Theoretical Frameworks for
 Neutrino Masses

Ferruccio Feruglio
Universita' di Padova

Napoli, January 15th 2010

Plan

1. Neutrino oscillations and summary of data
2. How to extend the SM to incorporate neutrino masses
3. Purely Dirac neutrino masses
4. Neutrino masses from $D=5$ operator
5. The see-saw mechanism
6. Tests of $D=5$ operator
7. Flavour symmetries

General remarks on neutrinos

the more abundant particles in the universe after the photons: about 300 neutrinos per cm^{3}
produced by stars: about 3% of the sun energy emitted in neutrinos. As I speak more than 1000000000000 solar neutrinos go through your bodies each second.

this is a picture of the sun reconstructed from neutrinos

The Particle Universe

electrically neutral and extremely light:
they can carry information about extremely large length scales
e.g. a probe of supernovae dynamics: neutrino events from a
supernova explosion first observed 23 years ago
in particle physics:
they have a tiny mass (1000 000 times smaller than the electron's mass) the discovery that they are massive (twelve anniversary now!) allows us to explore, at least in principle, extremely high energy scales, otherwise inaccessible to present laboratory experiments (more on this later on...)

Two-flavour neutrino oscillations

| neutrino
 interaction
 eigenstates |
| :--- |\(\binom{\nu_{e}}{\nu_{\mu}}=\underbrace{\left(\begin{array}{cc}\cos \vartheta \& \sin \vartheta

-\sin \vartheta \& \cos \vartheta\end{array}\right)\left($$
\begin{array}{cc}1 & 0 \\
0 & e^{i \alpha}\end{array}
$$\right)}_{U}\binom{\nu_{1}}{v_{2}}\)

$$
\begin{aligned}
& -\frac{g}{\sqrt{2}} W_{\mu}^{-} \bar{l}_{L} \gamma^{\mu} v_{l} \\
& t \approx L
\end{aligned}
$$

$$
E_{2}-E_{1}=\sqrt{p^{2}+m_{2}^{2}}-\sqrt{p^{2}+m_{2}^{2}} \approx \frac{m_{2}^{2}}{2 E}-\frac{m_{1}^{2}}{2 E} \equiv \frac{\Delta m_{21}^{2}}{2 E}
$$

$$
P_{e e}=\left\lvert\,\left\langle v_{e} \mid \psi(L)\right\rangle^{2}=1-\underbrace{4\left|U_{e 1}\right|^{2}\left|U_{e 2}\right|^{2}}_{\sin ^{2} 2 \theta} \sin ^{2}\left(\frac{\Delta m_{21}^{2} L}{4 E}\right) \begin{gathered}
\substack{\text { no dependence } \\
\text { on the h hase } e \\
\text { more on this } \\
\text { loter on h... }}
\end{gathered}\right.
$$

to see any effect, if Δm^{2} is tiny, we need both θ and L large

Three-flavour neutrino oscillations

survival probability as before, with more terms

$$
P_{f f}=P\left(v_{f} \rightarrow v_{f}\right)=\left|\left\langle v_{f} \mid \psi(L)\right\rangle\right|^{2}=1-4 \sum_{k<j}\left|U_{f k}\right|^{2}\left|U_{f j}\right|^{2} \sin ^{2}\left(\frac{\Delta m_{j k}^{2} L}{4 E}\right)
$$

similarly, we can derive the disappearance probabilities $P_{f f^{\prime}}=P\left(v_{f} \rightarrow v_{f f^{\prime}}\right)$
conventions: $\left[\Delta m_{i j}^{2} \equiv m_{i}^{2}-m_{j}^{2}\right.$]
$m_{1}<m_{2}$
$\Delta m_{21}^{2}<\left|\Delta m_{32}^{2}\right|,\left|\Delta m_{31}^{2}\right|$ ie. 1 and 2 are, by definition, the closest levels
two possibilities:

[we anticipate that $\Delta m_{21}^{2} \ll\left|\Delta m_{32}^{2}\right|,\left|\Delta m_{31}^{2}\right|$]

Mixing matrix $U=U_{\text {PMNS }}$ (Pontecorvo,Maki,Nakagawa,Sakata)

neutrino interaction eigenstates

$$
\begin{array}{ll}
v_{f}=\sum_{i=1}^{3} U_{f i} v_{i} & \begin{array}{l}
\text { neutrino mass } \\
\text { eigenstates }
\end{array} \\
(f=e, \mu, \tau) &
\end{array}
$$

U is a 3×3 unitary matrix standard parametrization

$$
\begin{aligned}
U_{P M N S} & =\left(\begin{array}{ccc}
c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{i \delta} \\
-s_{12} c_{23}-c_{12} s_{13} s_{23} e^{-i \delta} & c_{12} c_{23}-s_{12} s_{13} s_{23} e^{-i \delta} & c_{13} s_{23} \\
-c_{12} s_{13} c_{23} e^{-i \delta}+s_{12} s_{23} & -s_{12} s_{13} c_{23} e^{-i \delta}-c_{12} s_{23} & c_{13} c_{23}
\end{array}\right) \times\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & e^{i \alpha} & 0 \\
0 & 0 & e^{i \beta}
\end{array}\right) \\
c_{12} & =\cos \vartheta_{12}, \ldots
\end{aligned}
$$

three mixing angles
three phases (in the most general case) δ
$\boldsymbol{\vartheta}_{12}, \quad \boldsymbol{\vartheta}_{13}, \quad \boldsymbol{\vartheta}_{23}$

$$
\underbrace{\alpha, \quad \beta}_{\text {do not enter }} P_{f f^{\prime}}=P\left(v_{f} \rightarrow v_{f^{\prime}}\right)
$$

oscillations can only test 6 combinations

$$
\Delta m_{21}^{2}, \Delta m_{32}^{2}, \boldsymbol{\vartheta}_{12}, \quad \boldsymbol{\vartheta}_{13}, \quad \boldsymbol{\vartheta}_{23} \boldsymbol{\delta}
$$

Summary of data

$$
\begin{aligned}
& m_{v}<2.2 \mathrm{eV} \quad(95 \% \mathrm{CL}) \\
& \sum_{i} m_{i}<0.2 \div 1 \mathrm{eV} \quad \text { (lab) } \\
& \text { (cosmo) }
\end{aligned}
$$

Summary of unkowns

```
absolute neutrino mass
scale is unknown
```

$$
\begin{aligned}
& \Delta m_{\text {atm }}^{2} \equiv\left|\Delta m_{32}^{2}\right|=(2.38 \pm 0.27) \times 10^{-3} \mathrm{eV}^{2} \\
& \Delta m_{\text {sol }}^{2} \equiv \Delta m_{21}^{2}=(7.66 \pm 0.35) \times 10^{-5} \mathrm{eV}^{2}
\end{aligned}
$$

[2o errors (95\% C.L.)]
$\operatorname{sign}\left[\Delta m_{32}^{2}\right]$ unknown
[complete ordering (either normal or inverted hierarchy) not known]

$$
\begin{aligned}
& \sin ^{2} \vartheta_{13}=0.016 \pm 0.010 \\
& \sin ^{2} \vartheta_{23}=0.45_{-0.09}^{+0.16} \quad[2 \sigma] \\
& \sin ^{2} \vartheta_{12}=0.326_{-0.04}^{0.05}
\end{aligned} \quad[2 \sigma]=10
$$

δ, α, β unknown
[CP violation in lepton sector not yet established]
violation of total lepton number not yet established

historically $\Delta m_{21}{ }^{2}$ and $\sin ^{2} \theta_{12}$ were first determined by solving the solar neutrino problem, i.e. the disappearance of about one third of solar electron neutrino flux, for solar neutrinos above few MeV. The desire of detecting solar neutrinos, to confirm the thermodynamics of the sun, was the driving motivation for the whole field for more than 30 years. Electron solar neutrinos oscillate, but the formalism requires the introduction of matter effects, since the electron density in the sun is not negligible. Experiments: SuperKamiokande, SNO

Beyond the Standard Model

a non-vanishing neutrino mass is the first evidence of the incompleteness of the Standard Model [SM]
in the SM neutrinos belong to $S U(2)$ doublets with hypercharge $Y=-1 / 2$ they have only two helicities (not four, as the other charged fermions)

$$
l=\binom{v_{e}}{e}=(1,2,-1 / 2)
$$

[by definition, right-handed neutrinos $v^{c}=(1,1,0)$ do not exist in the SM]
the requirement of invariance under the gauge group $G=S U(3) \times S U(2) \times U(1) y$ forbids pure fermion mass terms in the lagrangian. Charged fermion masses arise, after electroweak symmetry breaking, through gauge-invariant Yukawa interactions

not even this term is allowed for SM neutrinos, by gauge invariance

Questions

how to extend the SM in order to accommodate neutrino masses?
why neutrino masses are so small, compared with the charged fermion masses?

why lepton mixing angle are so different from those of the quark sector?

