Precision B Physics in the LHC Era: The Quest for New Physics

Robert Fleischer

CERN Theory Division & Università di Roma “La Sapienza”

Seminar @ Università di Napoli “Federico II”, 10 October 2008

- Introduction & Motivation: Why is B physics interesting?
- Theoretical Framework: Unitarity Triangle, Effective Hamiltonians, ...
- The Current Picture: Implications of Flavour Data for New Physics
- B Physics at the LHC: \rightarrow New Territory of the B Landscape
- Conclusions & Outlook
Why is B physics interesting?

key players in the history of the Standard Model (SM):

• **1963**: concept of flavour mixing [Cabibbo].

• **1964**: discovery of CP violation in $K_L \rightarrow \pi^+ \pi^-$ [Christenson et al.].

• **1970**: introduction of the charm quark to suppress the flavour-changing neutral currents (FCNCs) [Glashow, Iliopoulos & Maiani].

• **1973**: quark-flavour mixing with 3 generations allows us to accommodate CP violation in the SM [Kobayashi & Maskawa].

• **1974**: estimate of the charm-quark mass with the help of the $K^0 - \bar{K}^0$ mixing frequency [Gaillard & Lee].

• **1980s**: the large top-quark mass was first suggested by the large $B^0 - \bar{B}^0$ mixing seen by ARGUS (DESY) and UA1 (CERN).

flavour physics has since continued to progress ...
Status of the Standard Model

- Impressive precision measurements of the SM gauge structure at LEP!

- Still the following question is unanswered:

 Is the breaking of the electroweak symmetry and the generation of the particle masses in fact caused by the “minimal” Higgs mechanism, i.e. through the non-vanishing vacuum expectation value of a scalar field?

- Currently addressed at the Tevatron @ FNAL: data taking continues ...

 – $p\bar{p}$ collisions at 1.96 TeV.

- Exciting new insights are soon expected at the LHC @ CERN:

 – pp collisions at 14 TeV (initial operation at 10 TeV).
 – Start-up phase and commissioning is right now taking place:

→ recent CERN press releases:
LHC re-start scheduled for 2009

Geneva, 23 September 2008. Investigations at CERN following a large helium leak into sector 3-4 of the Large Hadron Collider (LHC) tunnel have indicated that the most likely cause of the incident was a faulty electrical connection between two of the accelerator’s magnets. Before a full understanding of the incident can be established, however, the sector has to be brought to room temperature and the magnets involved opened up for inspection. This will take three to four weeks. Full details of this investigation will be made available once it is complete.

> Read the press release

Incident in LHC sector 3-4

Geneva, 20 September 2008. During commissioning (without beam) of the final LHC sector (sector 3-4) at high current for operation at 5 TeV, an incident occurred at mid-day on Friday 19 September resulting in a large helium leak into the tunnel.

> Read the press release

LHC progress report, week 1

Geneva, 18 September 2008. After a spectacular start on 10 September, the LHC enjoyed a mixed first week of commissioning with beam. To get beams around the ring in both directions on the first day exceeded all expectations, and the success continued through the night, with several hundred orbits being achieved.

> Read more

First beam in the LHC - accelerating science

Geneva, 10 September 2008. The first beam in the Large Hadron Collider at CERN was successfully steered around the full 27 kilometres of the world’s most powerful particle accelerator at 10h28 this morning. This historic event marks a key moment in the transition from over two decades of preparation to a new era of scientific discovery.
LHC tunnel (∼ 1 year ago):
ATLAS (\(\sim 1\) year ago):

CMS (\(\sim 1\) year ago):
Status of the SM (Continued)

• The Yukawa interactions that give rise to the Fermion masses within the Higgs mechanism lead to a rich quark-flavour phenomenology:

 – The *interplay between theory & experiments* at the “flavour factories” resulted in many new insights into FCNCs and CP violation.

 – With the exception of a few “flavour puzzles” (not yet conclusive because of large errors), the SM flavour sector is in good shape.

 – But still a large territory of the flavour-physics landscape is unexplored:

 → key target of another LHC experiment: LHCb

• We have indications that the SM *cannot* be complete:

 – Neutrino oscillations: → rich lepton-flavour phenomenology, raising questions about CP violation and connections to the quark sector.

 – The long-standing problem of dark matter.

 – Generation of the baryon asymmetry of the Universe, ...

⊕ fundamental theoretical questions (hierarchy problem, etc.)
Main Driving Force for Flavour Studies

- **New Physics (NP):** typically new patterns in the flavour sector
 - supersymmetric (SUSY) scenarios;
 - left–right-symmetric models;
 - models with extra Z' bosons;
 - scenarios with extra dimensions;
 - “little Higgs” scenarios ...

- **Sensitivity to NP through virtual quantum effects:**

- **Interplay with direct NP searches at ATLAS & CMS:**
 - If NP particles are produced and detected through their decays at the LHC, flavour-physics information helps us to determine/narrow the underlying NP model and to establish new sources of CP violation.
 - NP effects could in fact first show up in the flavour sector, also if NP particles are too heavy to be produced directly at the LHC.
 - Fortunately, theory will be confronted with LHC data soon...

1Addressed within a recent CERN workshop series: http://flavlhc.web.cern.ch/flavlhc/
Challenging the Standard Model through Flavour Studies

Before searching for NP, we have to understand the SM picture!

• **The key problem:**

 ◦ Impact of strong interactions (QCD) → “hadronic” uncertainties

• **The B-meson system is a particularly promising flavour probe:**

 – Simplifications through the large b-quark mass $m_b \sim 5 \text{ GeV} \gg \Lambda_{QCD}$.
 – Offers various strategies to eliminate the hadronic uncertainties and to determine the hadronic parameters from the data.
 – Tests of clean SM relations that could be spoiled by NP ...

