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the more abundant particles in the universe after the 
photons: about 300 neutrinos per cm3 

produced by stars: about 3%  
of the sun energy emitted in  
neutrinos. As I speak more than 
1 000 000 000 000 solar  
neutrinos go through your bodies  
each second. 

electrically neutral and extremely light:  
they can carry information about extremely large length scales 
e.g. a probe of supernovae dynamics: neutrino events from a  
supernova explosion first observed 23 years ago 
in particle physics: 
they have a tiny mass (1 000 000 times smaller than the electron’s mass)  
the discovery that they are massive (twelve anniversary now!) allows us to  
explore, at least in principle, extremely high energy scales, otherwise  
inaccessible to present laboratory experiments (more on this later on…)  

this is a picture of the sun 
reconstructed from neutrinos 

General remarks on neutrinos 



Two-flavour neutrino oscillations        (νe,νµ)  
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no dependence 
on the phase α 
more on this 
later on …. 

to see any effect, if Δm2 is tiny, we need both θ and L large  



Three-flavour neutrino oscillations        (νe,νµ, ντ)  
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survival probability as before, with more terms 
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similarly, we can derive the disappearance probabilities  
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Mixing matrix U=UPMNS (Pontecorvo,Maki,Nakagawa,Sakata) 
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( f = e,µ,τ )

neutrino mass 
eigenstates 

neutrino 
interaction 
eigenstates 

three mixing angles 

three phases (in the most general case) 

U is a 3 x 3 unitary matrix 
standard parametrization 
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Pff ' = P(ν f →ν f ' )
oscillations can only test 6 combinations 
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sin2ϑ 23 = 0.45−0.09
+0.16 [2σ]
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C.L.)] (95% errors   2[ σ

Summary of data 

[complete ordering 
(either normal or inverted 
hierarchy) not known] 

[CP violation in lepton  
sector not yet established] 

violation of individual lepton number 
implied by neutrino oscillations 

violation of total lepton number 
not yet established 
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mν < 2.2 eV (95% CL)
absolute neutrino mass 
scale is unknown 
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mi < 0.2 ÷1 eV
i
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(lab) 

(cosmo) 

Summary of unkowns 
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by unitarity 

historically Δm21
2 and sin2 θ12 were first determined by solving the solar neutrino 

problem, i.e. the disappearance of about one third of solar electron neutrino flux, 
for solar neutrinos above few MeV. The desire of detecting solar neutrinos, to 
confirm the thermodynamics of the sun, was the driving motivation for the 
whole field for more than 30 years. Electron solar neutrinos oscillate, but the 
formalism requires the introduction of matter effects, since the electron density 
in the sun is not negligible. Experiments: SuperKamiokande, SNO 

this pattern is called tri-bimaximal 
completely different from the quark 
mixing pattern: two angles are large 



a non-vanishing neutrino mass is the first evidence of the incompleteness of 
the Standard Model [SM]  

Beyond the Standard Model 

in the SM neutrinos belong to SU(2) doublets with hypercharge Y=-1/2 
they have only two helicities (not four, as the other charged fermions) 
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the requirement of invariance under the gauge group G=SU(3)xSU(2)xU(1)Y  
forbids pure fermion mass terms in the lagrangian. Charged fermion masses  
arise, after electroweak symmetry breaking, through gauge-invariant  
Yukawa interactions 
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Φ ΨΨ'
same helicity


not even this term is allowed for SM neutrinos, by gauge invariance 
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ν c = (1,1,0)
[by definition, right-handed neutrinos 
                    do not exist in the SM   ] 

Higgs  



Questions 

 why lepton mixing angle are so different from those of the quark sector? 
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how to extend the SM in order to accommodate neutrino masses? 

why neutrino masses are so small, compared with the charged fermion masses? 



the SM, as a consistent RQFT, is completely specified by  

0.    invariance under local transformations of the gauge group G=SU(3)xSU(2)xU(1)  
       [plus Lorentz invariance] 

1.     particle content 

2.    renormalizability (i.e. the requirement that all coupling constants gi have  
       non-negative dimensions in units of mass: d(gi)≥0. This allows to eliminate all  
       the divergencies occurring in the computation of physical quantities, by  
       redefining a finite set of parameters.)    € 

three copies of     (q,uc,dc,l,ec )
one Higgs doublet      Φ

How to modify the SM? 

