
String Inspired Kaluza Klein
Theories

Raffaele Marotta
INFN- sez. Napoli

Napoli, February 6, 2008



Talk based on:

P. Di Vecchia, A. Liccardo,  F. Pezzella and R.M., Kähler
Metrics: String vs Field Theoretical Approach.
arXiv:0901.4458 [hep-th]

P. Di Vecchia, A. Liccardo,  F. Pezzella and R.M., Kahler
Metrics and Yukawa Couplings in Magnetized Brane Models. 
To be published  on JHEP.                                       
arXiv:0810.5509[hep-th]

P. Di Vecchia, A. Liccardo,  F. Pezzella, I. Pesando and R.M., 
Wrapped magnetized branes: two alternative descriptions?
JHEP 0711:100,2007.                                      
arxiv:0719.4149.



Plan of Talk

1. Introduction and Motivations.
2. Magnetized Branes in Bottom Up Approach.
3. Kähler metrics.
4. Yukawa couplings.
5. Conclusions.



Introduction and Motivations

Why Strings?
o The fundamental objects of string 
theories are open and closed strings of 
finite length                    .   

oThe elementary particles are the 
excitation modes of the elementary 
strings and these modes contain the  
Graviton and  the Vector Bosons of the 
known gauge interactions.

`s = 2π
√
α0

These are the ingredients for an unified theory 
of all forces and particles.



o The String length acts as an 
ultraviolet (UV) cut-off which makes  
all the loop integrals finite.

o In the limit               the strings          
become points and the perturbative 
string theory reduces to a perturbative 
gauge theory unified with an 
extension of the General relativity.

`s → 0

o Furthermore,  all the UV-divergences, related to the 
point particle description, of the field theory are 
recovered. 

String Theory is an extension of the Field Theory.



E8 × E8SO(32).

They are  inequivalent in 
the perturbative regime.

.

The local (“gauge”) symmetry of the theory is kept at 
quantum level only in the critical dimensions d=10.

Emergent space-time dimensions
There exist five consistent perturbative theories of  
Superstring: Type IIA, Type IIB, Type I, Heterotic

and Heterotic 



Dp –branes
1. Type II string theories are theories of closed strings at the 

perturbative level.

2. But at the non-perturbative level there are additional 
states that are in general p-dimensional.

3. They are called Dp branes: generalization in string theory 
of the solitons in field theory.

Where do they come from?

The spectrum of massless states of the Type II  theories

Gµν Bµν φ10 NS-NS sector

Metric Kalb-Ramond Dilaton

C0, C2 C4, C6 C8 RR sector IIB

C1, C3 C5 C7 RR sector IIA

Cp ≡ Cµ1µ2...µp RR p-forms



Z
Aµdx

µ =⇒
Z
Cµ1µ2...µp+1dσ

µ1µ2...µp+1

As the electromagnetic potential is coupled to 
point-like particles, the p-forms are coupled 
to p-dimensional objects called Dp-branes.

The RR p-forms are the generalization of 
the electromagnetic potential       .µA

A stack of N Dp-branes has in its world-volume a U(N)=SU(N)xU(1)

gauge theory described by a p+1 dimensional action:

S = −τp
Z
dp+1x

q
− det (Gαβ + `2s Fαβ) + µp

Z h
C ∧ e`2s F

i
p+1

+ . . .

tension charge



Dimensional reduction to d=4, in the spirit of Kaluza-Klein 
theories (Compactification).

The compactification introduces in the model light scalars 
called moduli fields. Their expectation values parameterize the 
size and the shape of the compact manifold, and may also 
determine the parameters (masses or gauge couplings) of the 
effective d=4 lagrangian.

String models are not predictive without determining the 
expectation values of such moduli.



Moduli stabilization

o A moduli potential is generated  by allowing non trivial 
expectation values to he compact components of the RR-field 
strength.

o The moduli are frozen to the minimum of the potential.

Flux Compactification.

Still a large number of 
string vacua.

How can be fixed the 
vacua in which we live?



