matrix}$	L (kpc)	$\begin{array}{c} [L-1\sigma,L+1\sigma] \\ (\mathrm{kpc}) \end{array}$
A133	0.085	[0.078, 0.091]	$-4.98\cdot10^3$	$[-2.38 \cdot 10^4, -1.38 \cdot 10^3]$	591.78	[323.34, 1259.50]
A 262	0.065	[0.061, 0.071]	-10.63	[-57.65, -3.17]	31.40	[17.28, 71.10]
A383	0.099	[0.093, 0.108]	$-9.01 \cdot 10^{2}$	$[-4.10 \cdot 10^3, -3.14 \cdot 10^2]$	234.13	[142.10, 478.06]
A478	0.117	[0.114, 0.122]	$-4.61 \cdot 10^{3}$	$[-1.01 \cdot 10^4, -2.51 \cdot 10^3]$	484.83	[363.29, 707.73]
A907	0.129	[0.125, 0.136]	$-5.77\cdot10^3$	$[-1.54 \cdot 10^4, -2.83 \cdot 10^3]$	517.30	[368.84, 825.00]
A1413	0.115	[0.110, 0.119]	$-9.45\cdot10^4$	$[-4.26 \cdot 10^5, -3.46 \cdot 10^4]$	2224.57	[1365.40, 4681.21]
A1795	0.093	[0.084, 0.103]	$-1.54\cdot10^3$	$[-1.01 \cdot 10^4, -2.49 \cdot 10^2]$	315.44	[133.31, 769.17]
A1991	0.074	[0.072, 0.081]	-50.69	$[-3.42 \cdot 10^2, -13]$	64.00	[32.63, 159.40]
A2029	0.129	[0.123, 0.134]	$-2.10 \cdot 10^{4}$	$[-7.95 \cdot 10^4, -8.44 \cdot 10^3]$	988.85	[637.71, 1890.07]
A2390	0.149	[0.146, 0.152]	$-1.40 \cdot 10^{6}$	$[-5.71 \cdot 10^6, -4.46 \cdot 10^5]$	7490.80	[4245.74, 15715.60]
MKW4	0.054	[0.049, 0.060]	-23.63	$[-1.15 \cdot 10^2, -8.13]$	51.31	[30.44, 110.68]
RXJ1159	0.048	[0.047, 0.052]	-18.33	$[-1.35 \cdot 10^2, -4.18]$	47.72	[22.86, 125.96]

Results

name	a_1	$[a_1 - 1\sigma, a_1 + 1\sigma]$	$a_2 \over (\mathrm{kpc}^2)$	$\begin{array}{c} [a_2 - 1\sigma, \ a_2 + 1\sigma] \\ (\mathrm{kpc}^2) \end{array}$	$L \ (m kpc)$	$\begin{array}{c} [L-1\sigma,L+1\sigma] \\ (\text{kpc}) \end{array}$
A 133	0.085	[0.078, 0.091]	$-4.98\cdot10^3$	$[-2.38 \cdot 10^4, -1.38 \cdot 10^3]$	591.78	[323.34, 1259.50]
A262	0.065	[0.061, 0.071]	-10.63	[-57.65, -3.17]	31.40	[17.28, 71.10]
A383	0.099	[0.093, 0.108]	$-9.01\cdot10^2$	$[-4.10 \cdot 10^3, -3.14 \cdot 10^2]$	234.13	[142.10, 478.06]
A478	0.117	[0.114, 0.122]	$-4.61 \cdot 10^3$	$[-1.01 \cdot 10^4, -2.51 \cdot 10^3]$	484.83	[363.29, 707.73]
A907	0.129	[0.125, 0.136]	$-5.77\cdot10^3$	$[-1.54 \cdot 10^4, -2.83 \cdot 10^3]$	517.30	[368.84, 825.00]
A1413	0.115	[0.110, 0.119]	$-9.45\cdot10^4$	$[-4.26 \cdot 10^5, -3.46 \cdot 10^4]$	2224.57	[1365.40, 4681.21]
A1795	0.093	[0.084, 0.103]	$-1.54\cdot10^3$	$[-1.01 \cdot 10^4, -2.49 \cdot 10^2]$	315.44	[133.31, 769.17]
A1991	0.074	[0.072, 0.081]	-50.69	$[-3.42 \cdot 10^2, -13]$	64.00	[32.63, 159.40]
A2029	0.129	[0.123, 0.134]	$-2.10 \cdot 10^{4}$	$[-7.95 \cdot 10^4, -8.44 \cdot 10^3]$	988.85	[637.71, 1890.07]
A2390	0.149	[0.146, 0.152]	$-1.40\cdot10^{6}$	$[-5.71 \cdot 10^6, -4.46 \cdot 10^5]$	7490.80	[4245.74, 15715.60]
MKW4	0.054	[0.049, 0.060]	-23.63	$[-1.15 \cdot 10^2, -8.13]$	51.31	[30.44, 110.68]
RXJ1159	0.048	[0.047, 0.052]	-18.33	$[-1.35 \cdot 10^2, -4.18]$	47.72	[22.86, 125.96]

Results: expectations

- Gravitational length: $L \equiv L(a_1, a_2) = \left(-\frac{6a_2}{a_1}\right)^{1/2}$

Strong characterization of Gravitational potential

- Mean length:

$$< L > \rho = 318 \text{ kpc} < a_2 > \rho = -3.40 \cdot 10^4$$

 $< L >_M = 2738 \text{ kpc} < a_2 >_M = -4.15 \cdot 10^5$

×10 15

Strongly related
 to virial mass

Strongly related

(the same for gas mass):

to average temperature:

A239(1.1 1.0 0.9 A2029 A478 A1413 0.8 005 W 0.6 A1795 0.5 IA907 0.4 IA133 TA383 0.3 0.2 1993 0.1 0.0 4.0 6.0 8.01e02 2.0 4.0 6.0 8.01e03 2.0 6.0 8.01e04 4.0

Results: expectations

- Gravitational length: $L \equiv L(a_1, a_2) = \left(-\frac{6a_2}{a_1}\right)^{1/2}$

Strong characterization of

Gravitational potential

- Mean length:

$$< L > \rho = 318 \text{ kpc} < a_2 > \rho = -3.40 \cdot 10^4$$

 $< L >_M = 2738 \text{ kpc} < a_2 >_M = -4.15 \cdot 10^5$

- Strongly related

to virial mass

(the same for gas mass):

- Strongly related

to average temperature:

Conclusions

- Cosmography: model independent approach to f(R) -gravity
- Cosmographic parameters to constraint f(R) gravity models
- Cosmography to "discriminate" between Dark Energy and f(R)

 Montecarlo simulations to assess precision on cosmography Perspectives: \langle • Combine different datasets to strengthen the constraints Introduce theoretically motivated priors on cosmography

• Fitting Large Scale Structure with f(R) gravity (Clusters of Galaxies)

- Well motivated f(R) models (in agreement with observations)
- f(R) parameters strongly characterize gravitational systems

Perspectives:
Extending to any self-gravitating systems
Recover Newtonian limit and evade Solar System tests
Understand physical meaning or dependency of parameters