0.    We cannot give up gauge invariance! It is mandatory for the consistency of  
       the theory. Without gauge invariance we cannot even define the Hilbert  
       space of the theory [remember: we need gauge invariance to eliminate the 
       photon extra degrees of freedom required by Lorentz invariance]! 
       We could extend G, but, to allow for neutrino masses, we need to modify 2. (and/or 3.) anyway…  

(0.+1.+2.) leads to the SM Lagrangian, LSM, possessing an additional, accidental,  
global symmetry: (B-L) 



First possibility: modify (1), the particle content 
there are several possibilities 
one of the simplest one is to mimic the charged fermion sector  
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ν c ≡ (1,1,0)add (three copies of) 
right-handed neutrinos  

full singlet under  
G=SU(3)xSU(2)xU(1) 

ask for (global) invariance under B-L  
(no more automatically conserved as in the SM) 
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LY = dcyd (Φ+q) + ucyu( ˜ Φ +q) + ecye (Φ
+l) + ν c yν ( ˜ Φ +l) + h.c.
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y f
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v         f = u,d,e,ν

the neutrino has now four helicities, as the other charged fermions, 
and we can build gauge invariant Yukawa interactions giving rise, after 
electroweak symmetry breaking, to neutrino masses 

with three generations there is an exact replica of the quark sector and, after diagonalization of the  
charged lepton and neutrino mass matrices, a mixing matrix U appears in the charged current interactions 
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Example 1 



if neutrinos are so similar to the other fermions, why are so light? 

the particle content can be modified in several different ways 
in order to account for non-vanishing neutrino masses 
(additional right-handed neutrinos, new SU(2) fermion triplets, additional 
SU(2) scalar triplet(s), SUSY particles,…). Which is the correct one? 

a generic problem of this approach 

a problem of the above example 

Quite a speculative answer: 
neutrinos are so light, because the right-handed neutrinos have access 
to an extra (fifth) spatial dimension 

Y=0 Y=L 

νc 

all SM particles 
live here except 

neutrino Yukawa coupling 
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ν c (y = 0)( ˜ Φ +l) = Fourier expansion

                       =
1
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c ( ˜ Φ +l) + ...

if L>>1 (in units of the fundamental scale) 
then neutrino Yukawa coupling is suppressed 

[higher modes] 
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Second possibility: abandon (2) renormalizability 
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L = Ld≤4
SM +

L5
Λ

+
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+ ...

a new scale Λ enters the theory. The new (gauge invariant!) operators L5, L6,… 
contribute to amplitudes for physical processes with terms of the type 

A disaster? 
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the theory cannot be extrapolated beyond a certain energy scale E≈Λ. 
[at variance with a renormalizable (asymptotically free) QFT] 

If E<<Λ (for example E close to the electroweak scale, 102 GeV, and  
Λ≈1015 GeV not far from the so-called Grand Unified scale), the above  
effects will be tiny and, the theory will look like a renormalizable theory! 
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=10−13 an extremely tiny effect, but exactly what 
needed to suppress mν compared to mtop ! 



Worth to explore. The dominant operators (suppressed by a single power of 1/Λ) 
beyond LSM are those of dimension 5. Here is a list of all d=5 gauge invariant 
operators  
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a unique operator! 
[up to flavour combinations] 
it violates (B-L) by two units 

it is suppressed by a factor (v/Λ)  
with respect to the neutrino mass term 
of Example 1: 
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ν c ( ˜ Φ +l) =
v
2
ν cν + ...

since this is the dominant operator in the expansion of L in powers of 1/Λ, we could have expected  
to find the first effect of physics beyond the SM in neutrinos … and indeed this was the case!  

it provides an explanation for the smallness of mν:  
the neutrino masses are small because the scale Λ, characterizing (B-L)  
violations, is very large.  How large? Up to about 1015 GeV 

from this point of view neutrinos offer a unique window on physics at very large scales, inaccessible 
in present (and probably future) man-made experiments.  



L5 represents the effective, low-energy description of 
several extensions of the SM 
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ν c ≡ (1,1,0)    add (three copies of)  full singlet under  
G=SU(3)xSU(2)xU(1) 

Example 2: 
see-saw 

this is like Example 1, but without enforcing (B-L) conservation 
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Leff (l) = −
1
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( ˜ Φ +l) yν
T M−1yν[ ]( ˜ Φ +l) + h.c.+ ...

mass term for right-handed  
neutrinos: G invariant, violates 
(B-L) by two units. 

the new mass parameter M is independent from the electroweak breaking 
scale v. If M>>v, we might be interested in an effective description valid 
for energies much smaller than M. This is obtained by “integrating out’’ the 
field νc  
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L(ν c,l) = ν c yν ( ˜ Φ +l) +
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terms suppressed by more 
powers of M-1 

this reproduces L5, with M playing the role of Λ. This particular mechanism  
is called (type I) see-saw.  