$V_{C K M} \approx\left(\begin{array}{ccc}1 & O(\lambda) & O\left(\lambda^{4} \div \lambda^{3}\right) \\ O(\lambda) & 1 & O\left(\lambda^{2}\right) \\ O\left(\lambda^{4} \div \lambda^{3}\right) & O\left(\lambda^{2}\right) & 1\end{array}\right)$
$\lambda \approx 0.22$

How to modify the SM?

the SM, as a consistent RQFT, is completely specified by
0 . invariance under local transformations of the gauge group $G=S U(3) \times S U(2) \times U(1)$ [plus Lorentz invariance]

1. particle content three copies of $\left(q, u^{c}, d^{c}, l, e^{c}\right)$
one Higgs doublet Φ
2. renormalizability (i.e. the requirement that all coupling constants g_{i} have non-negative dimensions in units of mass: $\mathrm{d}\left(\mathrm{g}_{\mathrm{i}}\right) \geq 0$. This allows to eliminate all the divergencies occurring in the computation of physical quantities, by redefining a finite set of parameters.)
(0.+1.+2.) leads to the SM Lagrangian, $L_{S M}$, possessing an additional, accidental, global symmetry: (B-L)
3. We cannot give up gauge invariance! It is mandatory for the consistency of the theory. Without gauge invariance we cannot even define the Hilbert space of the theory [remember: we need gauge invariance to eliminate the photon extra degrees of freedom required by Lorentz invariance]!
We could extend G, but, to allow for neutrino masses, we need to modify 2. (and/or 3.) anyway...

First possibility: modify (1), the particle content

there are several possibilities one of the simplest one is to mimic the charged fermion sector

Example 1
 add (three copies of) $\quad v^{c} \equiv(1,1,0) \quad$ full singlet under right-handed neutrinos $G=S U(3) \times S U(2) \times U(1)$
 ask for (global) invariance under B-L (no more automatically conserved as in the SM)

the neutrino has now four helicities, as the other charged fermions, and we can build gauge invariant Yukawa interactions giving rise, after electroweak symmetry breaking, to neutrino masses

$$
\begin{gathered}
L_{Y}=d^{c} y_{d}\left(\Phi^{+} q\right)+u^{c} y_{u}\left(\tilde{\Phi}^{+} q\right)+e^{c} y_{e}\left(\Phi^{+} l\right)+v^{c} y_{v}\left(\tilde{\Phi}^{+} l\right)+\text { h.c. } \\
m_{f}=\frac{y_{f}}{\sqrt{2}} v \quad f=u, d, e, v
\end{gathered}
$$

with three generations there is an exact replica of the quark sector and, after diagonalization of the charged lepton and neutrino mass matrices, a mixing matrix U appears in the charged current interactions
$-\frac{g}{\sqrt{2}} W_{\mu}^{-} \bar{e} \sigma^{u} U_{\text {PMNS }} v+h . c . \quad U_{\text {PMNS }}$ has three mixing angles and one phase, like $\mathrm{V}_{C K M}$

a generic problem of this approach

the particle content can be modified in several different ways in order to account for non-vanishing neutrino masses (additional right-handed neutrinos, new SU(2) fermion triplets, additional SU(2) scalar triplet(s), SUSY particles,...). Which is the correct one?
a problem of the above example
if neutrinos are so similar to the other fermions, why are so light?

$$
\text { Quite a speculative answer: } \quad \frac{y_{v}}{y_{\text {top }}} \leq 10^{-12}
$$

neutrinos are so light, because the right-handed neutrinos have access to an extra (fifth) spatial dimension

neutrino Yukawa coupling
$v^{c}(y=0)\left(\tilde{\Phi}^{+} l\right)=$ Fourier expansion

$$
\left.=\frac{1}{\sqrt{L}} v_{0}^{c}\left(\tilde{\Phi}^{+} l\right)+\ldots \quad \text { [higher modes }\right]
$$

if $L \gg 1$ (in units of the fundamental scale) then neutrino Yukawa coupling is suppressed

Second possibility: abandon (2) renormalizability

A disaster?

$$
L=L_{d \leq 4}^{S M}+\frac{L_{5}}{\Lambda}+\frac{L_{6}}{\Lambda^{2}}+\ldots
$$

a new scale Λ enters the theory. The new (gauge invariant!) operators L_{5}, L_{6}, \ldots contribute to amplitudes for physical processes with terms of the type

$$
\frac{L_{5}}{\Lambda} \rightarrow \frac{E}{\Lambda} \quad \frac{L_{6}}{\Lambda^{2}} \rightarrow\left(\frac{E}{\Lambda}\right)^{2}
$$

the theory cannot be extrapolated beyond a certain energy scale $\mathrm{E} \approx \Lambda$. [at variance with a renormalizable (asymptotically free) QFT]

If $\mathrm{E} \ll \Lambda$ (for example E close to the electroweak scale, $10^{2} \mathrm{GeV}$, and $\Lambda \approx 10^{15} \mathrm{GeV}$ not far from the so-called Grand Unified scale), the above effects will be tiny and, the theory will look like a renormalizable theory!

$$
\frac{E}{\Lambda} \approx \frac{10^{2} \mathrm{GeV}}{10^{15} \mathrm{GeV}}=10^{-13}
$$

an extremely tiny effect, but exactly what needed to suppress m_{v} compared to $m_{\text {top }}$!

Worth to explore. The dominant operators (suppressed by a single power of $1 / \Lambda$) beyond $L_{S M}$ are those of dimension 5 . Here is a list of all $d=5$ gauge invariant operators

$$
\begin{aligned}
\frac{L_{5}}{\Lambda} & =\frac{\left(\tilde{\Phi}^{+} l\right)\left(\tilde{\Phi}^{+} l\right)}{\Lambda}= \\
& =\frac{v}{2}\left(\frac{v}{\Lambda}\right) v v+\ldots
\end{aligned}
$$

a unique operator!
[up to flavour combinations] it violates ($B-L$) by two units
it is suppressed by a factor (v / Λ) with respect to the neutrino mass term of Example 1:

$$
v^{c}\left(\tilde{\Phi}^{+} l\right)=\frac{v}{\sqrt{2}} v^{c} v+\ldots
$$

it provides an explanation for the smallness of m_{v} : the neutrino masses are small because the scale Λ, characterizing ($B-L$) violations, is very large. How large? Up to about $10^{15} \mathrm{GeV}$
from this point of view neutrinos offer a unique window on physics at very large scales, inaccessible in present (and probably future) man-made experiments.
since this is the dominant operator in the expansion of L in powers of $1 / \Lambda$, we could have expected to find the first effect of physics beyond the SM in neutrinos ... and indeed this was the case!
L_{5} represents the effective, low-energy description of several extensions of the SM

Example 2: see-saw

this is like Example 1, but without enforcing (B-L) conservation

$$
L\left(v^{c}, l\right)=v^{c} y_{v}\left(\tilde{\Phi}^{+} l\right)+\frac{1}{2} v^{c} M v^{c}+h . c .
$$

mass term for right-handed neutrinos: G invariant, violates (B-L) by two units.
the new mass parameter M is independent from the electroweak breaking scale v. If $M \gg v$, we might be interested in an effective description valid for energies much smaller than M. This is obtained by "integrating out" the field v^{c}

$$
L_{e f f}(l)=-\frac{1}{2}\left(\tilde{\Phi}^{+} l\right)\left[y_{v}^{T} M^{-1} y_{v}\right]\left(\tilde{\Phi}^{+} l\right)+h . c .+\ldots \begin{gathered}
\text { terms suppressed by more } \\
\text { powers of } M^{-1}
\end{gathered}
$$

this reproduces L_{5}, with M playing the role of Λ. This particular mechanism is called (type I) see-saw.