• **This feature led to the “rise of the B mesons”:**

 – K decays dominated for more than 30 years: discovery of (indirect) CP violation [$\rightarrow \varepsilon_K$ (’64)] and direct CP violation [$\rightarrow \text{Re}(\varepsilon'/\varepsilon)$ (’99)].
 – Since this decade the stage is governed by B mesons → our focus
The Main Actors of this Talk: \(B \) Mesons

- **Charged \(B \) mesons:**
 \[
 B^+ \sim u \bar{b} \quad B^- \sim \bar{u} b \\
 B^+_c \sim c \bar{b} \quad B^-_c \sim \bar{c} b
 \]

- **Neutral \(B \) mesons:**
 \[
 B^0_d \sim d \bar{b} \quad \bar{B}^0_d \sim \bar{d} b \\
 B^0_s \sim s \bar{b} \quad \bar{B}^0_s \sim \bar{s} b
 \]

- **\(B^0_q - \bar{B}^0_q \) mixing:**
 \[
 q \quad W \quad b \\
 u, c, t \quad u, c, t \quad b \\
 b \quad W \quad q
 \]

\[
\Rightarrow |B_q(t)\rangle = a(t)|B^0_q\rangle + b(t)|\bar{B}^0_q\rangle : \]

* **Schrödinger equation** \(\Rightarrow \) mass eigenstates:

\[
\Delta M_q \equiv M^{(q)}_H - M^{(q)}_L, \quad \Delta \Gamma_q \equiv \Gamma^{(q)}_H - \Gamma^{(q)}_L
\]

* **Decay rates:** \(\Gamma(B^0_q(t) \rightarrow f) : \)

\[
\cos(\Delta M_q t) \& \sin(\Delta M_q t) \rightarrow \text{oscillations!}
\]
Where to Study B-Meson Decays?

- **B factories:** asymmetric e^+e^- colliders @ $\Upsilon(4S) \to B^0_d\bar{B}^0_d, B^+_uB^-_u$

 - PEP-II with the *Babar* experiment (SLAC) [terminated in Feb ’08];
 - KEK-B with the *Belle* experiment (KEK) [continues ...]:

 \[\sum \mathcal{O}(10^9) B\bar{B} \text{ pairs} \ldots \]

 - Discussion of a super-B factory, with increase of luminosity by $\mathcal{O}(10^2)$.

- **Hadron colliders:** produce also B_s mesons,\(^2\) as well as B_c, Λ_b, \ldots

 - Tevatron: CDF and DØ have reported first $B^{(s)}$-decay results ...
 - ... to be continued at the LHC \sim spring 2009:

 ATLAS & CMS (can also address some B physics)

 \[\oplus \text{dedicated B-decay experiment: LHCb} \]

\(^2\text{Data at $\Upsilon(5S)$ were taken by Belle, allowing also access to B_s decays [hep-ex/0610003].}\)
• A picture of the LHCb experiment (≈ August 2006):
Theoretical Framework

→ Unitarity Triangle, Effective Hamiltonians ...
CP Violation in the Standard Model

- **Emerges in the “charged-current” quark interactions:**

 \[
 \mathcal{L}_\text{int}^{\text{CC}} = -\frac{g_2}{\sqrt{2}} (\bar{u}_L, \bar{c}_L, \bar{t}_L) \gamma^\mu \hat{V}_{\text{CKM}} \begin{pmatrix} d_L \\ s_L \\ b_L \end{pmatrix} W_\mu^\dagger + \text{h.c.}
 \]

 - \(\hat{V}_{\text{CKM}}\): Cabibbo–Kobayashi–Maskawa (CKM) matrix.

 - This “quark-mixing” matrix connects the flavour states of the down, strange and bottom quarks with their mass eigenstates through a unitary transformation (\(\rightarrow\) relation to the Higgs/Yukawa sector):

 \[
 \Rightarrow \hat{V}_{\text{CKM}}^\dagger \cdot \hat{V}_{\text{CKM}} = \hat{1} = \hat{V}_{\text{CKM}} \cdot \hat{V}_{\text{CKM}}^\dagger
 \]

- **CP-conjugate transitions:**

 ![Diagram of CP-conjugate transitions](attachment:diagram.png)

 - \(V_{UD} \xrightarrow{\text{CP}} V_{UD}^*\)
 - \(\bar{D} \xrightarrow{\text{CP}} \bar{D} \ xrightarrow{\text{CP}} \bar{D}^*\)
 - \(W^- \xrightarrow{\text{CP}} W^+\)
⇒ are there complex phases in the CKM matrix?

- Parameters of the general quark-mixing matrix for \(N \) generations:

\[
\frac{1}{2}N(N-1) + \frac{1}{2}(N-1)(N-2) = (N-1)^2
\]

\(\text{angles} \quad \text{complex phases} \)

- **Two generations:** \(\rightarrow \) Cabibbo angle \(\theta_C \) (1963)

\[
\hat{V}_C = \begin{pmatrix}
\cos \theta_C & \sin \theta_C \\
-\sin \theta_C & \cos \theta_C
\end{pmatrix}
\]

\[\sin \theta_C = 0.22 \text{ from } K \rightarrow \pi \ell \bar{\nu}_\ell\]

- **Three generations:** \(\rightarrow \) Kobayashi & Maskawa (1973)

* Parametrization requires three angles and one complex phase ...

* **Complex phase:** \(\Rightarrow \) allows us to accommodate CP violation

\(\rightarrow \) Kobayashi–Maskawa (KM) mechanism of CP violation
The Nobel Prize in Physics 2008

"for the discovery of the origin of the broken symmetry which predicts the existence of at least three families of quarks in nature"

Yōchirō Nambu

Makoto Kobayashi

Toshihide Maskawa

USA

Japan

Japan
Central Target: Unitarity Triangle (UT)

- **Application of the Wolfenstein parametrization:**
 \[
 \hat{V}_{CKM} = \begin{pmatrix}
 1 - \frac{1}{2} \lambda^2 & \lambda & A\lambda^3(\rho - i\eta) \\
 -\lambda & 1 - \frac{1}{2} \lambda^2 & A\lambda^2 \\
 A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1
 \end{pmatrix} + \mathcal{O}(\lambda^4)
 \]

 → phenomenological expansion in \(\lambda \equiv |V_{us}| = 0.22 \) [from \(K \to \pi\ell\bar{\nu}_\ell \)]

- **Unitarity of the CKM matrix:**
 \[
 \hat{V}_{CKM} \cdot \hat{V}_{CKM}^\dagger = \mathbb{1} = \hat{V}_{CKM} \cdot \hat{V}_{CKM}^\dagger
 \]

 \[
 R_b = \left(1 - \frac{\lambda^2}{2}\right) \frac{1}{\lambda} \left| \frac{V_{ub}}{V_{cb}} \right| \\
 R_t = \frac{1}{\lambda} \left| \frac{V_{td}}{V_{cb}} \right|
 \]

 \[\bar{\rho} \equiv (1 - \lambda^2/2)\rho, \quad \bar{\eta} \equiv (1 - \lambda^2/2)\eta\]