Theoretical motivations for the see-saw 

Λ≈1015 GeV is very close to the  
so-called unification scale MGUT. 

an independent evidence for MGUT  
comes from the unification of the  
gauge coupling constants in (SUSY  
extensions of) the SM.  

such unification is a generic prediction 
of Grand Unified Theories (GUTs): 
the SM gauge group G is embedded into a simple 
 group such as SU(5), SO(10),… 

Particle classification: it is possible to unify all SM fermions (1 generation) 
into a single irreducible representation of the GUT gauge group. Simplest  
example: GGUT=SO(10)  

€ 

16 = (q,dc,uc,l,ec,ν c ) a whole family plus a 
right-handed neutrino! 

quite a fascinating possibility. Unfortunately, it still lacks experimental tests. In GUT new, very heavy, 
particles can convert quarks into leptons and the proton is no more a stable particle. Proton decay 
rates and decay channels are however model dependent. Experimentally we have only lower  
bounds on the proton lifetime. 



The see-saw mechanism can enhance small mixing angles into large ones 

Example with 2 generations 
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The (out-of equilibrium, CP-violating) decay of heavy right-handed neutrinos 
in the early universe might generate a net asymmetry between leptons and 
anti-leptons. Subsequent SM interactions can partially convert it into the 
observed baryon asymmetry  
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mν = − yν
T M−1yν[ ]v 2

no mixing 
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s
≈ 6 ×10−10

2 additional virtues of the see-saw 



weak point of the see-saw 
full high-energy theory is difficult to test 
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L(ν c,l) = ν c yν ( ˜ Φ +l) +
1
2
ν cMν c + h.c.

depends on many physical parameters:  
3 (small) masses + 3 (large) masses 
3 (L) mixing angles + 3 (R) mixing angles 
6 physical phases = 18 parameters 

few observables to pin down the extra parameters: η,… 
[additional possibilities exist under special conditions, e.g. Lepton Flavor Violation at observable rates] 

the double of those 
describing (LSM)+L5: 
3 masses, 3 mixing angles 
and 3 phases 

easier to test the low-energy remnant L5 
[which however is “universal” and 
does not implies the specific see-saw 
mechanism of Example 2] 

look for a process where B-L is violated by 2 units. The best candidate is 
0νββ decay:                      (A,Z)->(A,Z+2)+2e- 
this would discriminate L5 from other possibilities, such as Example 1.  
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[notice the two phases α and β, not entering neutrino oscillations] 
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                      we can estimate 
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a positive signal would test 
both L5 and the absolute 
mass spectrum at the same 
time! 



Flavor symmetries I (the hierarchy puzzle) 
hierarchies in fermion spectrum 
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call ξi the generic small parameter. A modern approach to understand why ξi<<1 
consists in regarding ξi as small breaking terms of an approximate flavour 
symmetry. When ξi=0 the theory becomes invariant under a flavour symmetry F  

Example: why ye<<ytop? Assume F=U(1)F  
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ytop (h + v)t ctF(t)=F(tc)=F(h)=0 

F(ec)=p>0 F(e)=q>0  
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ye (h + v)ece
allowed 
breaks U(1)F by (p+q) units 

if ξ=<ϕ>/Λ<1 breaks U(1) by one negative unit  
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ye ≈O(ξ
p+q ) << ytop ≈O(1)

provides a qualitative picture of the existing hierarchies in the fermion spectrum 



Flavor symmetries II (the lepton mixing puzzle) 

€ 

UPMNS ≈UTB ≡

2
6

1
3

0

−
1
6

1
3

−
1
2

−
1
6

1
3

1
2

 

 

 
 
 
 
 
 

 

 

 
 
 
 
 
 

why ? 
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UPMNS =Ue
+Uν

Consider a flavor symmetry Gf such that Gf is broken into two different 
subgroups: Ge in the charged lepton sector, and Gν in the neutrino sector. 
me is invariant under Ge and mν is invariant under Gν. If Ge and Gν are 
appropriately chosen, the constraints on me and mν can give rise to the 
observed UPMNS. Gf 

Gν Ge 

me diagonal 

[TB=TriBimaximal] 

UTB
T mν UTB= (mν)diag       



The simplest example is based on a small discrete group, Gf=A4. It is the 
subgroup of SO(3) leaving a regular tetrahedron invariant. The elements of 
A4 can all be generated starting from two of them: S and T such that 

€ 

S2 = T 3 = (ST)3 =1
S generates a subgroup Z2 of A4 
T generates a subgroup Z3 of A4 

simple models have been constructed where Ge=Z3 and Gν=Z2 and 
where the lepton mixing matrix UPMNS is automatically UTB, at the leading order 
in the SB parameters. Small corrections are induced by higher order terms. 

the generic predictions of this approach is that θ13 and (θ23-π/4) are very 
small quantities, of the order of few percent: testable in a not-so-far 
future.  