Theoretical motivations for the see-saw

$\Lambda \approx 10^{15} \mathrm{GeV}$ is very close to the so-called unification scale $M_{G U T}$.
an independent evidence for $M_{G U T}$ comes from the unification of the gauge coupling constants in (SUSY extensions of) the SM.
such unification is a generic prediction of Grand Unified Theories (GUTs): the $S M$ gauge group G is embedded into a simple group such as SU(5), SO(10),...

Particle classification: it is possible to unify all SM fermions (1 generation) into a single irreducible representation of the GUT gauge group. Simplest example: $G_{G U T}=S O(10)$

$$
16=\left(q, d^{c}, u^{c}, l, e^{c}, v^{c}\right) \begin{aligned}
& \text { a whole family plus a } \\
& \text { right-handed neutrino! }
\end{aligned}
$$

quite a fascinating possibility. Unfortunately, it still lacks experimental tests. In GUT new, very heavy, particles can convert quarks into leptons and the proton is no more a stable particle. Proton decay rates and decay channels are however model dependent. Experimentally we have only lower bounds on the proton lifetime.

2 additional virtues of the see-saw

The see-saw mechanism can enhance small mixing angles into large ones

$$
m_{v}=-\left[y_{v}^{T} M^{-1} y_{v}\right] v^{2}
$$

Example with 2 generations

$$
\begin{array}{ll}
y_{v}=\left(\begin{array}{ll}
\delta & \delta \\
0 & 1
\end{array}\right) & \begin{array}{l}
\delta<1 \\
\text { small mixing }
\end{array} \\
M=\left(\begin{array}{cc}
M_{1} & 0 \\
0 & M_{2}
\end{array}\right) & \text { no mixing }
\end{array}
$$

$$
\begin{aligned}
y_{v}^{T} M^{-1} y_{v} & =\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right) \frac{\delta^{2}}{M_{1}}+\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \frac{1}{M_{2}} \\
& \approx\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right) \frac{\delta^{2}}{M_{1}} \quad \text { for } \frac{M_{1}}{M_{2}} \ll \delta^{2}
\end{aligned}
$$

The (out-of equilibrium, CP-violating) decay of heavy right-handed neutrinos in the early universe might generate a net asymmetry between leptons and anti-leptons. Subsequent SM interactions can partially convert it into the observed baryon asymmetry

$$
\eta=\frac{\left(n_{B}-n_{\bar{B}}\right)}{s} \approx 6 \times 10^{-10}
$$

weak point of the see-saw

full high-energy theory is difficult to test

$$
L\left(v^{c}, l\right)=v^{c} y_{v}\left(\tilde{\Phi}^{+} l\right)+\frac{1}{2} v^{c} M v^{c}+h . c .
$$

depends on many physical parameters:
3 (small) masses + 3 (large) masses
3 (L) mixing angles + 3 (R) mixing angles
6 physical phases $=18$ parameters
the double of those describing $\left(L_{S M}\right)+L_{5}$: 3 masses, 3 mixing angles and 3 phases
few observables to pin down the extra parameters: η, \ldots
[additional possibilities exist under special conditions, e.g. Lepton Flavor Violation at observable rates]
easier to test the low-energy remnant L_{5}
[which however is "universal" and does not implies the specific see-saw mechanism of Example 2]
look for a process where $B-L$ is violated by 2 units. The best candidate is Ov $\beta \beta$ decay: (A, Z) $->(A, Z+2)+2 e^{-}$
this would discriminate L_{5} from other possibilities, such as Example 1.

The decay in $0 v \beta \beta$ rates depend on the combination $\left|m_{e e}\right|=\left|\sum_{i} U_{e i}^{2} m_{i}\right|$

$$
\left|m_{e e}\right|=\left|\cos ^{2} \boldsymbol{\vartheta}_{13}\left(\cos ^{2} \boldsymbol{\vartheta}_{12} m_{1}+\sin ^{2} \boldsymbol{\vartheta}_{12} e^{2 i \alpha} m_{2}\right)+\sin ^{2} \vartheta_{13} e^{2 i \beta} m_{3}\right|
$$

[notice the two phases α and β, not entering neutrino oscillations]
from the current knowledge of

Flavor symmetries I（the hierarchy puzzle）

hierarchies in fermion spectrum

$$
\begin{aligned}
& \frac{\frac{\text { n }}{\frac{\tilde{c}}{\sigma}}}{\frac{m_{u}}{\sigma}} \quad \frac{m_{c}}{m_{t}} \ll \frac{m_{d}}{m_{t}} \ll 1 \quad \frac{m_{s}}{m_{b}} \lll 1 \\
& \frac{\Delta m_{\text {sol }}^{2}}{\Delta m_{\text {atm }}^{2}}=(0.025 \div 0.049) \approx \lambda^{2} \ll 1 \\
& \frac{\text { 气 }}{\frac{\text { 气 }}{0}} \frac{m_{e}}{\underline{\text { Q }}} \quad \ll \frac{m_{\mu}}{m_{\tau}} \ll 1 \\
& \left|U_{e 3}\right|<0.18 \leq \lambda \quad(2 \sigma)
\end{aligned}
$$

call ξ_{i} the generic small parameter．A modern approach to understand why $\xi_{i}<1$ consists in regarding ξ_{i} as small breaking terms of an approximate flavour symmetry．When $\xi_{i}=0$ the theory becomes invariant under a flavour symmetry F

Example：why $\mathrm{y}_{\mathrm{e}} \ll y_{\text {top }}$ ？Assume $\mathrm{F}=\mathrm{U}(1)_{\mathrm{F}}$

$\mathrm{F}(\mathrm{t})=\mathrm{F}\left(\mathrm{t}^{c}\right)=\mathrm{F}(\mathrm{h})=0$	$y_{\text {top }}(h+v) t^{c} t$	allowed
$\mathrm{F}\left(e^{c}\right)=\mathrm{p}>0 \mathrm{~F}(\mathrm{e})=q>0$	$y_{e}(h+v) e^{c} e$	breaks $\mathrm{U}(1)_{\mathrm{F}}$ by $(\mathrm{p}+\mathrm{q})$ units
if $\xi=\langle\varphi>/ \Lambda<1$ breaks $\mathrm{U}(1)$ by one negative unit	$y_{e} \approx O\left(\xi^{p+q}\right) \ll y_{\text {top }} \approx O(1)$	

provides a qualitative picture of the existing hierarchies in the fermion spectrum

Flavor symmetries II (the lepton mixing puzzle)

$$
\text { why } \quad U_{P M N S} \approx U_{T B} \equiv\left(\begin{array}{ccc}
\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} & 0 \\
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}
\end{array}\right) \text { ? }
$$

$$
U_{P M N S}=U_{e}^{+} U_{v}
$$

Consider a flavor symmetry G_{f} such that G_{f} is broken into two different subgroups: G_{e} in the charged lepton sector, and G_{v} in the neutrino sector. m_{e} is invariant under G_{e} and m_{v} is invariant under G_{v}. If G_{e} and G_{v} are appropriately chosen, the constraints on m_{e} and m_{v} can give rise to the observed UPMNS.

The simplest example is based on a small discrete group, $G_{f}=A_{4}$. It is the subgroup of $S O(3)$ leaving a regular tetrahedron invariant. The elements of A_{4} can all be generated starting from two of them: S and T such that

$$
S^{2}=T^{3}=(S T)^{3}=1
$$

S generates a subgroup Z_{2} of A_{4} T generates a subgroup Z_{3} of A_{4}
simple models have been constructed where $G_{e}=Z_{3}$ and $G_{v}=Z_{2}$ and where the lepton mixing matrix $U_{P M N S}$ is automatically $U_{T B}$, at the leading order in the SB parameters. Small corrections are induced by higher order terms.
the generic predictions of this approach is that θ_{13} and $\left(\theta_{23}-\pi / 4\right)$ are very small quantities, of the order of few percent: testable in a not-so-far future.