 → NLO corrections
 [Buras et al. (1994)]
Key Processes for the Exploration of CP Violation

→ non-leptonic B decays (only quarks in the final states):

- **Tree diagrams:**

- **“Penguin” diagrams:** → loop processes:

 ◇ **QCD penguins:**

 ◇ **Electroweak (EW) penguins:**

 [Important because of large m_t! R.F. (1994)]
Theoretical Tool: Low-Energy Effective Hamiltonians

- Separation of the short-distance from the long-distance contributions:

\[
\langle f | \mathcal{H}_{\text{eff}} | B \rangle = \frac{G_F}{\sqrt{2}} \sum_j \lambda_{\text{CKM}}^j \sum_k C_k(\mu) \langle f | Q^j_k(\mu) | B \rangle
\]

\[G_F: \text{Fermi's constant, } \lambda_{\text{CKM}}^j: \text{CKM factors, } \mu: \text{renormalization scale}\]

- Short-distance physics: [A.J. Buras et al.; ...]

→ Wilson coefficients \(C_k(\mu)\) → perturbative quantities → known!

- Long-distance physics:

→ matrix elements \(\langle f | Q^j_k(\mu) | B \rangle\) → non-perturbative → “unknown”!?
Recent Developments

\[|A_j| e^{i \delta_j} \propto \sum_k \frac{C_k(\mu)}{\text{pert. QCD}} \times \langle f | Q^j_k(\mu) | B \rangle \]

- **QCD factorization (QCDF):**

- **Perturbative Hard-Scattering (PQCD) Approach:**
 Li & Yu ('95); Cheng, Li & Yang ('99); Keum, Li & Sanda ('00); …

- **Soft Collinear Effective Theory (SCET):**
 Bauer, Pirjol & Stewart (2001); Bauer, Grinstein, Pirjol & Stewart (2003); …

- **QCD sum rules:**
 Khodjamirian (2001); Khodjamirian, Mannel & Melic (2003); …

Data ⇒ theoretical challenge remains …
⇒ Circumvent the Calculation of the $\langle f | Q_k^j(\mu) | B \rangle$:

- Amplitude relations allow us in fortunate cases to eliminate the hadronic matrix elements (→ typically strategies to determine the UT angle γ):
 - **Exact relations**: class of pure “tree” decays (e.g. $B \rightarrow DK$).
 - **Approximate relations**, which follow from the *flavour symmetries of strong interactions*, i.e. $SU(2)$ isospin or $SU(3)_F$:

 $B \rightarrow \pi\pi, B \rightarrow \pi K, B(s) \rightarrow KK$.

- Decays of neutral B_d and B_s mesons:

 Interference effects through $B_q^0 - \overline{B}_q^0$ mixing:

 - Lead to “mixing-induced” CP violation $A_{\text{CP}}^{\text{mix}}$, in addition to “direct” CP violation $A_{\text{CP}}^{\text{dir}}$ (caused by interference between decay amplitudes).

 - If one CKM amplitude dominates:

 \Rightarrow hadronic matrix elements cancel!

* Example: $B_d^0 \rightarrow J/\psi K_S \Rightarrow \sin 2\beta$ [Bigi, Carter & Sanda ('80–'81)]
A Brief Roadmap of Quark-Flavour Physics

• CP-B studies through various processes and strategies:

\[B \to \pi \pi \text{ (isospin)}, \ B \to \rho \pi, \ B \to \rho \rho \]

\[R_b \ (b \to u, c \ell \bar{\nu}_\ell) \]

\[R_t \ (B_q^0 - \bar{B}_q^0 \text{ mixing}) \]

\[\{B_d \to \pi^+ \pi^- \} \]

\[B_s \to K^+ K^- \]

\[B \to \pi K \text{ (penguins)} \]

\[\{B_u^\pm \to K^\pm D \} \text{ only trees} \]

\[B_d^\pm \to K^* D \]

\[B_c^\pm \to D_s \pm D \]

\[B_d \to D(\text{(*)})^\pm \pi^\mp : \gamma + 2\beta \]

\[B_s \to D_s^\pm K^\mp : \gamma + \phi_s \text{ only trees} \]

• Moreover “rare” decays: \(B \to X_s \gamma, \ B_{d,s} \to \mu^+ \mu^-, \ K \to \pi \nu \bar{\nu}, \ldots \)

– Originate from loop processes in the SM.

– Interesting correlations with CP-B studies.

\[\text{New Physics} \Rightarrow \text{Discrepancies} \]
The Current Picture:

→ Implications of Flavour Data for New Physics ...
Status of the Unitarity Triangle

- Two competing groups: → many plots & correlations ...
 - *UTfit* Collaboration [http://www.utfit.org]:

→ continuously updated results:

⇒ impressive global agreement with KM (β vs. $|V_{ub}|$ = ?) ...

[$|V_{ub}| B \rightarrow X_u \ell \nu_\ell, \ldots$: → Giulia Ricciardi © Napoli; ...]
New Physics in Decay Amplitudes:

- Typically *small* effects if SM tree processes play the dominant rôle:

 \[\rightarrow \text{example: } B_d^0 \rightarrow J/\psi K_S \]

- Potentially *large* effects in the penguin sector through new particles in the loops or new contributions at the tree level, e.g. SUSY, Z' models:

 \[\rightarrow \text{hot topic: } \text{decays that are dominated by } b \rightarrow s \text{ penguins ...} \]
CP Violation in $b \rightarrow s$ Penguin Modes

- **Experimental pattern:**

$$\sin(2\beta^{\text{eff}}) = \sin(2\phi_1^{\text{eff}})$$

- **Moreover:** "$B \rightarrow \pi K$ puzzle" received quite some attention

[Buras & R.F. ('00); Buras, R.F., Recksiegel & Schwab ('03–'06); ...]