Conclusion 
theory of neutrino masses it does not exist! Neither for neutrinos 

nor for charged fermions. We lack 
a unifying principle. 

like weak interactions before the electroweak theory  

YL USU )1()2( ⊗
gauge invariance 

all fermion-gauge boson interactions 
in terms of 2 parameters: g and g’   

Yukawa interactions between fermions 
and spin 0 particles: many free  
parameters (up to 22 in the SM!)  

     ?      
only few ideas and prejudices about neutrino masses and mixing angles 

caveat: several prejudices turned out to be wrong in the past! 
 - mν≈10 eV because is the cosmologically relevant range 
 - solution to solar is MSW Small Angle  
 - atmospheric neutrino problem will go away because it implies a large angle 



Backup slides 



Neutrino oscillations 

from quantum interference, better exemplified in a two-state system 

elementary spin 1/2 particle in a constant magnetic field 
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Upper limit on neutrino mass (laboratory) 
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mν < 2.2 eV (95% CL)



mν = 0    1 eV 

    7 eV    4 eV 

massive  ν  suppress  the  formation  
of   small  scale  structures 

Upper limit on neutrino mass (cosmology) 
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depending on 
-  assumed cosmological model 
-  set of data included 
-  how data are analyzed 
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regimes 
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    source  L(km)  E(GeV) Δm2(eV2) 
  νe, νµ   
(atmosphere) 

      104 
(Earth diameter)     1-10  10-4  - 10-3 

anti- νe (reactor)      1      10-3      10-3 

anti- νe (reactor)      100      10-3      10-5 

νe (sun)       108    10-3  - 10-2  10-11  - 10-10 

useful relation 

neglecting 
matter  
effects 



θ13 is small 
set                  in general formula for Pee 

€ 

Δm21
2 = 0

€ 

Δm21
2 << Δm32

2 ,Δm31
2

  

€ 

Pee =1− 4Ue3
2(1− Ue3

2)
sin 2 2ϑ13

       
sin2 Δm31

2 L
4E

 

 
 

 

 
 

Pee has been measured by the CHOOZ 
experiment that has not observed any 
sizeable disappearance. Electron anti- 
neutrinos are produced by a reactor  
(E≈3 MeV, L≈1 Km) and Pee

reactor≈1 (by  
CPT the survival probability in vacuum is 
the same for neutrinos and antineutrinos 
and matter effects are negligible). 

For a sufficiently large Δm31
2 (above  

10-3 eV2) , such that Pee=1-(sin2 2θ13)/2 

€ 

Ue3
2
≡ sin2ϑ13

2
< 0.05 (3σ)

Δ
m

2 31
 (e

V2
)  

sin2 2θ13 1 0.1 

10-3 

10-2 

CHOOZ 
final exclusion plot 



€ 

UPMNS =

⋅ ⋅ small
⋅ ⋅ ⋅

⋅ ⋅ ⋅

 

 

 
  

 

 

 
  

in what follows, for illustrative purposes, we will work in the approximation 

€ 

Ue3 = sinϑ13 = 0

[dependence on CP violating phase δ is lost in this limit]  

small  



Atmospheric neutrino oscillations 

half of νµ lost! 

θ = zenith angle 

down-going up-going up-going down-going 

[this year: 10th anniversary]  

electron neutrinos 
unaffected 

Electron and muon neutrinos 
(and antineutrinos) produced 
by the collision of cosmic ray 
particles on the atmosphere   
Experiment:  
SuperKamiokande (Japan) 



electron neutrinos do not oscillate 

€ 

Δm21
2 = 0

  

€ 

Pµµ =1− 4Uµ3
2
(1− Uµ3

2
)

sin 2 2ϑ 23

       
sin2 Δm32

2 L
4E

 

 
 

 

 
 

by working in the approximation 

€ 

for  Ue3 = sinϑ13 ≈ 0

muon neutrinos oscillate 

  

€ 

Pee =1− 4Ue3
2(1− Ue3

2)
sin 2 2ϑ13

       
sin2 Δm31

2 L
4E

 

 
 

 

 
 ≈1

€ 

Δm32
2 ≈ 2 ⋅10−3 eV 2

sin2ϑ 23 ≈
1
2



€ 

UPMNS =

⋅ ⋅ 0

⋅ ⋅ −
1
2

⋅ ⋅
1
2

 

 

 
 
 
 
 
 

 

 

 
 
 
 
 
 

+ (small corrections)

€ 

0
−
1
2
1
2

this picture is supported by other terrestrial esperiments such as 
K2K (Japan, from KEK to Kamioka mine L ≈ 250 Km E ≈ 1 GeV) 
and MINOS (USA, from Fermilab to Soudan mine L ≈ 735 Km    E ≈ 5  GeV)   
that are sensitive to Δm32