Conclusion

theory of neutrino masses
it does not exist! Neither for neutrinos nor for charged fermions. We lack a unifying principle.
like weak interactions before the electroweak theory
$S U(2)_{L} \otimes U(1)_{Y} \quad$ all fermion-gauge boson interactions gauge invariance \longrightarrow in terms of 2 parameters: g and g^{\prime}

only few ideas and prejudices about neutrino masses and mixing angles
caveat: several prejudices turned out to be wrong in the past!

- $m_{v} \approx 10 \mathrm{eV}$ because is the cosmologically relevant range
- solution to solar is MSW Small Angle
- atmospheric neutrino problem will go away because it implies a large angle

Backup slides

Neutrino oscillations

from quantum interference, better exemplified in a two-state system elementary spin $1 / 2$ particle in a constant magnetic field $\vec{B}=(B \sin \gamma, 0, B \cos \gamma)$ $H=-\vec{\mu} \cdot \vec{B}=\frac{e}{m} \vec{S} \cdot \vec{B}$
$(g=2 \quad \hbar=c=1)$
$H\left|E_{i}\right\rangle=E_{i}\left|E_{i}\right\rangle \quad E_{1,2}= \pm \frac{e B}{2 m}$

at $t=0$ the system has spin $+1 / 2$ along the z-axis

$$
U=\left(\begin{array}{cc}
\cos \frac{\gamma}{2} & -\sin \frac{\gamma}{2} \\
\sin \frac{\gamma}{2} & \cos \frac{\gamma}{2}
\end{array}\right)
$$

$$
\begin{aligned}
& |\psi(0)\rangle=|u\rangle \quad S_{z}|u\rangle=+\frac{1}{2}|u\rangle \quad|s\rangle=\sum_{i} U_{s i}^{*}\left|E_{i}\right\rangle \\
& S_{z}|d\rangle=-\frac{1}{2}|d\rangle \quad s=u, d \\
& |\psi(t)\rangle=U_{u 1}^{*} e^{-i E_{1} t}\left|E_{1}\right\rangle+U_{u 2}^{*} e^{-i E_{2} t}\left|E_{2}\right\rangle \\
& P_{u u}(t)=|\langle u \mid \psi(t)\rangle|^{2}=1-\underbrace{4\left|U_{u 1}\right|^{2}\left|U_{u 2}\right|^{2}}_{\sin ^{2} \gamma} \sin ^{2}\left(\frac{E_{1}-E_{2}}{2} t\right)
\end{aligned}
$$

Upper limit on neutrino mass (laboratory)

$$
{ }^{3} \mathrm{H} \rightarrow{ }^{3} \mathrm{He}+\mathrm{e}^{-}+\overline{\mathrm{v}}_{\mathrm{e}}
$$

half life: $t_{1 / 2}=12.32$ a
B end point energy : $E_{0}=18.57 \mathrm{keV}$ superaliowed

$$
m_{v}<2.2 e V \quad(95 \% C L)
$$

Upper limit on neutrino mass (cosmology)

massive v suppress the formation of small scale structures
$\sum_{i} m_{i}<0.2 \div 1 e V$
depending on

- assumed cosmological model
- set of data included
- how data are analyzed

$$
k_{\mathrm{nr}} \approx 0.026\left(\frac{m_{\nu}}{1 \mathrm{eV}}\right)^{1 / 2} \Omega_{m}^{1 / 2} h \mathrm{Mpc}^{-1}
$$

The small-scale suppression is given by

$$
\left(\frac{\Delta P}{P}\right) \approx-8 \frac{\Omega_{\nu}}{\Omega_{m}} \approx-0.8\left(\frac{m_{\nu}}{1 \mathrm{eV}}\right)\left(\frac{0.1 N}{\Omega_{m} h^{2}}\right)
$$

$$
\begin{aligned}
& \delta(\vec{x}) \equiv \frac{\rho(\vec{x})-\bar{\rho}}{\bar{\rho}} \\
& \left\langle\delta\left(\vec{x}_{1}\right) \delta\left(\vec{x}_{2}\right)\right\rangle=\int \frac{d^{3} k}{(2 \pi)^{3}} e^{i \vec{k}\left(\vec{x}_{1}-\vec{x}_{2}\right)} P(\vec{k})
\end{aligned}
$$

regimes

$$
P_{e e}=\left|\left\langle v_{e} \mid \psi(L)\right\rangle\right|^{2}=1-\underbrace{4\left|U_{e 2}\right|^{2}\left|U_{e 2}\right|^{2}}_{\sin ^{2} 2 \theta} \sin ^{2}\left(\frac{\Delta m_{21}^{2} L}{4 E}\right)
$$

$$
\begin{array}{rc}
\frac{\Delta m^{2} L}{4 E} \ll 1 & P_{e e} \approx 1 \\
\frac{\Delta m^{2} L}{4 E} \gg 1 & \sin ^{2}\left(\frac{\Delta m^{2} L}{4 E}\right) \approx \frac{1}{2} \\
\frac{\Delta m^{2} L}{4 E} \approx 1 & P_{e e} \approx 1-\frac{\sin ^{2} 2 \vartheta}{2}, \begin{array}{l}
\text { by averaging over } \\
v_{e} \text { energy at the source }
\end{array} \\
P_{e e}=P_{e e}(E)
\end{array}
$$

useful relation $\frac{\Delta m^{2} L}{4 E} \approx 1.27\left(\frac{\Delta m^{2}}{1 e V^{2}}\right)\left(\frac{L}{1 \mathrm{Km}}\right)\left(\frac{E}{1 G e V}\right)^{-1}$

source	$\mathrm{L}(\mathrm{km})$	$\mathrm{E}(\mathrm{GeV})$	$\Delta \mathrm{m}^{2}\left(\mathrm{eV}^{2}\right)$
$v_{\mathrm{e},} v_{\mu}$ (atmosphere)	10^{4} (Earth diameter)	$1-10$	$10^{-4}-10^{-3}$
anti- v_{e} (reactor)	1	10^{-3}	10^{-3}
anti- v_{e} (reactor)	100	10^{-3}	10^{-5}
v_{e} (sun)	10^{8}	$10^{-3}-10^{-2}$	$10^{-11}-10^{-10}$

neglecting matter effects

θ_{13} is small

$\Delta m_{21}^{2} \ll\left|\Delta m_{32}^{2}\right|,\left|\Delta m_{31}^{2}\right| \quad \longrightarrow$ set $\Delta m_{21}^{2}=0$ in general formula for $P_{e e}$
$P_{e c}=1-\underbrace{4\left|U_{e 3}\right|^{2}\left(1-\left|U_{e 3}\right|^{2}\right)}_{\sin ^{2} 2 \theta_{13}} \sin ^{2}\left(\frac{\Delta m_{33}^{2} L}{4 E}\right)$
$\mathrm{P}_{\text {ee }}$ has been measured by the CHOOZ experiment that has not observed any sizeable disappearance. Electron antineutrinos are produced by a reactor ($\mathrm{E} \approx 3 \mathrm{MeV}, \mathrm{L} \approx 1 \mathrm{Km}$) and $\mathrm{P}_{e e}$ reactor ≈ 1 (by CPT the survival probability in vacuum is the same for neutrinos and antineutrinos and matter effects are negligible).