⇒ NP could be present, but still cannot be resolved!?
Particularly Interesting Decay: $B^0 \rightarrow \pi^0 K^0$

- **Time-dependent, CP-violating rate asymmetry:**

\[
\frac{\Gamma(\bar{B}^0(t) \rightarrow \pi^0 K_S) - \Gamma(B^0(t) \rightarrow \pi^0 K_S)}{\Gamma(\bar{B}^0(t) \rightarrow \pi^0 K_S) + \Gamma(B^0(t) \rightarrow \pi^0 K_S)} = A_{\pi^0 K_S} \cos(\Delta M_d t) + S_{\pi^0 K_S} \sin(\Delta M_d t)
\]

- **In the SM, we have – up to doubly Cabibbo-suppressed terms:**

\[
A_{\pi^0 K_S} \approx 0, \quad S_{\pi^0 K_S} \equiv (\sin 2\beta)_{\pi^0 K_S} \approx \sin 2\beta
\]

- **EW penguins have a significant impact:** ⇒ nice for NP to enter!?

⇒ control the hadronic effects in the SM prediction!
SM Benchmark for the NP Search in $B^0 \rightarrow \pi^0 K^0$

- **Isospin relation is the starting point:**

\[
\sqrt{2} A(B^0 \rightarrow \pi^0 K^0) + A(B^0 \rightarrow \pi^- K^+) = -\left[(\hat{T} + \hat{C})e^{i\gamma} + \hat{P}_{ew} \right] \equiv 3A_{3/2}
\]

- $A_{3/2}$ can be fixed through $SU(3)$ [assume $\gamma = (65 \pm 10)^\circ$]:

 - **EW penguin parameter:**

 \[
 q e^{i\omega} \equiv -\frac{\hat{P}_{ew}}{\hat{T} + \hat{C}} = \frac{-3}{2\lambda^2 R_b} \frac{C_9(\mu) + C_{10}(\mu)}{C_1(\mu) + C_2(\mu)} R_q = 0.66 \times \frac{0.41}{R_b} R_q
 \]

 * $SU(3)$ breaking: assume first $R_q = 1 \pm 0.3$; can be well predicted through factorization techniques + future lattice QCD input.

 - **Tree parameter:**

 \[
 |\hat{T} + \hat{C}| = R_{T+C} |V_{us}/V_{ud}| \sqrt{2} |A(B^+ \rightarrow \pi^+\pi^0)|
 \]

 * $R_{T+C} \sim f_K/f_{\pi} \rightarrow 1.22 \pm 0.2$, where the error is very conservative.
• **Triangle construction in the complex plane:**

\[
\begin{align*}
\sqrt{2\bar{A}_{00}} & \quad -2\phi_{\pi^0K_S} \\
3\bar{A}_{3/2} & \quad -\hat{P}_{\text{ew}} \\
3\bar{A}_{3/2} & \quad -(\hat{T}+\hat{C})e^{-i\gamma} \\
\sqrt{2A_{00}} & \quad A_{++} \\
\end{align*}
\]

– **Rates for decays and their CP conjugates:** triangles can be constructed.

– **Encounter a fourfold ambiguity:** the triangles can be flipped around the \(A_{3/2} \) and \(\bar{A}_{3/2} \) axes (which are fixed as we have just discussed).

• **Prediction for the mixing-induced CP violation in \(B^0 \to \pi^0K_S \):**

\[
S_{\pi^0K_S} = \frac{2|\bar{A}_{00}A_{00}|}{|\bar{A}_{00}|^2 + |A_{00}|^2} \sin(2\beta - 2\phi_{\pi^0K_S}) \Rightarrow \text{current data } \rightarrow
\]
\[r_c e^{i\delta_c} = (\hat{T} + \hat{C})/\hat{P}; \quad B^+ \rightarrow \pi^+ K^0 \rightarrow |\hat{P}| \quad (\text{“charged” constraint}) \]
• So we are finally left with the following correlation in observable space:

\[S_{\pi^0 K_S} = 0.99^{+0.01}_{-0.08}\exp. -0.001 R_{T+C}^{+0.00}_{-0.11} R_q^{+0.00}_{-0.07} \gamma \]

• **Narrow upper band:** → benchmark scenario for future TH uncertainty

 - Both \(R_q \) and \(R_{T+C} \) factorize at LO in the \(1/m_b \) expansion, and can be well predicted using input from lattice QCD.

 - Use QCDF as a working tool (similar conclusions follow in SCET):
 * \(R_{T+C} \): form-factor dependence essentially cancels → \(1.23^{+0.02}_{-0.03} \).
 * \(R_q \) is key parameter, governed by \(SU(3) \)-breaking form-factor ratio:
 20% @ lattice: → \(R_q = 0.908^{+0.052}_{-0.043} \) (present: \(R_q = 1.02^{+0.27}_{-0.22} \))
Direct CP Asymmetries

- SM correlation between $A_{\pi^0K_S}$ and $A_{\pi^0K^+-\pi^-K^+}$:

- The difference $A_{\pi^0K^+} - A_{\pi^-K^+} \neq 0$ has recently received quite some attention as a possible sign of NP [Belle Collaboration, *Nature* 452 (2008) 332].

- However, the data can be accommodated in the SM within the error of $A_{\pi^0K_S}$, although hadronic amplitudes then deviate from the $1/m_b$ pattern...

 ⇒ reduce the experimental error of $A_{\pi^0K_S}$
NP Scenario to Resolve the $S_{\pi^0 K_S}$ Discrepancy

- Assume that NP manifests itself as a modified EWP: $q \rightarrow q e^{i\phi}$

- χ^2 fits: only $B \rightarrow \pi K$:

- both $B \rightarrow \pi K$ and $B \rightarrow \pi\pi$:

- Other penguin-dominated $b \rightarrow s$ decays can be accommodated as well:

[Illustration in QCDF]
LHCb can also address this topic:

- Most promising channel for this experiment: \(B_s^0 \rightarrow \phi\phi \)

 - Down spectator quark of \(B_d^0 \rightarrow \phi K_S \) replaced by strange quark:

 \[
 B_d^0 \rightarrow \phi W \rightarrow \phi K^+ K^- \rightarrow \phi K^+ K^- \ldots
 \]

 \[
 B_s^0 \rightarrow \phi W \rightarrow \phi K^+ K^- \rightarrow \phi K^+ K^- \ldots
 \]
New Physics in $B_q^0 - \bar{B}_q^0$ mixing:

- NP particles in boxes or tree contributions (e.g. SUSY, Z' models):

\[
M_{12}^q = M_{12}^{q,\text{SM}} + M_{12}^{q,\text{NP}} \equiv M_{12}^{q,\text{SM}} (1 + \kappa_q e^{i\sigma_q}) \Rightarrow
\]

- Mass difference: $\Delta M_q = \Delta M_{q,\text{SM}} |1 + \kappa_q e^{i\sigma_q}|$

- Mixing phase: $\phi_q = \phi_{q,\text{SM}} + \phi_{q,\text{NP}} = \phi_{q,\text{SM}} + \arg(1 + \kappa_q e^{i\sigma_q})$

[Details: P. Ball & R.F. (2006)]
Constraints in the NP Space of $B_q^0 - \bar{B}_q^0$ Mixing

- Contours in the $\sigma_q - \kappa_q$ plane following from $\rho_q \equiv \Delta M_q / \Delta M_q^{SM}$:

\[
0.6 \leq \rho_q \leq 1.4
\]

- Contours in the $\sigma_q - \kappa_q$ plane following from the NP phase ϕ_q^{NP}:

\[
10^\circ \leq |\phi_q^{NP}| \leq 170^\circ
\]
Implications of the Data for the B_d System

• Tension in the fit of the UT:
 \[(\phi_d)_{J/\psi K^0} - 2\beta_{\text{true}} = -(8.7^{+2.6}_{-3.6} \pm 3.8)^\circ\]

• Could be NP in $B^0_d - \bar{B}^0_d$ mixing (!?):
 \[\phi_d = 2\beta + \phi_d^{\text{NP}}\]

• But what about SM effects?: → doubly Cabibbo-suppressed penguins:

 \[
 \frac{S(J/\psi K_S)}{\sqrt{1 - C(J/\psi K_S)^2}} = \sin(\phi_d + \Delta\phi_d)
 \]

 \[- \Delta\phi_d \text{ fixed through } B^0_d \to J/\psi\pi^0 \text{ data and } SU(3) \text{ flavour-symmetry:}\]

 * Fit to all current data, allowing also for $SU(3)$ breaking:

 \[\Rightarrow \Delta\phi_d \in [-6.7, 0.0]^\circ \Rightarrow \text{softens tension in fit of UT!}\]

• **NP parameters:** \(\phi_d^{\text{NP}} \in [−14.9, 4.0]^{\circ} \), i.e. no significant effect.

 – However, this still allows for \(\kappa_d = |M_{12}^{d,\text{NP}} / M_{12}^{d,\text{SM}}| \approx 0.5 \), so that NP contributions could be as large as 50% but cannot be resolved...

• **Future perspectives (scenarios):**

 – Since the exp. error of \((\phi_d)_{J/\psi K^0} \) could be reduced to \(\sim 0.3^{\circ} \) (LHCb upgrade and \(e^+e^- \) super-\(B \) factory), these corrections will be crucial.

• **Interesting observations:**

 – The quality of the \(B \)-factory data has essentially reached a level of precision where subleading SM effects have to be included!

 – In the analyses of CP violation in \(B^0 \rightarrow J/\psi K_S \) this is mandatory in order to fully exploit the physics potential for NP searches.
B Physics at the LHC:

→ entering a new territory of the B landscape:

high statistics \oplus complementarity to B factories:

fully exploit the B_s-meson system!
General Features of the B_s System

- **Rapid $B_s^0 - \bar{B}_s^0$ oscillations:** $\Delta M_s^{\text{SM}} = \mathcal{O}(20 \text{ ps}^{-1}) \gg \Delta M_d^{\text{exp}} = 0.5 \text{ ps}^{-1}$

 \Rightarrow challenging to resolve them experimentally!

- **The width difference $\Delta\Gamma_s/\Gamma_s$ is expected to be of $\mathcal{O}(10\%)$** [$\tau_{B_s} \sim 1.5\text{ps}$]:

 - Experimental status: $B_s \to J/\psi\phi$ @ Tevatron \Rightarrow

 \[
 \Delta\Gamma_s = \left\{ \begin{array}{l}
 (0.19 \pm 0.07^{+0.02}_{-0.01})\text{ps}^{-1} \quad [D\Phi (’08)] \\
 (0.076^{+0.059}_{-0.063} \pm 0.006)\text{ps}^{-1} \quad [CDF (’07)]
 \end{array} \right.
 \]

 - May provide interesting CPV studies through “untagged” rates:

 \[
 \langle \Gamma(B_s(t) \to f) \rangle \equiv \Gamma(B_s^0(t) \to f) + \Gamma(\bar{B}_s^0(t) \to f)
 \]

 * The rapidly oscillating $\Delta M_s t$ terms cancel!
 * Various “untagged” strategies were proposed.

 [Dunietz (’95); R.F. & Dunietz (’96); Dunietz, Dighe & R.F. (’99); ...]

- **The CP-violating phase of $B_s^0 - \bar{B}_s^0$ mixing is tiny in the SM:**

 \[
 \phi_s^{\text{SM}} = -2\lambda^2\eta \approx -2^\circ \quad \Rightarrow \text{interesting for NP searches!}
 \]
Hot News of 2006:

• Signals for $B^0_s - \bar{B}^0_s$ mixing at the Tevatron:

 – For many years, only lower bounds on ΔM_s were available from the LEP (CERN) experiments and SLD (SLAC)!

 – Finally, the value of ΔM_s could be pinned down:

 * DØ: \Rightarrow two-sided bound $17 \text{ ps}^{-1} < \Delta M_s < 21 \text{ ps}^{-1}$ (90% C.L.)