2  close to 10-3 eV2,  

maximal mixing! 
not a replica of the quark 
mixing pattern 



KamLAND 
previous experiments were sensitive to Δm2  close to 10-3 eV2 

to explore smaller Δm2 we need larger L and/or smaller E 

KamLAND experiment exploits the low-energy electron anti-neutrinos 
(E≈3 MeV) produced by Japanese and Korean reactors at an average 
distance of L≈180 Km from the detector and is potentially sensitive 
to Δm2  down to 10-5 eV2 

  

€ 

Pee =1− 4Ue1
2Ue2

2

sin 2 2ϑ 12

     
sin2 Δm21

2 L
4E

 

 
 

 

 
 

by working in the approximation 

€ 

Ue3 = sinϑ13 = 0 we get 

€ 

Δm21
2 ≈ 8 ⋅10−5 eV 2

sin2ϑ12 ≈
1
3



€ 

sin2ϑ13
TB = 0

€ 

sin2ϑ 23
TB =

1
2

€ 

sin2ϑ12
TB =

1
3

€ 

UTB =

2
6

1
3

0

−
1
6

1
3

−
1
2

−
1
6

1
3

1
2

 

 

 
 
 
 
 
 

 

 

 
 
 
 
 
 

Tri-Bimaximal mixing 

[Harrison, Perkins and Scott; Zhi-Zhong Xing 2002] 

Tri-Bimaximal Mixing 
a good approximation of the data 

€ 

ϑ12
Fogli = 34.8−2.5

+3.0( )
0
[2σ]

€ 

ϑ12
Schwetz = 33.5−1.0

+1.4( )
0

€ 

ϑ12
TB = 35.30

quality set by the solar angle  

correct within a couple of degrees, about 0.035 rad, less than ϑC
2  

€ 

ν 2 =
ν e + ν µ + ντ

3
€ 

ν 3 =
−ν µ + ντ

2
maximal 

trimaximal 



What is the best 1st order approximation to lepton mixing? 

€ 

VCKM =

1 0 0
0 1 0
0 0 1

 

 

 
  

 

 

 
  

+O(ϑC )

€ 

UPMNS =

2
6

1
3

0

−
1
6

1
3

−
1
2

−
1
6

1
3

1
2

 

 

 
 
 
 
 
 

 

 

 
 
 
 
 
 

+ ...

€ 

UPMNS =

1
2

1
2

0

−
1
2

1
2

−
1
2

−
1
2

1
2

1
2

 

 

 
 
 
 
 
 

 

 

 
 
 
 
 
 

+ ...

in the quark sector 

in the lepton sector 
agreement of ϑ12 suggests that 
only tiny corrections [O(ϑC

2)] 
are tolerated. If all corrections 
are of the same order, then   

can be reconciled with the data 
through a correction of O(ϑC), 
for instance a rotation in the 
12 sector [from the left side] 

ϑ13 ≈ O(ϑC
2) expected       

ϑ13 ≈ O(ϑC) expected       

common feature: ϑ23 ≈ π/4 [maximal atm mixing]       

ϑ23 - π/4 ≈ O(ϑC
2)        

[Wolfenstein 1983;  
Zhi-Zhong Xing 1994,…] 

[Smirnov; 
Raidal; 
Minakata and 
Smirnov 2004] 

… or anarchical UPMNS ?  [Hall, Murayama, Weiner 1999] 

[quark-lepton complementarity ?]  



θ 23 maximal from some flavour symmetries ? 
ϑ23 = π/4 can never arise in the limit of  
an exact realistic symmetry 

charged lepton mass matrix: 

symmetry breaking effects: 
vanishing when flavour symmetry F 
is exact symmetric limit 

ml
0 has rank ≤1 

[omitting phases] 
undetermined 

determined entirely by breaking effects 
(different, in general, for ν and e sectors) 

undetermined 

€ 

ϑ 23 =
π
4

a no-go theorem  

realistic symmetry: 

(1) 

(2) 

[F. 2004] 



      Lepton mixing from symmetry breaking  
Consider a flavor symmetry Gf such that Gf is broken into two different 
subgroups: Ge in the charged lepton sector, and Gν in the neutrino sector. 
(me

+
 me) is invariant under Ge and mν is invariant under Gν. If Ge and Gν are 

appropriately chosen, the constraints on me and mν can give rise to the 
observed UPMNS. 

Gf 

Gν Ge 

(me
+
 me) diagonal UPMNS

T mν UPMNS= (mν)diag       

[He, Keum, Volkas 0601001 
Lam 0708.3665 + 0804.2622] 

For instance we can select Ge in such a way that (me
+
 me)  is diagonal and 

Gν in such a way that mν is responsible for the whole lepton mixing.  