For a sufficiently large $\Delta m_{31}{ }^{2}$ (above $\left.10^{-3} \mathrm{eV}^{2}\right)$, such that $\mathrm{P}_{e e}=1-\left(\sin ^{2} 2 \theta_{13}\right) / 2$

$$
\left|U_{e 3}\right|^{2} \equiv\left|\sin ^{2} \vartheta_{13}\right|^{2}<0.05
$$

in what follows, for illustrative purposes, we will work in the approximation

$$
U_{e 3}=\sin \vartheta_{13}=0
$$

[dependence on $C P$ violating phase δ is lost in this limit]

Atmospheric neutrino oscillations

electron neutrinos do not oscillate

by working in the approximation $\Delta m_{21}^{2}=0$

$$
P_{e e}=1-\underbrace{4\left|U_{e 3}\right|^{2}\left(1-\left|U_{e 3}\right|^{2}\right)}_{\sin ^{2} 2 \vartheta_{13}} \sin ^{2}\left(\frac{\Delta m_{31}^{2} L}{4 E}\right) \approx 1 \text { for } U_{e 3}=\sin \vartheta_{13} \approx 0
$$

muon neutrinos oscillate

$$
P_{\mu \mu}=1-\underbrace{4\left|U_{\mu 3}\right|^{2}\left(1-\left|U_{\mu 3}\right|^{2}\right)}_{\sin ^{2} 2 \vartheta_{23}} \sin ^{2}\left(\frac{\Delta m_{32}^{2} L}{4 E}\right)
$$

this picture is supported by other terrestrial esperiments such as K2K (Japan, from KEK to Kamioka mine L $\approx 250 \mathrm{Km} \mathrm{E} \approx 1 \mathrm{GeV}$)
and MINOS (USA, from Fermilab to Soudan mine L $\approx 735 \mathrm{Km} \quad \mathrm{E} \approx 5 \mathrm{GeV}$) that are sensitive to Δm_{32}^{2} close to $10^{-3} \mathrm{eV}^{2}$,

KamLAND

previous experiments were sensitive to $\Delta \mathrm{m}^{2}$ close to $10^{-3} \mathrm{eV}^{2}$ to explore smaller Δm^{2} we need larger L and/or smaller E

KamLAND experiment exploits the low-energy electron anti-neutrinos ($\mathrm{E} \approx 3 \mathrm{MeV}$) produced by Japanese and Korean reactors at an average distance of $L \approx 180 \mathrm{Km}$ from the detector and is potentially sensitive to $\Delta \mathrm{m}^{2}$ down to $10^{-5} \mathrm{eV}^{2}$
by working in the approximation

$$
U_{e 3}=\sin \vartheta_{13}=0 \text { we get }
$$

$$
P_{e e}=1-\underbrace{4\left|U_{e 1}\right|^{2}\left|U_{e 2}\right|^{2}}_{\sin ^{2} 2 \vartheta_{12}} \sin ^{2}\left(\frac{\Delta m_{21}^{2} L}{4 E}\right)
$$

$$
\begin{aligned}
& \Delta m_{21}^{2} \approx 8 \cdot 10^{-5} \quad e V^{2} \\
& \sin ^{2} \vartheta_{12} \approx \frac{1}{3}
\end{aligned}
$$

Tri-Bimaximal Mixing

a good approximation of the data [Harrison, Perkins and Scott; Zhi-Zhong Xing 2002]

$$
\sin ^{2} \boldsymbol{\vartheta}_{12}^{T B}=\frac{1}{3} \quad \sin ^{2} \boldsymbol{\vartheta}_{23}^{T B}=\frac{1}{2} \quad \quad \sin ^{2} \vartheta_{13}^{T B}=0
$$

quality set by the solar angle

$$
\vartheta_{12}^{T B}=35.3^{0} \quad \begin{aligned}
& \boldsymbol{\vartheta}_{12}^{\text {Fogli }}=\left(34.8_{-2.5}^{+3.0}\right)^{0} \quad[2 \sigma] \\
& \boldsymbol{\vartheta}_{12}^{\text {Schwetz }}=\left(33.5_{-1.0}^{+1.4}\right)^{0}
\end{aligned}
$$

correct within a couple of degrees, about 0.035 rad , less than $\vartheta_{\mathrm{C}}{ }^{2}$

$$
U_{T B}=\left(\begin{array}{ccc}
\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} & 0 \\
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}
\end{array}\right) \quad \begin{array}{ll}
\text { Tri-Bimaximal mixing } \\
v_{3}=\frac{-v_{u}+v_{\tau}}{\sqrt{2}} & \text { maximal } \\
v_{2}=\frac{v_{e}+v_{u}+v_{\tau}}{\sqrt{3}} & \text { trimaximal }
\end{array}
$$

What is the best $1^{\text {st }}$ order approximation to lepton mixing?

 in the quark sector$$
V_{C K M}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)+O\left(\vartheta_{C}\right)
$$

[Wolfenstein 1983;
Zhi-Zhong Xing 1994,...]
in the lepton sector

$$
\begin{aligned}
U_{P M N S} & =\left(\begin{array}{ccc}
\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} & 0 \\
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}
\end{array}\right)+\ldots \\
U_{P M N S} & =\left(\begin{array}{ccc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\
-\frac{1}{2} & \frac{1}{2} & -\frac{1}{\sqrt{2}} \\
-\frac{1}{2} & \frac{1}{2} & \frac{1}{\sqrt{2}}
\end{array}\right)+\ldots
\end{aligned}
$$

agreement of ϑ_{12} suggests that only tiny corrections [$O\left(\vartheta_{\mathrm{C}}{ }^{2}\right)$] are tolerated. If all corrections are of the same order, then $\vartheta_{13} \approx O\left(\vartheta_{C}{ }^{2}\right)$ expected
can be reconciled with the data through a correction of $O\left(\vartheta_{\mathrm{C}}\right)$, for instance a rotation in the 12 sector [from the left side] $\vartheta_{13} \approx O\left(\vartheta_{\mathrm{C}}\right)$ expected
[quark-lepton complementarity ?]
$\vartheta_{23}-\pi / 4 \approx O\left(\vartheta_{\mathrm{C}}{ }^{2}\right)$
[Smirnov: Raidal:
Minakata and Smirnov 2004]
common feature: $\vartheta_{23} \approx \pi / 4$ [maximal atm mixing]
... or anarchical UPMNS ? [Hall, Murayama, Weiner 1999]

θ_{23} maximal from some flavour symmetries ?

a no-go theorem
[F. 2004]
$\vartheta_{23}=\pi / 4$ can never arise in the limit of an exact realistic symmetry
charged lepton mass matrix:

realistic symmetry:
(1) $\left|\delta m_{l}^{0}\right|<\left|m_{l}^{0}\right|$
(2) m_{l}^{0} has rank ≤ 1

$$
m_{l}^{0}=\left(\begin{array}{llc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & m_{\tau}
\end{array}\right) \longrightarrow \vartheta_{12}^{e} \text { undetermined }
$$

$$
U_{P M N S}=U_{e}^{+} U_{v}
$$

$$
\tan \vartheta_{23}^{0}=\tan \vartheta_{23}^{v} \cos \vartheta_{12}^{e}+\left(\frac{\tan \vartheta_{13}^{v}}{\cos \vartheta_{23}^{v}}\right) \sin \vartheta_{12}^{e}-
$$

$$
\vartheta_{23}=\frac{\pi}{4} \quad \begin{aligned}
& \text { determined entirely by breaking effects } \\
& \text { (different, in general, for } v \text { and e sectors) }
\end{aligned}
$$

Lepton mixing from symmetry breaking

Consider a flavor symmetry G_{f} such that G_{f} is broken into two different subgroups: G_{e} in the charged lepton sector, and G_{v} in the neutrino sector. ($m_{e}{ }^{+} m_{e}$) is invariant under G_{e} and m_{v} is invariant under G_{v}. If G_{e} and G_{v} are appropriately chosen, the constraints on m_{e} and m_{v} can give rise to the observed U ${ }_{P M N S}$.
For instance we can select G_{e} in such a way that $\left(m_{e}{ }^{+} m_{e}\right)$ is diagonal and G_{v} in such a way that m_{v} is responsible for the whole lepton mixing.