 $\Rightarrow 2.5 \sigma \ @ \ \Delta M_s = 19 \text{ ps}^{-1}$; 2007: $\Delta M_s = (18.56 \pm 0.87) \text{ ps}^{-1}$

 * CDF: $\Delta M_s = [17.77 \pm 0.10(\text{stat}) \pm 0.07(\text{syst})] \text{ ps}^{-1} \approx 5\sigma$

• Lattice prediction ($f_{B_s}^2 \hat{B}_{B_s}$): [HPQCD collaboration, hep-lat/0610104]

 $\Delta M_s^{\text{SM}} = 20.3(3.0)(0.8) \text{ ps}^{-1}$
Constraints on NP through ΔM_s

- **CKM unitarity and Wolfenstein expansion:** \[|V_{ts}V_{tb}| = |V_{cb}| \left[1 + \mathcal{O}(\lambda^2) \right] \]

 \[\Rightarrow \text{no information on } \gamma \text{ and } R_b \text{ needed (in contrast to } \Delta M_d)! \]

- **Numerical results:** $\rho_s \equiv \Delta M_s / \Delta M_s^{\text{SM}} = 0.88 \pm 0.13 \Rightarrow$

- **Allowed region in the $\sigma_s - \kappa_s$ plane:** [Update of P. Ball & R.F. (2006)]

 \[\Rightarrow \text{plenty of space for NP left!} \]

- **NP usually correlated with $b \to s$ penguin modes (see above):**
 \[B^0 \to \pi^0 K_S, \ B^0 \to \phi K_S, \ B_s \to \phi \phi, \ldots \]
Golden Process to Search
for NP in $B_s^0 - \bar{B}_s^0$ Mixing:

$B_s^0 \rightarrow J/\psi\phi$

$\rightarrow B_s^0$ counterpart of $B_d^0 \rightarrow J/\psi K_S$...

Let’s have a closer look ...

- Amplitude phase structure (robust under NP, as tree dominated):

 ⇒ hadronic matrix elements cancel in mixing-induced observables!

- There is an important difference with respect to \(B^0_d \rightarrow J/\psi K_S \):

 The final state is an admixture of different CP eigenstates!

- Angular distribution of the \(J/\psi \rightarrow \ell^+\ell^- \phi \rightarrow K^+K^- \) decay products:

 ⇒ different CP eigenstates can be disentangled ...
Simple Case: One-Angle Distribution

\[
\frac{d\Gamma(t)}{d \cos \Theta} \propto \left[\frac{3}{8} \left(1 + \cos^2 \Theta \right) \right] + \left[\frac{3}{4} \sin^2 \Theta \right]
\]

\text{CP even}

\text{CP odd}

- **Untagged data samples:** → untagged rates ...

\[P_\pm(t) + \overline{P}_\pm(t) \propto \left[(1 \pm \cos \phi_s) e^{-\Gamma_L t} + (1 \mp \cos \phi_s) e^{-\Gamma_H t} \right] \]

- **Tagged data samples:** → CP asymmetries ...

\[\frac{P_\pm(t) - \overline{P}_\pm(t)}{P_\pm(t) + \overline{P}_\pm(t)} = \pm \frac{2 \sin(\Delta M_s t) \sin \phi_s}{(1 \pm \cos \phi_s) e^{+\Delta \Gamma_{st}/2} + (1 \mp \cos \phi_s) e^{-\Delta \Gamma_{st}/2}} \]

- **CP-violating NP effects would be indicated by the following features:**

 - The untagged observables depend on two exponentials;
 - sizeable values of the CP-violating asymmetries.

\[B_s^0 - \overline{B}_s^0 \text{ mixing phase } \phi_s = (-2\lambda^2 \eta)_{\text{SM}} + \phi_s^{\text{NP}} \approx \phi_s^{\text{NP}} \Rightarrow \]

\[^3 \text{Similar features hold also for the full three-angle distribution: more complicated, but no problem ...} \]
Further News from the Tevatron

• **First tagged analyses of the** $B_s \to J/\psi\phi$ decay by CDF and DØ:

• **UTfit collaboration:** arXiv:0803.0659 [hep-ph]

 – Performing an average of CDF and DØ and taking other constraints into account, it is speculated about CP-violating NP in $B^0_s - \bar{B}^0_s$ mixing.

• **Heavy Flavour Averaging Group (HFAG):** $\phi_s^{\text{NP}} = (-44^{+17}_{-21})^\circ \lor (-135^{+21}_{-17})^\circ$

\[\begin{align*}
\phi_s &= (-135^{+21}_{-17})^\circ \\
\phi_s &= (-44^{+17}_{-21})^\circ
\end{align*} \]

⇒ !? Fortunately, ϕ_s is very accessible @ LHCb ...
Prospects for ϕ_s Measurements at the LHC

- **Experimental reach @ LHCb:** *very impressive* ...
 - One nominal year of operation, i.e. 2 fb^{-1}: $\sigma(\phi_s)_{\text{exp}} \sim 1^\circ$
 - LHCb upgrade with integrated lumi of 100 fb^{-1}: $\sigma(\phi_s)_{\text{exp}} \sim 0.2^\circ$

- **Illustration:** $\langle \sin \phi_s \rangle_{\text{exp}} = -0.20 \pm 0.02$ (\rightarrow NP @ 10σ) vs. SM case

- **Remarks:**
 - It is very challenging to establish NP without new CP-violating effects.
 - But the data still leave a lot of space for such effects in specific NP scenarios (SUSY, Z', ...), which could be detected at the LHC!

[Details: P. Ball & R.F. (2006)]
Further Benchmark Decays

for the

LHCb Experiment

→ very rich physics programme ...

For experimental overviews, see CERN TH Flavour Institute:
Two Major Lines of Research

1. **Precision measurements of \(\gamma \):**
 - Tree strategies, with expected sensitivities after 1 year of taking data:
 - \(B_s^0 \rightarrow D_s^\mp K^\pm \): \(\sigma_\gamma \sim 14^\circ \)
 - \(B_d^0 \rightarrow D^0 K^* \): \(\sigma_\gamma \sim 8^\circ \) ... to be compared with the current \(B \)-factory data: \(\gamma|_{D(\ast)K(\ast)} = \begin{cases} (67^{+32}_{-25})^\circ & [\text{CKMfitter}] \\ (88 \pm 16)^\circ & [\text{UTfit}] \end{cases} \)
 - Decays with penguin contributions:
 - \(B_s^0 \rightarrow K^+K^- \) and \(B_d^0 \rightarrow \pi^+\pi^- \): \(\sigma_\gamma \sim 5^\circ \)
 - \(B_s^0 \rightarrow D_s^+D_s^- \) and \(B_d^0 \rightarrow D_d^+D_d^- \)

2. **Analyses of rare decays which are absent at the SM tree level:**
 - \(B_s^0 \rightarrow \mu^+\mu^- \), \(B_d^0 \rightarrow \mu^+\mu^- \)
 - \(B_d^0 \rightarrow K^{*0}\mu^+\mu^- \), \(B_s^0 \rightarrow \phi\mu^+\mu^- \); ...