TB mixing from symmetry breaking 
it is easy to find a symmetry that forces (me

+
 me) to be diagonal;   

a ‘’minimal’’ example (there are many other possibilities) is    

GT={1,T,T2} 

€ 

T =

1 0 0
0 ω 2 0
0 0 ω

 

 

 
  

 

 

 
  

ω = e
i 2π
3

T+ (me
+
 me) T = (me

+
 me)  

€ 

me
+me( ) =

me
2 0 0
0 mµ

2 0
0 0 mτ

2

 

 

 
 
 

 

 

 
 
 

[T3=1 and mathematicians call a group with this property Z3]  



in such a framework TB mixing should arise entirely from mν  

€ 

mν (TB) ≡
m3

2

0 0 0
0 1 −1
0 −1 1

 

 

 
  

 

 

 
  

+
m2

3

1 1 1
1 1 1
1 1 1

 

 

 
  

 

 

 
  

+
m1
6

4 −2 −2
−2 1 1
−2 1 1

 

 

 
  

 

 

 
  

most general  
neutrino mass  
matrix giving  
rise to  
TB mixing 

a ‘’minimal’’ symmetry guaranteeing such a pattern    

GSxGU GS={1,S} GU={1,U} 

€ 

S =
1
3

−1 2 2
2 −1 2
2 2 −1

 

 

 
  

 

 

 
  

€ 

U =

1 0 0
0 0 1
0 1 0

 

 

 
  

 

 

 
  

€ 

STmν S = mν UTmνU = mν

€ 

mν = mν (TB)

[C.S. Lam 0804.2622] 

easy to construct from the eigenvectors: 

[this group corresponds to Z2 x Z2 since S2=U2=1] 



Algorithm to generate TB mixing 

start from a flavour symmetry group Gf containing GT, GS, GU 

arrange appropriate symmetry breaking 

Gf 

GSxGU GT charged lepton sector neutrino sector 

if the breaking is spontaneous, induced by <φT>,<φS>,… there is a vacuum 
alignment problem 



Gf generated by S and T (U can arise as an accidental symmetry) they satisfy 

€ 

S2 = T 3 = (ST)3 =1
these are the defining relations of A4, group of even permutations of 4 objects, 
subgroup of SO(3) leaving invariant a regular tetrahedron. S and T generate 
12 elements 

€ 

A4 = 1,S,T,ST,TS,T 2,ST 2,STS,TST,T 2S,TST 2,T 2ST{ }

[Ma and Rajasekaran 2001, Ma 2002, Babu, Ma and Valle 2003, …] 

there are many many non-minimal possibilities: Gf=S4, Δ(27), Δ(108), … 
[Medeiros Varzielas,  
King and Ross 2005 and 2006;  
Luhn, Nasri and Ramond 2007, 
Blum, Hagedorn and Lindner 2007,…] 

Minimal choice 

A4 has 4 irreducible representations: 1, 1’, 1’’ and 3 



€ 

L =
ye
Λ
echd (ϕT l) +

yµ

Λ
µchd (ϕT l)'+

yτ
Λ
τ chd (ϕT l)' '

SU(2)xU(1)xA4x… invariant Lagrangian: 

[(…) denotes an A4 singlet,…]  

higher dimensional  
operators in 1/Λ 
expansion [Λ = cutoff] 

matter fields Higgses A4 breaking sector 

€ 

+
xa
Λ2
huhuξ(ll) +

xb
Λ2
huhu(ϕSll) +V (ξ,ϕS,ϕT )...

additional symmetry: Z3, acts as a discrete 
lepton number; avoids additional invariants 

Building blocks of a minimal model 

€ 

ϕS ↔ϕT

x(ll)

[AF1, AF2] 

[change of notation: 
Higgs doublets are  
denoted by hu and hd] 



€ 

ϕT

Λ
= (u,0,0)

ϕS

Λ
= yb (u,u,u)

ξ

Λ
= yau

under appropriate conditions (SUSY,…) a natural minimum of the scalar 
potential V is 

breaks A4 down to GT 

breaks A4 down to GS 

then: 

€ 

ml =

ye 0 0
0 yµ 0
0 0 yτ

 

 

 
  

 

 

 
  
vdu

€ 

mν =

a +
2
3
b −

b
3

−
b
3

−
b
3

2
3
b a − b

3
−
b
3

a − b
3

2
3
b

 

 

 
 
 
 
  

 

 

 
 
 
 
  

vu
2

Λ

€ 

a ≡ 2xa yau
b ≡ 2xb ybu

2 complex  
parameters in  
ν  sector 
(overall phase unphysical) 

charged fermion masses 

€ 

mf = y f vd u

free parameters as in the SM 
at this level 

is also invariant under GU (accidental symmetry) 

[ya and yb are numbers of order one] 



TB mixing automatically guaranteed by pattern of symmetry breaking 

independent from 
|a|, |b|, Δ≡arg(a)-arg(b) !! 