Can we see stringy effects in experiments?

o If                 , then one will see only the limiting theory.

o If                 , then we can start to see stringy effects.

o The string scale ans also the size of the extra-
dimensions were supposed to be of the order of the 
Planck-length: 

`sE < 1

`sE ∼ 1

1

`s
∼MP , R ∼ `s

Too small to be observed in present and future  experiments.

One need a very good control of the theory to be able to 
extrapolate to low-energy.



After the discovery of the D-branes, the distinct origin of gauge 
and gravitational interaction, has determined a different relation  

between the Planck and string scale.

Type I effective action.

S = − 2πM8
s V6

g2s

R
d4xR+ M6

s V6
4πgs

R
d4xF 2

M2
p 1

g2
YM

Choosing n internal dimensions to have a common radius     
and the remaining 6-n of the string size, one has:          

IR

(2πRI)
−nM6−n

s ∼ g4YMM2
p R = 1/(M2

sRI)

M2
p ∼ RnMn+2

s
1

g4
YM

T-duality

Keeping small       ,          can be chosen smaller then       at 
the expense of introducing extra large dimensions.

sM PMYMg

Ms =
1
`s

Antoniadis,  Arkani-Hamed, Dimopoulos, Dvali, 1998



Magnetized Branes in Bottom Up Approach

Look for local configurations of D-branes with world-volume 
theories resembling the Standard Model as much as possible. 

(Very restrictive)

Search for the gauge group SU(3) x SU(2) x U(1).

Presence of Chiral quark-lepton generations.

Embed the local D-brane configuration in a larger global 
model, where the six transverse dimensions are compactified.    

(Big arbitrariety)

Starting from a 10-dim string theory with suitable configuration 
of D-branes and given a certain compactification, how to 
compute the four dimensional low-energy effective action that 
should be compared with experiments? 



In principle, the low-energy four dimensional effective 
Lagrangian will depend on the microscopic data specifying the 
D-brane configurations and the geometry of the compact 
space.

If not immediately interested in string corrections one may start 
from the Supegravity lagrangian which contains only the lowest 
string excitations (               approximation).`s → 0

Any N=1 supergravity Lagrangian in d=4 with only chiral and 
vector multiplets and no more than two derivatives, depends 
only on the  Kähler potential K (real function of the chiral fields), 
the gauge kinetic function      and the superpotential W ( 
holomorphic functions of the fields):

fa

L = − 1

2κ2
R− ZIJDmΦ̄IDmΦJ − V (Φ, Φ̄)−

X
a

·
Refa(Φ)

1

4
F 2a + Imfa(Φ)

1

4
F 2a

¸
ZIJ = ∂ΦI∂Φ̄JZ

Kähler metric spanned by the complex scalars Φ

Scalar potential determined by W



The parameters of the low-energy effective action  can be 
explicitly determined in the framework of magnetized D9-
branes compactified on a three torus .222 TTT ××

Magnetized branes are D-branes having a constant 
magnetic field turned on along the compact directions.

R1,3 × T 2 × T 2 × T 2

SET-UP

World-volume theory (in the 
limit             )  of a            
stack of M magnetized D9-
branes in the background:

`s → 0



The torus  is defined through the identification:

xi ≡ xi + 2πR
i = 1, 2

T (r)2 =
√
detG(r)

Introducing “flat” dimensionless coordinates: 

z =
x1 + U x2

2πR

The torus metric: G
(x1,x2)
ij =

T2
U2

µ
1 U1
U1 |U |2

¶
Complex structure:

½
z ≡ z + 1
z ≡ z + U

Kähler modulus:

U (r) = U
(r)
1 + iU

(r)
2



The low–energy limit of the world-volume action of a 
stack of M  D9-branes 

S = 1
g2

R
d10xTr

¡
−1
4FMNF

MN + i
2 λ̄Γ

Mλ
¢

g2 = 4πgs(2π`s)
6

o Kaluza Klein Reduction from d=10 to d=4.

o Gauge Group and Chiral fermions of the SM.
Turn on  a background gauge field in the six 
compact dimensions and along the Cartan

subalgebra of U(M).

Field theory description of Magnetized branes.