 → let’s have a closer look at some decays ...
The $B_s \to K^+K^-$, $B_d \to \pi^+\pi^-$ System

- $B^0_s \to K^+K^-$:

- $B^0_d \to \pi^+\pi^-$:

$\Rightarrow s \leftrightarrow d$
• Structure of the decay amplitudes in the Standard Model:

\[A(B_d^0 \to \pi^+\pi^-) \propto e^{i\gamma} - de^{i\theta} \]
\[A(B_s^0 \to K^+K^-) \propto e^{i\gamma} + \left(\frac{1 - \lambda^2}{\lambda^2} \right) d'e^{i\theta'} \]

\[
d e^{i\theta} = \left. \frac{\text{“penguin”}}{\text{“tree”}} \right|_{B_d \to \pi^+\pi^-}, \quad d' e^{i\theta'} = \left. \frac{\text{“penguin”}}{\text{“tree”}} \right|_{B_s \to K^+K^-}
\]

\([d, d']\): real hadronic parameters; \(\theta, \theta'\): strong phases

• General form of the CP asymmetries:

\[A_{\text{dir}}^{\text{CP}}(B_d \to \pi^+\pi^-) = G_1(d, \theta, \gamma), \quad A_{\text{mix}}^{\text{CP}}(B_d \to \pi^+\pi^-) = G_2(d, \theta, \gamma, \phi_d) \]
\[A_{\text{dir}}^{\text{CP}}(B_s \to K^+K^-) = G_1'(d', \theta', \gamma), \quad A_{\text{mix}}^{\text{CP}}(B_s \to K^+K^-) = G_2'(d', \theta', \gamma, \phi_s) \]

• \(\phi_d = 2\beta\) (from \(B_d \to J/\psi K_S\)) and \(\phi_s \approx 0\) are known parameters:

- \(A_{\text{CP}}^{\text{dir}}(B_d \to \pi^+\pi^-) \quad \& \quad A_{\text{CP}}^{\text{mix}}(B_d \to \pi^+\pi^-): \Rightarrow \boxed{d = d(\gamma)} \quad \text{(clean!)}\)

- \(A_{\text{CP}}^{\text{dir}}(B_s \to K^+K^-) \quad \& \quad A_{\text{CP}}^{\text{mix}}(B_s \to K^+K^-): \Rightarrow \boxed{d' = d'(\gamma)} \quad \text{(clean!)}\)
• Example (inspired by the current data):

- **Input parameter:**
 * $\phi_d = 42.4^\circ$, $\phi_s = -2^\circ$, $\gamma = 70^\circ$, $d = d' = 0.46$, $\theta = \theta' = 155^\circ$

- **CP asymmetries:**
 * $B_d \to \pi^+\pi^-$: $A_{\text{CP}}^{\text{dir}} = -0.24$, $A_{\text{CP}}^{\text{mix}} = +0.59$
 * $B_s \to K^+K^-$: $A_{\text{CP}}^{\text{dir}} = +0.09$, $A_{\text{CP}}^{\text{mix}} = -0.23$
• The decays $B_d \rightarrow \pi^+\pi^-$ and $B_s \rightarrow K^+K^-$ are related to each other through the interchange of all down and strange quarks.4

\[U\text{-}spin \ symmetry \ \Rightarrow \ d = d', \ \theta = \theta' \]

\[d = d': \ \Rightarrow \ \text{determination of } \gamma, \ d, \ \theta, \ \theta' \]

\[\theta = \theta': \ \Rightarrow \ \text{test of the } U\text{-}spin \ symmetry! \]

[R.F. (1999); current picture: $\gamma = (66.6^{+4.3+4.0}_{-5.0-3.0})^\circ$ arXiv:0705.1121 [hep-ph]]

• Detailed studies show that this strategy is very promising for LHCb:

![Graph showing experimental accuracy for γ of a few degrees!]

4U spin: $SU(2)$ subgroup of the $SU(3)_F$ flavour-symmetry group of QCD.
The Rare Decays $B_q \to \mu^+\mu^- \ (q \in \{d, s\})$

- Originate from Z penguins and box diagrams in the Standard Model:

- Corresponding low-energy effective Hamiltonian:

 $$\mathcal{H}_{\text{eff}} = -\frac{G_F}{\sqrt{2}} \left[\frac{\alpha}{2\pi \sin^2 \Theta_W} \right] V_{tb}^* V_{tq} \eta_Y Y_0(x_t) (\bar{b}q)_{V-A} (\bar{\mu}\mu)_{V-A}$$

 - α: QED coupling; Θ_W: Weinberg angle.
 - η_Y: short-distance QCD corrections (calculated ...)
 - $Y_0(x_t \equiv m_t^2/M_W^2)$: “Inami–Lim function”, with top-quark dependence.

- Hadronic matrix element: → very simple situation:

 - Only the matrix element $\langle 0 | (\bar{b}q)_{V-A} | B_q^0 \rangle$ is required: f_{B_q}

 \Rightarrow belong to the cleanest rare B decays!
• **SM predictions:** [Blanke, Buras, Guadagnoli, Tarantino ('06)]

 → use the data for the ΔM_q to reduce the hadronic uncertainties:

 \[
 \begin{align*}
 \text{BR}(B_s \to \mu^+\mu^-) &= (3.35 \pm 0.32) \times 10^{-9} \\
 \text{BR}(B_d \to \mu^+\mu^-) &= (1.03 \pm 0.09) \times 10^{-10}
 \end{align*}
 \]

• **Most recent experimental upper bounds from the Tevatron:**

 – CDF collaboration @ 95% C.L.: [CDF Public Note 8956 (2007)]
 \[
 \begin{align*}
 \text{BR}(B_s \to \mu^+\mu^-) &< 5.8 \times 10^{-8}, & \text{BR}(B_d \to \mu^+\mu^-) &< 1.8 \times 10^{-8}
 \end{align*}
 \]

 – D0 collaboration @ 90% C.L. (95% C.L.): [D0note 5344-CONF (2007)]
 \[
 \begin{align*}
 \text{BR}(B_s \to \mu^+\mu^-) &< 7.5 (9.3) \times 10^{-8}
 \end{align*}
 \]