ν  spectrum 

requires a (moderate) tuning  

in this minimal model the mass spectrum is always  of normal hierarchy type  
the model predicts 

in a see-saw realization both normal and inverted hierarchies can be  
accommodated  

  

€ 

m1 ≥ 0.017  eV mi
i
∑ ≥ 0.09  eV m3

2
= mee

2
+
10
9
Δmatm

2 1− Δmsol
2

Δmatm
2

 

 
 

 

 
 



range of VEVs: 

€ 

mτ = yτvdu
yτ < 4π

€ 

u > 0.002(0.02)
tanβ = 2.5(30)

Sub-leading corrections 
arising from higher dimensional operators,  
depleted by additional powers of 1/Λ.  

they affect ml , mν and  
they can deform the VEVs. 

€ 

UPMNS =

2
3

1
3

0

−
1
6

1
3

−
1
2

−
1
6

1
3

1
2

 

 

 
 
 
 
 
 

 

 

 
 
 
 
 
 

+O(u)results 

TB pattern is preserved if  
corrections are ≤ ϑC

2 ≈ 0.04 
generic prediction for ϑ13

ϑ13=O(u)


€ 

0.002 ≤ u ≤ 0.04 the range expected for  
ϑ13 is similar 



    

€ 

Leff = i e
M 2 l

chd σ
µνFµν( )M ( ϕ )l +[4 - fermion] + h.c.+ ...

additional tests are possible if there is new physics at a scale M close to TeV 

€ 

1
M 2 e cτ cµcµc

€ 

1
M 2 (l l ll)

selection rule 

€ 

ΔLeΔLµΔLτ = ±2

€ 

τ− → µ+e−e−

€ 

τ− → e+µ−µ−

dominant 4-fermion LFV operators 

€ 

Rij =
BR(li → l jγ)

BR(li → l jν iν j )

€ 

µ → eγ τ → µγ τ → eγ
this term contributes to magnetic dipole moments and to LFV transitions such as 
                                         usually discussed in terms of 

€ 

Rµe ≈ Rτµ ≈ Rτeup to O(1) coefficients independently from u 

€ 

τ → µγ τ → eγ below expected future sensitivity 



  

€ 

BR µ → eγ( ) =
12π 3αem

GF
2mµ

4 δaµ( )
2

0.0014×
δaµ

30×10−10
 

 
 

 

 
 

2
       

γu[ ]4

O(1) 
coefficient 

|u| 0.04 0.03 0.02 0.01 

10-11 

10-13 

In a SUSY realization of this model 



[other slides] 



many models predicts a large but not necessarily maximal θ 23  

an example: abelian flavour symmetry group U(1)F 

maximal only by a fine-tuning! 

similarly for all other abelian charge assignements 

no help from the see-saw mechanism within abelian symmetries… 



θ 23  maximal by RGE effects? 
running effects important only for quasi-degenerate neutrinos 
2 flavour case 

boundary conditions at Λ>> e.w. scale 

gives the scale Q at which 
θ 23(Q) becomes maximal 

                        fine tuned  
to obtain Q at the e.w. scale 

a similar conclusion also for the 3 flavour case: 

infrared stable fixed point 
wrong! 

[Ellis, Lola 1999 
Casas, Espinoza, Ibarra, Navarro 1999-2003 
Broncano, Gavela, Jenkins 0406019] 

[Chankowski, Pokorski 2002] 



can be reproduced by  
U(1) flavour symmetry 

Alignment and mass hierarchies 

charged fermion masses 
are already diagonal 

compatible with A4 

[see also Lin hep-ph/08042867 for a realization without an additional U(1)] 



Quark masses – grand unification 
quarks assigned to the same A4  
representations used for leptons?   

fermion masses from dim ≥ 5 operators, e.g. 
good for leptons, but not for the top quark 

€ 

τ cϕT lHd

Λ
naïve extension to quarks leads diagonal quark mass matrices and to VCKM=1 
departure from this approximation is problematic  
[expansion parameter (VEV/Λ) too small] 

possible solution within T’,  
the double covering of A4 24 elements 

representations:     1   1’   1’’   3   2   2’   2’’ 
[FHLM1] 

[older T’ models by 
Frampton, Kephard 1994 
Aranda, Carone, Lebed 1999, 2000 
Carr, Frampton 2007 
similar U(2) constructions by 
Barbieri, Dvali, Hall 1996 
Barbieri, Hall, Raby, Romanino 1997 
Barbieri, Hall, Romanino 1997] 



- lepton sector as in the A4 model 
-  t and b masses at the renormalizable level (τ mass from higher dim operators) 

at the leading order 

33>>22,23,32 

-  masses and mixing angles of 1st generation from higher-order effects 
-  despite the large number of parameters two relations are predicted 