TB mixing from symmetry breaking

it is easy to find a symmetry that forces $\left(m_{e}{ }^{+} m_{e}\right)$ to be diagonal; a "minimal" example (there are many other possibilities) is

$$
G_{\mathrm{T}}=\left\{1, T, T^{2}\right\} \quad T=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \omega^{2} & 0 \\
0 & 0 & \omega
\end{array}\right) \omega=e^{\frac{2 \pi}{3}}
$$

[$T^{3}=1$ and mathematicians call a group with this property Z_{3}]

$$
\mathrm{T}^{+}\left(\mathrm{m}_{e}^{+} \mathrm{m}_{e}\right) \mathrm{T}=\left(\mathrm{m}_{e}^{+} \mathrm{m}_{e}\right) \quad \longrightarrow\left(m_{e}^{+} m_{e}\right)=\left(\begin{array}{ccc}
m_{e}^{2} & 0 & 0 \\
0 & m_{\mu}^{2} & 0 \\
0 & 0 & m_{\tau}^{2}
\end{array}\right)
$$

in such a framework TB mixing should arise entirely from m_{v}

$$
m_{v}(T B) \equiv \frac{m_{3}}{2}\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & -1 \\
0 & -1 & 1
\end{array}\right)+\frac{m_{2}}{3}\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)+\frac{m_{1}}{6}\left(\begin{array}{ccc}
4 & -2 & -2 \\
-2 & 1 & 1 \\
-2 & 1 & 1
\end{array}\right) \begin{aligned}
& \text { most general } \\
& \begin{array}{l}
\text { neutrino mass } \\
\text { matrix giving } \\
\text { rise to } \\
\text { TB mixing }
\end{array}
\end{aligned}
$$

easy to construct from the eigenvectors:

$$
m_{3} \leftrightarrow \frac{1}{\sqrt{2}}\left(\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right) \quad m_{2} \leftrightarrow \frac{1}{\sqrt{3}}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \quad m_{1} \leftrightarrow \frac{1}{\sqrt{6}}\left(\begin{array}{c}
2 \\
-1 \\
-1
\end{array}\right)
$$

a "minimal" symmetry guaranteeing such a pattern [c.s. Lam 0804.2622]

$$
G_{S} \times G_{\cup} G_{S}=\{1, S\} \quad G_{\cup}=\{1, U\} \quad S=\frac{1}{3}\left(\begin{array}{ccc}
-1 & 2 & 2 \\
2 & -1 & 2 \\
2 & 2 & -1
\end{array}\right) \quad U=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

[this group corresponds to $Z_{2} \times Z_{2}$ since $S^{2}=U^{2}=1$]

$$
S^{T} m_{v} S=m_{v} \quad U^{T} m_{v} U=m_{v} \quad \Longrightarrow \quad m_{v}=m_{v}(T B)
$$

Algorithm to generate TB mixing

start from a flavour symmetry group G_{f} containing G_{T}, G_{S}, G_{U}
arrange appropriate symmetry breaking

if the breaking is spontaneous, induced by $\left\langle\varphi_{T}\right\rangle,\left\langle\varphi_{S}\right\rangle, \ldots$ there is a vacuum alignment problem

Minimal choice

G_{f} generated by S and T (U can arise as an accidental symmetry) they satisfy

$$
S^{2}=T^{3}=(S T)^{3}=1
$$

these are the defining relations of A_{4}, group of even permutations of 4 objects, subgroup of $S O(3)$ leaving invariant a regular tetrahedron. S and T generate 12 elements

$$
A_{4}=\left\{1, S, T, S T, T S, T^{2}, S T^{2}, S T S, T S T, T^{2} S, T S T^{2}, T^{2} S T\right\}
$$

there are many many non-minimal possibilities: $G_{f}=S_{4}, \Delta(27), \Delta(108)$,
[Medeiros Varzielas, King and Ross 2005 and 2006; Luhn, Nasri and Ramond 2007, Blum, Hagedorn and Lindner 2007 ,...]
A_{4} has 4 irreducible representations: $1,1^{\prime}, 1^{\prime \prime}$ and 3

$$
\omega \equiv e^{i \frac{2 \pi}{3}} \begin{array}{cccc}
1 & S=1 & T=1 \\
1^{\prime} & S=1 & T=\omega^{2} \\
1^{\prime \prime} & S=1 & T=\omega
\end{array} \quad 3 \quad S=\frac{1}{3}\left(\begin{array}{ccc}
-1 & 2 & 2 \\
2 & -1 & 2 \\
2 & 2 & -1
\end{array}\right) \quad T=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \omega^{2} & 0 \\
0 & 0 & \omega
\end{array}\right)
$$

Building blocks of a minimal model [Af1, AF2]

	l	e^{c}	μ^{c}	τ^{c}	h_{u}	h_{d}	φ_{T}	φ_{S}	ξ_{i}
A_{4}	3	1	$1^{\prime \prime}$	1^{\prime}	1	1	3	3	1
matter fields									

[change of notation: Higgs doublets are denoted by h_{u} and h_{d}]
$S U(2) \times U(1) \times A_{4} \times \ldots$ invariant Lagrangian:

$$
\begin{aligned}
& L=\frac{y_{e}}{\Lambda} e^{c} h_{d}\left(\varphi_{T} l\right)+\frac{y_{\mu}}{\Lambda} \mu^{c} h_{d}\left(\varphi_{T} l\right)^{\prime}+\frac{y_{\tau}}{\Lambda} \tau^{c} h_{d}\left(\varphi_{T} l\right)^{\prime \prime} \\
&+\frac{x_{a}}{\Lambda^{2}} h_{u} h_{u} \xi(l l)+\frac{x_{b}}{\Lambda^{2}} h_{u} h_{u}\left(\varphi_{S} l l\right)+V\left(\xi, \varphi_{S}, \varphi_{T}\right) \ldots<\begin{array}{l}
\text { higher denotes an } A_{4} \text { singlet,...] } \\
\\
\\
\text { operators in } 1 / \Lambda \\
\text { expansion }[\Lambda=\text { cutoff }]
\end{array}
\end{aligned}
$$

additional symmetry: Z_{3}, acts as a discrete
additional symmetry: Z_{3}, acts as a discrete
lepton number; avoids additional invariants

$$
\begin{aligned}
& \varphi_{S} \leftrightarrow \varphi_{T} \\
& x(l l)
\end{aligned}
$$

under appropriate conditions (SUSY, ...) a natural minimum of the scalar potential V is

$$
\begin{array}{ll}
\frac{\left\langle\varphi_{T}\right\rangle}{\Lambda} & =(u, 0,0) \\
\frac{\left\langle\varphi_{S}\right\rangle}{\Lambda} & =y_{b}(u, u, u) \\
\frac{\langle\xi\rangle}{\Lambda} & =y_{a} u \quad \text { breaks } A_{4} \text { down to } G_{T} \\
\text { [y and } y_{\mathrm{b}} \text { are numbers of order one] }
\end{array}
$$

then:

$$
\begin{aligned}
& m_{l}=\left(\begin{array}{ccc}
y_{e} & 0 & 0 \\
0 & y_{\mu} & 0 \\
0 & 0 & y_{\tau}
\end{array}\right) v_{d} u \\
& m_{v}=\left(\begin{array}{cc}
\begin{array}{c}
\text { charged fermion masses } \\
m_{f}=y_{f} v_{d} u
\end{array} \\
\begin{array}{ccc}
a+\frac{2}{3} b & -\frac{b}{3} & -\frac{b}{3} \\
\text { free parameters as in the SM } \\
\text { at this level }
\end{array} \\
-\frac{b}{3} & \frac{2}{3} b \\
-\frac{b}{3} & a-\frac{b}{3} \\
-\frac{v_{u}}{3} & \frac{2}{3} b
\end{array}\right)
\end{aligned} \begin{aligned}
& a \equiv 2 x_{a} y_{a} u \\
& \begin{array}{l}
\text { 2 complex } \\
b \equiv 2 x_{b} y_{b} u
\end{array} \\
& \begin{array}{l}
\text { parameters in } \\
\text { v sector } \\
\text { (overall phase unphysical) }
\end{array}
\end{aligned}
$$

is also invariant under G_{U} (accidental symmetry)

TB mixing automatically guaranteed by pattern of symmetry breaking

$$
U_{P M N S}=\left(\begin{array}{ccc}
\sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0 \\
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}
\end{array}\right)
$$

independent from

$$
|a|,|b|, \Delta \equiv \arg (a)-\arg (b)!!
$$

v spectrum

$$
r \equiv \frac{\Delta m_{s o l}^{2}}{\Delta m_{\text {atm }}^{2}} \approx \frac{1}{35} \quad \text { requires a (moderate) tuning }
$$

in this minimal model the mass spectrum is always of normal hierarchy type the model predicts

$$
m_{1} \geq 0.017 \mathrm{eV} \quad \sum_{i} m_{i} \geq 0.09 \mathrm{eV} \quad\left|m_{3}\right|^{2}=\left|m_{e e}\right|^{2}+\frac{10}{9} \Delta m_{\text {atm }}^{2}\left(1-\frac{\Delta m_{\text {sol }}^{2}}{\Delta m_{\text {atm }}^{2}}\right)
$$

in a see-saw realization both normal and inverted hierarchies can be accommodated