 ⇒ still a long way (?) → \text{LHC} (understanding of backgrounds essential)

• **However, NP may significantly enhance \text{BR}(B_s \to \mu^+\mu^-):**

 – In SUSY scenarios: \(\text{BR} \sim (\tan \beta)^6 \) → dramatic enhancement (!); [see, e.g., Foster et al. and Isidori & Paride ('06) for recent analyses]

 – NP with modified EW penguin sector: sizeable enhancement.
The Rare Decay $B_d^0 \rightarrow K^{*0} \mu^+ \mu^-$

- **Key observable for NP searches:** Forward–Backward Asymmetry

$$A_{FB}(\hat{s}) = \frac{1}{d\Gamma/d\hat{s}} \left[\int_0^1 d(\cos \theta) \frac{d^2\Gamma}{d\hat{s} d(\cos \theta)} - \int_{-1}^0 d(\cos \theta) \frac{d^2\Gamma}{d\hat{s} d(\cos \theta)} \right]$$

- θ is the angle between the B_d^0 momentum and that of the μ^+ in the dilepton centre-of-mass system,
- and $\hat{s} = s/M_B^2$, with $s = (p_{\mu^+} + p_{\mu^-})^2$.

- **Particularly interesting:**

$$A_{FB}(\hat{s}_0)|_{SM} = 0$$ [Burdman ('98); Ali *et al.* ('00); ...]

- The value of \hat{s}_0 is very robust with respect to hadronic uncertainties!
- SUSY extensions of the SM:
 $$\rightarrow$$ may yield $A_{FB}(\hat{s})$ of opposite sign or without a zero point $$\rightarrow$$
- **Sensitivity at the LHC:**
 - LHCb: ~ 4400 decays/year, yielding $\Delta \hat{s}_0 = 0.06$ after one year.
 - ATLAS will collect about 1000 $B^0 \rightarrow K^{*0}\mu^+\mu^-$ decays per year.

- **Other $b \rightarrow s\mu^+\mu^-$ decays under study:** $\Lambda_b \rightarrow \Lambda\mu^+\mu^-$, $B_s^0 \rightarrow \phi\mu^+\mu^-$...

- **Current B-factory data:** inclusive $b \rightarrow s\ell^+\ell^-$ BRs and the integrated asymmetries $\int A_{FB}$ in accordance with SM, but still large uncertainties.
Conclusions & Outlook
Where do we stand in \(B \) Physics?

- **Tremendous progress in \(B \) physics during the recent years:**

 - Fruitful interplay between theory and experiment

 - \(e^+e^- B \) factories: have produced \(\sum \mathcal{O}(10^9) B\bar{B} \) pairs;
 - Tevatron: has recently reported exciting \(B_s \) results.

- **Status in October 2008:**

 - The data agree globally with the Kobayashi–Maskawa picture!
 - But we have also hints for discrepancies: \(\rightarrow \) first signals of NP??

- **New perspectives for \(B \)-decay studies @ LHC (will resume spring 2009):**

 - Large statistics and full exploitation of the \(B_s \) physics potential, thereby complementing the physics programme of the \(e^+e^- B \) factories.
 - Precision determinations of \(\gamma \): \(\rightarrow \) key ingredients for NP searches!
 - Powerful studies of rare decays: \(B_{s,d} \rightarrow \mu^+\mu^-, ... \)

 \(\rightarrow \) much more stringent CKM consistency tests!
Other Flavour Probes

- **Charm physics:** → interesting news in spring ’07:
 - Observation of D^0–\bar{D}^0 mixing at the B factories!
 - The mixing parameters are found in the ball park of the SM predictions, which are affected by large long-distance effects.
 - Striking NP signal would be given by CP-violating effects ...

 → powerful charm-physics programme at LHCb!

- **Kaon physics:** → future lies on rare decays $K^+ \rightarrow \pi^+ \nu \bar{\nu}$, $K_L \rightarrow \pi^0 \nu \bar{\nu}$:
 - Theoretically very clean!
 - Proposal to measure $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ at the CERN SPS;
 - $K_L \rightarrow \pi^0 \nu \bar{\nu}$ studied at E391(a) KEK/J-PARC.

 [G. D’Ambrosio @ Napoli; ...]

- **Flavour violation in the lepton sector:**
 - Neutrino physics is very exciting, with a great future.
 - Charged lepton sector: e.g. search for $\mu \rightarrow e\gamma$ @ MEG (PSI).

 ⊕ top-quark studies by ATLAS & CMS
Direct Context with LHC & Long-Term Future

• Main goals of the ATLAS and CMS experiments:
 – Exploration of the mechanism of EW symmetry breaking: Higgs!?
 – Hopefully, production and observation of new particles ...
 – Then back to the questions of dark matter, baryon asymmetry ...

 ⊕ complementary and further studies at ILC/CLIC

• Synergy with the quark and lepton flavour sectors:
 – If discovery of new particles, which kind of new physics?
 – Insights into the corresponding new flavour structures and possible new sources of CP violation through studies of flavour processes.
 – Sensitivity on very high energy scales of new physics through precision measurements, also if NP particles cannot be produced at the LHC.

• Long-term future prospects for B-decay studies:
 – Discussion of an upgrade of the LHCb experiment.
 – Discussions of “super B factories” in Italy and Japan...
Recent Activity @ CERN-TH: → many discussions & talks ...

Flavour as a Window to New Physics at the LHC
5 May - 13 June 2008

Organizers: Robert Fleischer, Thomas Mannel, Yosef Nir (<a>email)

Scientific Case

Tremendous progress has been achieved in recent years in the understanding of the physics of flavour and of CP violation. This progress was made possible through the interplay between the data from the e+e- B factories and from the Tevatron and intensive theoretical work. The results have given evidence that the Cabibbo-Kobayashi-Maskawa matrix is the source of flavour violation and, in particular, that the Kobayashi-Maskawa phase is the dominant source of CP violation. Yet, a number of results is not quite consistent with the Standard-Model expectations, implying either a statistical fluctuation, or an incomplete understanding of the hadronic aspects or, more intriguingly, intervention of New Physics. Some other aspects of flavour physics and of CP violation could not yet be investigated.