-  vacuum alignment explicitly solved 
-  lepton sector not spoiled by the corrections coming from the quark sector 



other option: SUSY SU(5) in 5D=M4x(S1x Z2) 
+ 

flavour symmetry A4xU(1) 

y 

-y 

0 πR 

πR 0 

DT splitting problem solved  
via SU(5) breaking induced by compactification 

dim 5 B-violating operators forbidden! 
p-decay dominated by gauge boson exchange (dim 6) 

unwanted minimal SU(5) mass relation me=md
T avoided by assigning T1,2 to the bulk 

F,T3  T1,2 

the construction is compatible with A4! 

reshuffling of singlet reps. 

unsuppressed top Yukawa coupling T3T3 

realistic quark mass matrices 
by an additional U(1) acting on T1,2 

neutrino masses from see-saw 
compatible with both normal and  
inverted hierarchy 

TB mixing + small corrections 

[AFH] 



A4 as a leftover of Poincare symmetry in D>4 

D dimensional  
Poincare symmetry: 
D-translations x SO(1,D-1) 

usually broken by  
compactification down to 4 dimensions: 
4-translations x SO(1,3) x … 

a discrete subgroup of  the (D-4) euclidean group = translations x rotations 
can survive in specific geometries  

Example: D=6 

2 dimensions 
compactified on T2/Z2 

four fixed points 
compact space is a regular tetrahedron 
invariant under 

[AFL] 

[translation] 

[rotation by 1200] 

[subgroup of 2 dim Euclidean group = 2-translations x SO(2)] 

€ 

γ



the four fixed points (z1,z2,z3,z4) are permuted under the action of S and T  

€ 

S : (z1,z2,z3,z4 )→ (z4,z3,z2,z1)
T : (z1,z2,z3,z4 )→ (z2,z3,z1,z4 )

S and T satisfy 

the compact space is invariant under a remnant of 2-translations x SO(2) 
isomorphic to the A4 group 

Field Theory 

brane fields φ1(x), φ2(x), φ3(x), φ4(x) transform as 3 + (a singlet) under A4 

The previous model can be reproduced by choosing l, ec, μc, τc, Hu,d as brane 
fields and φT, φS and ξ as bulk fields. 



String Theory [heterotic string compactified on orbifolds] 

in string theory the discrete flavour symmetry is in general bigger than the 
isometry of the compact space. [Kobayashi, Nilles, Ploger, Raby, Ratz 2006]  

orbifolds are defined by the identification 

€ 

(ϑ x) ≈ x + l
l = naea
ϑ

 
 
 

translation  
in a lattice group generated by (ϑ,l)  

is called space group 

€ 

xF ≡ (ϑ F
K xF ) + lF

twist 

€ 

(ϑ F
K ,lF )for some 

twisted states living  at the fixed point xF=(ϑF
K,lF) have couplings satisfying 

space group selection rules [SGSR]. Non-vanishing couplings allowed for 

€ 

(ϑ F
K ,lF ) ≡ (1,0)

F
∏

fixed points: special points xF satisfying 

Gf is the group generated by the orbifold isometry and the SGSR 



Example: S1/Z2 

Isometry group = S2 generated by σ1 in the basis {|1>,|2>} 

SGSR = Z2 x Z2 generated by (σ3,-1)  

[allowed couplings when number n1  
of twisted states at |1>  and  
the number n2 of twisted states  
at |2> are even]  

  

€ 

Gf =  semidirect product of S2 and (Z2 × Z2) ≡ D4

group leaving  
invariant a square 

1 2 



relation between A4 and the modular group  

modular group PSL(2,Z): linear fractional transformation 

complex 
variable 

discrete, infinite group generated by two elements 

obeying 

A4 is a finite subgroup of the modular group and  

the modular group is present everywhere in string theory   

representations of A4 are  
representations of PSL(2,Z) 

infinite discrete normal subgroup of PSL(2,Z) 

[any relation to string  
theory approaches 
to fermion masses?] 

Ibanez; Hamidi, Vafa; 
Dixon, Friedan, Martinec, 
Shenker; Casas, Munoz; 
Cremades, Ibanez, 
Marchesano; Abel, Owen 

[AF2] 





future improvements 
on 

 atmospheric and reactor angles 

discussion 1 



δ(sin2θ 23) reduced by future LBL experiments  
from ν µ→ ν µ disappearance channel 

i.e. a small uncertainty 
on Pµµ leads to a large 
uncertainty on θ 23 -  no substantial improvements from conventional beams 

-  superbeams (e.g. T2K in 5 yr of run) 

improvement by 
about a factor 2 

sin2θ 23 

35 40 45 50 55

Θ23

0.002

0.0025

0.003

"m23
2 T2K-1 

90% CL 
black = normal hierarchy 
red = inverted hierarchy 
true value 410 

[courtesy by 
Enrique Fernandez] 