Ten dimensional Majorana–Weyl fermion



Separate the generators of the gauge group U(M) into those
of the Cartan subalgebra and those outside .aU abe

AM = BaM Ua+Wab
M eab λ = χa Ua +Ψ

ab eab
XM

xµ

yi

Separate the ten dimensional coordinate        into a four
dimensional non-compact      and a six-dimensional

compact variables .

Perform a Kaluza-Klein reduction by expanding around the 
background fields

BaM(x
µ, yi) = hBaMi(yi) + δBaM(x

µ, yi)

W ab
M (x

µ, yi) = 0 + ΦabM (x
µ, yi)

Four dimensional Lorentz invariance is kept by allowing a 
background value only along the compact directions.hBai i(yi)



The presence of differents backgrounds values along the 
cartan subalgebra breaks the original U(M) symmetry

into .       MU ))1((

Is some of the background values are equal then the original
gauge group U(M) is broken in the product of non-abelian

subgroups.

In terms of D- branes this corresponds to generate M stack
with different magnetizations.

Rewrite the original action in terms of the fields

Φabi (x
µ, yi) δBM (x

µ, yi) χa(xµ, yi) Ψab(xµ, yi)



We focus only on the terms containing the Kähler
metric and the Yukawa couplins.

The quadratic term for the field Φabi

S
(Φ)
2 = 1

2g2

R
d4x

√
G4
R
d6x

√
G6Φ

jba
h
Gij

³
DµD

µ + D̃kD̃k

´
+ 2ihF̃ ji iab

i
Φabi

DµΦ
ab
j = ∂µΦ

ab
j − i(Baµ −Bbµ)Φabj F̃ ab = F̃ a − F̃ b

Field strenght obtained
from the field B.

Scalar fields transforming in the bifundamental
representation of the gauge group U(1) x U(1).

~
aF

~
bF

Φabi They correspond to open strings
stretched between two branes with
different magnetization .F



Analogously for the δBai
S
(δB)
2 =

1

2g2

Z
d4x

p
G4

Z
d6y
p
G6δB

a
i

¡
∂j∂

j +DµD
µ
¢
δBai

and for the fermions

S
(Ψ)
2 =

i

2g2

Z
d4x

p
G4

Z
d6y
p
G6Ψ̄

ba
³
ΓµDµ + Γ

iD̃i

´
Ψab

Yukawa couplings

S
(Φ)
3 =

1

2g2

Z
d4x

p
G4

Z
d6y
p
G6
¡
Ψ̄caΓiΦabi Ψ

bc − Ψ̄caΓiΦbci Ψab
¢

S
(δB)
3 =

1

2g2

Z
d4x

p
G4

Z
d6y
p
G6Ψ̄

ab( /δB
b − /δB

a
)Ψba

For bifundamental scalar fields.

For adjoint scalars.



Kaluza-Klein reduction:

Φabi (X) = Nφ

X
n

ϕabn,i(x
µ)φabn (y

i) ; Ψab(X) = Nψ

X
n

ψabn (x
µ)⊗ ηabn (y

i)

Moduli dependent normalization factors

The spectrum of the Kaluza-Klein states and their wave-
functions along the compact direction are obtained by solving
the eigenvalue equations for the six-dimensional Laplace and 
Dirac operators:

−D̃kD̃kφabn = m2
nφ

ab
n , iγi(6)D̃iη

ab
n = λn η

ab
n

Decomposition of the ten-dimensional Dirac-matrices

Γµ = γµ(4) ⊗ I(6) , Γi = γ5(4) ⊗ γi(6)



On the torus and for the bi-fundamental scalars:    222 TTT ××

−D̃kD̃kφabn =

3X
s=1

2π|Is|
T (s)2

(2Ns + 1)φ
ab
n =

m̂2
n

(2πR)2
φabn

Ns = a
†
s as

D̃zs ≡
Ã
∂zs −

π|Is|z̄s

2U
(s)
2

!
= i

s
π|Is|
U
(s)
2

a†s ; D̃z̄s ≡
Ã
∂z̄s +

π|Is|zs

2U
(s)
2

!
= i

s
π|Is|
U
(s)
2

as

[as, a
†
s] = 1

The groud state is determined by solving the equation:

asφ
ab
0 = 0

Creation and annihilation operators.

together withD̃zsφ
ab
0 = 0



Bazr, z̄r(z
r + 1, z̄r + 1) ≡ Bazr, z̄r (zr, z̄r) + ∂zr , z̄rχ

a
1,r

The boundary conditions are the identification, up to a gauge 
transformation, of the fields when translate along the one-
cycles of the torus.