Sub-leading corrections

arising from higher dimensional operators, depleted by additional powers of $1 / \Lambda$.

they affect m_{1}, m_{v} and they can deform the VEVs.
results

$$
U_{P M N S}=\left(\begin{array}{ccc}
\sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0 \\
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}
\end{array}\right)+O(u)
$$

TB pattern is preserved if
generic prediction for ϑ_{13} corrections are $\leq \vartheta_{c}{ }^{2} \approx 0.04$ $\vartheta_{13}=O(u)$
range of VEVs:
$\begin{aligned} & m_{\tau}=y_{\tau} v_{d} u \\ & y_{\tau}<4 \pi\end{aligned} \quad \square \begin{aligned} & \square>0.002(0.02) \\ & \tan \beta=2.5(30)\end{aligned} \quad \tan \beta=\frac{v_{u}}{v_{d}}$
$0.002 \leq u \leq 0.04$
the range expected for ϑ_{13} is similar
additional tests are possible if there is new physics at a scale M close to TeV
$L_{e f f}=i \frac{e}{M^{2}} l^{c} h_{d}\left(\sigma^{\mu \nu} F_{\mu \nu}\right) \mathcal{M}(\langle\varphi\rangle) l+[4-$ fermion $]+$ h.c. $+\ldots$
dominant 4-fermiôn LFV operators

$$
\frac{1}{M^{2}}(\bar{l} \bar{l} l l)
$$

selection rule $\Delta L_{e} \Delta L_{\mu} \Delta L_{\tau}= \pm 2$

$$
\tau^{-} \rightarrow \mu^{+} e^{-} e^{-} \quad \tau^{-} \rightarrow e^{+} \mu^{-} \mu^{-}
$$

this term contributes to magnetic dipole moments and to LFV transitions such as $\mu \rightarrow e \gamma \quad \tau \rightarrow \mu \gamma \quad \tau \rightarrow e \gamma$ usually discussed in terms of

$$
R_{i j}=\frac{B R\left(l_{i} \rightarrow l_{j} \gamma\right)}{B R\left(l_{i} \rightarrow l_{j} v_{i} \bar{v}_{j}\right)}
$$

up to O (1) coefficients $R_{\mu e} \approx R_{\tau \mu} \approx R_{\tau e}$ independently from u

$$
\tau \rightarrow \mu \gamma \quad \tau \rightarrow e \gamma \quad \text { below expected future sensitivity }
$$

In a SUSY realization of this model

[other slides]

many models predicts a large but not necessarily maximal θ_{23}
an example: abelian flavour symmetry group $U(1)_{F}$

$$
\begin{aligned}
& F(l)=(x, 0,0) \quad[x \neq 0] \\
& F\left(e^{c}\right)=(x, x, 0)
\end{aligned}
$$

$$
m_{e}=\left(\begin{array}{ccc}
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot \\
\cdot & O(1) & O(1)
\end{array}\right) v_{d} \quad m_{v}=\left(\begin{array}{ccc}
\cdot & \cdot & \cdot \\
\cdot & O(1) & O(1) \\
\cdot & O(1) & O(1)
\end{array}\right) \frac{v_{u}^{2}}{\Lambda}
$$

$$
\vartheta_{23} \approx O(1) \quad \text { maximal only by a fine-tuning! }
$$

similarly for all other abelian charge assignements
$F(l)=(1,-1,-1)$

$$
m_{v}=\left(\begin{array}{ccc}
\cdot & O(1) & O(1) \\
O(1) & \cdot & \cdot \\
O(1) & \cdot & \cdot
\end{array}\right) \frac{v_{u}^{2}}{\Lambda} \quad \vartheta_{23} \approx O(1)+\text { charged lepton contribution }
$$

no help from the see-saw mechanism within abelian symmetries...

θ_{23} maximal by RGE effects?

running effects important only for quasi-degenerate neutrinos
2 flavour case
boundary conditions at $\Lambda \gg$ e.w. scale

$$
m_{2}, m_{3}, \vartheta_{23}
$$

$$
\begin{aligned}
\text { at } Q<\Lambda \quad & \vartheta_{23}(Q) \approx \frac{\pi}{4} \quad \Leftrightarrow \quad \varepsilon \approx-\frac{\delta m}{m} \cos 2 \vartheta_{23} \quad \varepsilon \approx \frac{1}{16 \pi^{2}} y_{\tau}^{2} \log \frac{\Lambda}{Q} \\
& \text { [possible only if } \quad \delta m \equiv m_{2}-m_{3} \ll m_{2}+m_{3} \approx 2 m \text {] }
\end{aligned}
$$

gives the scale Q at which $\theta_{23}(Q)$ becomes maximal

$m_{2}, m_{3}, \vartheta_{23}$ fine tuned to obtain Q at the e.w. scale
a similar conclusion also for the 3 flavour case:
$\sin ^{2} 2 \vartheta_{12}=\frac{\sin ^{2} \vartheta_{13} \sin ^{2} 2 \vartheta_{23}}{\left(\sin ^{2} \vartheta_{23} \cos ^{2} \vartheta_{13}+\sin ^{2} \vartheta_{13}\right)^{2}}$ infrared stable fixed point [Chankowski, Pokorski 2002]
if $\vartheta_{23}=\frac{\pi}{4}$

$$
\sin ^{2} 2 \vartheta_{12}=\frac{4 \sin ^{2} \vartheta_{13}}{\left(1+\sin ^{2} \vartheta_{13}\right)^{2}}<0.2 \text { (Chooz) }
$$

Alignment and mass hierarchies

$$
\begin{aligned}
& m_{l}=\left(\begin{array}{ccc}
y_{e} & 0 & 0 \\
0 & y_{\mu} & 0 \\
0 & 0 & y_{\tau}
\end{array}\right) v_{d}\left(\frac{v_{T}}{\Lambda}\right) \quad \begin{array}{l}
\text { charged fermion masses } \\
\text { are already diagonal }
\end{array} \\
& \begin{array}{l}
m_{e} \ll m_{\mu} \ll m_{\tau} \quad \begin{array}{l}
\text { can be reproduced by } \\
\cup(1) \text { flavour symmetry }
\end{array} \\
\left.\begin{array}{l}
Q\left(e^{c}\right)=4 \quad Q\left(\mu^{c}\right)=2 \quad Q\left(\tau^{c}\right)=0 \\
Q(l)=0 \\
Q(\vartheta)=-1 \quad\langle\vartheta\rangle \neq 0
\end{array}\right\} \text { compatible with } A_{4}
\end{array} \\
& y_{e} \approx \frac{\langle\vartheta\rangle^{4}}{\Lambda^{4}} \quad y_{\mu} \approx \frac{\langle\vartheta\rangle\rangle^{2}}{\Lambda^{2}} \quad y_{\tau} \approx 1
\end{aligned}
$$

[see also Lin hep-ph/08042867 for a realization without an additional $U(1)$]

Quark masses - grand unification

quarks assigned to the same A_{4} representations used for leptons?

	q	u^{c}	c^{c}	t^{c}	d^{c}	s^{c}	b^{c}
A_{4}	3	1	$1^{\prime \prime}$	1^{\prime}	1	$1^{\prime \prime}$	1^{\prime}

fermion masses from $\operatorname{dim} \geq 5$ operators, e.g.
good for leptons, but not for the top quark
naïve extension to quarks leads diagonal quark mass matrices and to $\mathrm{V}_{C K M}=1$ departure from this approximation is problematic [expansion parameter (VEV/ Λ) too small]

possible solution within T^{\prime}, the double covering of A_{4}

[FHLM1]

$$
S^{2}=R \quad R^{2}=1 \quad(S T)^{3}=T^{3}=1
$$

24 elements

representations: 1 | | 1^{\prime} | $1^{\prime \prime}$ | 3 | 2 | $2^{\prime \prime}$ | $2^{\prime \prime}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

	$\left(\begin{array}{ll}u & d \\ c & s\end{array}\right)$	$\binom{u^{c}}{c^{c}}$	$\binom{d^{c}}{s^{c}}$	$\left(\begin{array}{ll}t & b\end{array}\right)$	t^{c}	b^{c}	η	$\xi^{\prime \prime}$
T^{\prime}	$2^{\prime \prime}$	$2^{\prime \prime}$	$2^{\prime \prime}$	1	1	1	2^{\prime}	$1^{\prime \prime}$