Background gauge field

Bazr; z̄r(z
r + U (r), z̄r + Ū (r)) ≡ Bazr; z̄r (zr, z̄r) + ∂zr; z̄rχ

a
2,r

Gauge Bundle

In the gauge: Bzr = − 1
2F

r
zr z̄r z̄

r

Bzr(z
r + 1, z̄r + 1) = Bzr(z

r, z̄r)− 1
2F

r
zr z̄r

r =1,2,3 labels the three tori

Bzr(z
r + U (r), z̄r + Ū (r)) = Bzr (z

r, z̄r)− 1
2F

r
zr z̄r Ū

(r)



The expression of        can be obtained from the observation 
that the first Chern-class is an integer .rI

rF

χ1,r =
πIr

ImU (r)
Im(zr) ; χ2,r =

πIr
ImU (r)

Im(Ū (r) zr)

Z
F r

2π
= Ir First Chern-class

The boundary conditions for the scalars  transforming in the bi-
fundamental representation of the gauge group, are: 

φab(zr + 1, z̄r + 1) = eiχ
ab
1,r(z

r, z̄r)φab(zr, z̄r)

φab(zr + U (r), z̄r + Ū (r)) = eiχ
ab
2,r(z

r, z̄r)φab(zr, z̄r)

F rzr z̄r = −
πIr

iU
(r)
2

r = 1, 2, 3

χab = χa − χb



φab0 =

3Y
r=1

φab;n
r

r,signIr
The solution is: 

φab;nrr,+ = e
πiIrzr

Imzr

ImU(r) Θ

·
2nr
Ir
0

¸
(Irzr|IrU (r)) for Ir > 0

φab;nrr,− = e
iπ|Ir|z̄r Imz̄r

ImU(r) Θ

· −2nr
Ir
0

¸
(Ir z̄r|IrŪ (r)) for Ir < 0

The vacuum state is degenerate.

(Landau Levels)nr = 1 . . . |I|r − 1

The wave-function for the fermions in the bi-fundamental 
representation of the gauge group has the same structure 
as  the one of the scalars. The one for the adjoint scalars is 
the identity.



Kähler Metrics

The Kinetic term for the bi-fundamental scalars:

S
(Φ)
2 =

1

2g2

Z
d4x

p
G4
X
n

3Y
r=1

·
(2πR)2

Z
d2zr

√
Gr
¸
φban φabn

×
(

3X
r=1

N2
ϕr

"
ϕba,znr (x)

"
DµD

µ −m2
n +

4πIr

(2πR)2T (r)2

#
ϕabnrz(x)

#

+

3X
r=1

N2
ϕr

"
ϕba,z̄nr (x)

"
DµD

µ −m2
n −

4πIr

(2πR)2T (r)2

#
ϕabnrz̄(x)

#)

Two towers of Kaluza-Klein states

(M±
n,r)

2 =
1

(2πR)2

"
3X
s=1

2π|Is|
T (s)2

(2Ns + 1)±
4πIr

T (r)2

#
In agreement with the field theory limit of the string.



Massless state condition:
1

2

3X
s=1

|Is|
T (s)2

− |Ir|
T (r)2

= 0Ns = 0

restauring N =1supersymmetry, because this scalar is 

in the same chiral multiplet with the fermion.

Keeping  only the massless contribution in         one gets, 
in the Einsten frame:

)(
2
ΦS

S
(φ)
2 = −

Z
d4x

p
G4 Z(m, m̄) (Dµϕ̄(x))(D

µϕ(x)) + . . .

Z(m, m̄) =
4πe2φ4

2g2
N2
ϕ

3Y
s=1

·
(2πR)2

Z
d2zs

p
G(zs,z̄s)

¸
φba0 φab0with:



The integral over the six-dimensional compact space may be
explicitely performed:

Z =
N2
ϕ

2s
1/4
2

3Y
r=1

⎡⎣ 1

(2u
(r)
2 )1/2(t

(r)
2 )1/4

Ã
T
(r)
2

|Ir|

!1/2⎤⎦
s2 = e

−φ10
3Y
r=1

T
(r)
2 t

(r)
2 = e−φ10T (r)2u

(r)
2 = U

(r)
2

We have determined how the Kähler metric depends on 
the moduli apart from the normalization factor . 

ϕN ϕN

ϕN

is fixed from the holomorphicity of the superpotential. 

Yukawa Couplings

ϕN

Kähler modulus in string units: T2 = T2( R`s )
2



The Kähler metric, for the fermions transforming in the  bi-
fundamental representation of the gauge group, is obtained 

from the fermions kinetic term.

S
(Ψ)
2 =

i

2

Z
d4xZ(m, m̄)

p
G4ψ̄

ba γµ(4)Dµ ψ
ab .

Z =
e2φ4

g2
N2
ψ

Z
d6y
p
G6(η

ab)† ηab =
eφ4

4π
N2
ψ

3Y
r=1

⎡⎣ÃT (r)2

|Ir|

!1/2Ã
1

2U
(r)
2

!1/2⎤⎦
It, as a consequence of N=1 SUSY, coincides with the one 
of the scalars transforming in the same representation of the 

gauge group.



Yukawa Couplings

aF
bF

cF

abϕ

bcψcaψ

The Yukawa couplings are the trilinear
couplings of the superpotential W.

Yijk = e
K/2Wijk

K = − log s2 −
P3

r=1 log t
(r)
2 −P3

r=1 log u
(r)
2

⎧⎪⎨⎪⎩
s2 = e

−φ10Q3
r=1 T

(r)
2

t
(r)
2 = e−φ10T (r)2

u2 = U
(r)
2

Antoniadis, Bacas, Fabre Partouche, Taylor, 1996

Kähler modulus in string units: T2 = T2( R`s )
2

Kähler potential



These can be computed from the trilinear couplings in       .

Y E =
eK/2√
8π

σNϕNψNψ

3Y
r=1

(
(T

(r)
2 )1/2¡

2|Iabr |χabr |Ibcr |χbcr |Icar |χcar
¢1/2

× Θ
"
2
³
n0

Icar
+ m0

Ibcr
+ l0

Iabr

´
0

#
(0|− Iabr Ibcr Icar U (r)f )

)

U
(r)
f =

½
U (r) for sign(IcaIbcIab) < 0

Ū (r) for sign(IcaIbcIab) > 0
χr =

(1 + sign(Ir Ir))

2

S
(Φ)
3 =

Z
d4x

p
G4ψ̄

ca γ5(4)ϕ
ab
1 ψbcY E

Because of the terms depending on the magnetizations, the 
Yukawa is not an holomorphic function of the moduli unless we 
choose the normalization factors       and       to eliminate such 
dependence.

ϕN ψN



Nab
ϕ1
=

Ã
|Iab1 |
T
(1)
2

!1/2
; N ca

ψ =

Ã
|Ica2 |
T
(2)
2

!1/2
; Nbc

ψ =

Ã
|Ibc3 |
T
(3)
2

!1/2

Using these normalization factors in the expression of the 
Kähler metrics determined from the kinetic terms, one gets:

Zchiralab =
1

2s
1/4
2

3Y
r=1

"
1

(2u
(r)
2 )

1/2(t
(r)
2 )

1/4

#µ
νab1

πνab2 νab3

¶1/2

It is in agreement with the field theory limit of the corresponding 
expression obtained in string theory by computing three and 
four point amplitudes or by means  Instanton calculus !!!

νr =
Ir
T
(r)
2



Conclusions.
We have discussed in a simple set-up of toroidal

compactification how to obtain the effective four-
dimensional action for chiral fields.

How to get in a unique way the Standard Model or one 
of its extensions?

Instanton effects. Different kinds of compactifications.

Still a lot of work must be done….
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