- lepton sector as in the A_{4} model
- \dagger and b masses $a t$ the renormalizable level (τ mass from higher dim operators) at the leading order

$$
\begin{aligned}
& m_{t}, m_{b}>m_{c}, m_{s} \neq 0 \\
& V_{c b}
\end{aligned}
$$

- masses and mixing angles of $1^{\text {st }}$ generation from higher-order effects - despite the large number of parameters two relations are predicted

- vacuum alignment explicitly solved
- lepton sector not spoiled by the corrections coming from the quark sector
other option: [AFH]

SUSY SU(5) in $5 \mathrm{D}=\mathrm{M}_{4} \times\left(\mathrm{S}^{1} \times \mathrm{Z}_{2}\right)$
flavour symmetry $A_{4} \times U(1)$

DT splitting problem solved via SU(5) breaking induced by compactification
$\operatorname{dim} 5 B$-violating operators forbidden!
p-decay dominated by gauge boson exchange (dim 6)

unwanted minimal $S U(5)$ mass relation $m_{e}=m_{d}^{\top}$ avoided by assigning $T_{1,2}$ to the bulk the construction is compatible with A_{4} !

	N	F	T_{1}	T_{2}	T_{3}	H_{5}	$H_{\overline{5}}$
$S U(5)$	1	$\overline{5}$	10	10	10	5	$\overline{5}$
A_{4}	3	3	$1^{\prime \prime}$	1^{\prime}	1	1	1^{\prime}

realistic quark mass matrices by an additional $U(1)$ acting on $T_{1,2}$
neutrino masses from see-saw compatible with both normal and inverted hierarchy
unsuppressed top Yukawa coupling $T_{3} T_{3}$ TB mixing + small corrections

A_{4} as a leftover of Poincare symmetry in $D>4$

D dimensional
Poincare symmetry:
D-translations \times SO (1,D-1)
usually broken by compactification down to 4 dimensions: 4 -translations $\times S O(1,3) \times$...
a discrete subgroup of the (D-4) euclidean group $=$ translations \times rotations can survive in specific geometries

Example: $D=6$
2 dimensions compactified on T^{2} / Z_{2}

$$
\begin{aligned}
& z \rightarrow z+1 \\
& z \rightarrow z+\gamma \\
& z \rightarrow-z
\end{aligned}
$$

four fixed points

if $\gamma=\mathrm{e}^{\mathrm{i} \frac{\pi}{3}}$ compact space is a regular tetrahedron invariant under

$$
\begin{array}{lll}
S: & z \rightarrow z+\frac{1}{2} & \text { [translation] } \\
T: & z \rightarrow \gamma^{2} z & \text { [rotation by } 120^{\circ} \text {] }
\end{array}
$$

[subgroup of $2 \operatorname{dim}$ Euclidean group $=2$-translations $\times S O(2)$]
the four fixed points $\left(z_{1}, z_{2}, z_{3}, z_{4}\right)$ are permuted under the action of S and T

$$
\begin{array}{ll}
S: & \left(z_{1}, z_{2}, z_{3}, z_{4}\right) \rightarrow\left(z_{4}, z_{3}, z_{2}, z_{1}\right) \\
T: & \left(z_{1}, z_{2}, z_{3}, z_{4}\right) \rightarrow\left(z_{2}, z_{3}, z_{1}, z_{4}\right)
\end{array}
$$

S and T satisfy

$$
S^{2}=T^{3}=(S T)^{3}=1
$$

the compact space is invariant under a remnant of 2-translations \times SO(2) isomorphic to the A_{4} group

Field Theory

brane fields $\varphi_{1}(x), \varphi_{2}(x), \varphi_{3}(x), \varphi_{4}(x)$ transform as $3+\left(a\right.$ singlet) under A_{4}
The previous model can be reproduced by choosing $\mathrm{I}, e^{c}, \mu^{c}, \mathrm{~T}^{c}, \mathrm{H}_{\mathrm{u}, \mathrm{d}}$ as brane fields and φ_{T}, φ_{S} and ξ as bulk fields.

String Theory [heterotic string compactified on orbifolds]

in string theory the discrete flavour symmetry is in general bigger than the isometry of the compact space. [Kobayashi, Nilles, Ploger, Raby, Ratz 2006]
orbifolds are defined by the identification

$$
(\vartheta x) \approx x+l \quad\left\{\begin{array}{ccc}
l=n_{a} e_{a} & \begin{array}{c}
\text { translation } \\
\text { in a lattice }
\end{array} & \begin{array}{c}
\text { group generated by }(\vartheta, I) \\
\vartheta
\end{array} \\
\text { is called space group }
\end{array}\right.
$$

fixed points: special points x_{F} satisfying

$$
x_{F} \equiv\left(\vartheta_{F}^{K} x_{F}\right)+l_{F} \quad \text { for some } \quad\left(\vartheta_{F}^{K}, l_{F}\right)
$$

twisted states living at the fixed point $x_{F}=\left(\vartheta_{F}{ }^{K}, l_{F}\right)$ have couplings satisfying space group selection rules [SGSR]. Non-vanishing couplings allowed for

$$
\prod_{F}\left(\vartheta_{F}^{K}, l_{F}\right) \equiv(1,0)
$$

G_{f} is the group generated by the orbifold isometry and the SGSR

Example: $\mathbf{S}^{1 /} Z_{2}$

$$
1
$$

Isometry group $=S_{2}$ generated by σ^{1} in the basis $\{|1>| 2>$,

SGSR $=Z_{2} \times Z_{2}$ generated by $\left(\sigma^{3},-1\right)$
[allowed couplings when number n_{1} of twisted states at |1> and the number n_{2} of twisted states at |2> are even]

$G_{f}=$ semidirect product of S_{2} and $\left(Z_{2} \times Z_{2}\right) \equiv D_{4}$

group leaving invariant a square

relation between A_{4} and the modular group

modular group PSL(2,Z): linear fractional transformation

$$
\xrightarrow{\substack{\text { complex } \\
\text { variable }}} \rightarrow \frac{a z+b}{c z+d} \quad \begin{aligned}
& a, b, c, d \in Z \\
& a d-b c=1
\end{aligned}
$$

discrete, infinite group generated by two elements

$$
\underbrace{Z \rightarrow Z+1}_{T}
$$

$$
\begin{aligned}
& \text { obeying } \\
& S^{2}=(S T)^{3}=1
\end{aligned}
$$

the modular group is present everywhere in string theory
[any relation to string theory approaches to fermion masses?]
A_{4} is a finite subgroup of the modular group and
$A_{4}=\frac{\operatorname{PSL}(2, Z)}{H}$

> representations of A_{4} are representations of $\operatorname{PSL}(2, Z)$

Ibanez; Hamidi, Vafa; Dixon, Friedan, Martinec, Shenker; Casas, Munoz;
Cremades, Ibanez,
Marchesano; Abel, Owen

future improvements on atmospheric and reactor angles

$\sin ^{2} \theta$

23
$\delta\left(\sin ^{2} \theta_{23}\right)$ reduced by future LBL experiments from $\nu_{\mu} \rightarrow v_{\mu}$ disappearance channel

$$
\begin{gathered}
\vartheta_{23} \approx \frac{\pi}{4} \\
\square
\end{gathered}
$$

$$
P_{\mu \mu} \approx 1-\sin ^{2} 2 \vartheta_{23} \sin ^{2}\left(\frac{\Delta m_{31}^{2} L}{4 E}\right)
$$

$$
\delta \vartheta_{23} \approx \frac{\sqrt{\delta P_{\mu \mu}}}{2}
$$

i.e. a small uncertainty on $P_{\mu \mu}$ leads to a large

- no substantial improvements from conventional beams uncertainty on θ_{23}
- superbeams (e.g. T2K in 5 yr of run)

$$
\begin{aligned}
& \delta P_{\mu \mu} \approx 0.01 \\
& \delta \vartheta_{23} \approx 0.05 \mathrm{rad} \leftrightarrow 2.9^{0}
\end{aligned}
$$

T2K-1
90\% CL
black = normal hierarchy red = inverted hierarchy
true value 41°
[courtesy by Enrique Fernandez]

