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Introduction

� General Relativity

� Exact solutions: cosmology, black holes, solar
system

� Approximate solutions: gravitational waves, 
gravitomagnetic effects, cosmological
perturbations, post-newtonian parametrization



Spacetime metric

� The spacetime metric generalizes the notion of
metric introduce with Special Relativity.

� In General Relativity the metric makes sense only as
an infinitesimal distance between two events.

From it all the properties of spacetime, geodesics, � From it all the properties of spacetime, geodesics, 
curvature can be obtained.

� Gravitational phenomena can be interpreted as due 
to the spacetime geometry. It takes the following
form



Spacetime metric

ba

ab dxdxgds =2

� Where the Einstein summation convention has been
used

� are the spacetime coordinates),,,( zyxctxa =



FRIEDMANN-LEMAITRE-ROBERTSON-
WALKER METRIC

� The FLRW metric is derived imposing the 
homogeneity and isotropy of spacetime it has the 
form

satisfies the Einstein equations
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SCHWARZSCHILD METRIC

� A spherical symmetric static field is described by the 
Schwarzschild metric, which rules with very good
approximation the  motions in the solar system. 
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� The motion of the perihelion of Mercury’s orbit was
explained completely only applying this solution
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Present problems

� Dark matter

� Dark energy: acceleration of the universe

� Pioneer anomaly

� Relation between the different scales� Relation between the different scales

� Average problems in General Relativity

� Approximate symmetries



Our ignorance of the real structure of
spacetime

� All these problems represent our ignorance of the 
real structure of spacetime

� Boundary conditions

� Initial conditions

� Approximate symmetries or complete lack of
symmetry

� Unknown distribution of dark matter and dark 
energy (besides its nature)

� Alternative theories of gravity



Example: Dicke’s problem

� Is the Sun oblate?
� If yes then part of the precession of 43 seconds of arc per 
century of the Mercury perihelion can be explained by
classical tidal effects

� Paradoxically the exact explanation found in GR, would tell us
that GR is wrong!
But at the same time one should also consider the corrections� But at the same time one should also consider the corrections
to the Schwarzschild solution!

� The problem is still controversial, even if many evidences have
been found against the oblateness of the Sun.

� A positive answer would imply to deform the Schwarzschild
solution to take in account the lack of spherical symmetry

� But do not forget the Pioneer anomaly problem…..



How can a metric describe our ignorance ?

Given an exact metric we would like to ‘’deform’’ 
it in order to capture the most important
features of spacetime, not present in such a 
metricmetric



Geometrical deformations in 2D: The surface of
the earth

�Let us give an example of how we can 
deal with a deformed geometry

If we take the surface of the earth, we can consider it as a 
(rotating)  sphere(rotating)  sphere

But this is an approximation



The Earth is an oblate ellipsoid

� Measurments indicate that it is better described by an
oblate ellipsoid

Mean radius 6,371.0 km
Equatorial radius 6,378.1 km
Polar radius 6,356.8 km
Flattening 0.0033528
� But this is still an approximation



The shape of the Geoid

We can improve our measurements
an find out that the shape of the 
earth is not exactly described by any
regular solid. We call the 
geometrical solid representing the geometrical solid representing the 
Earth a geoid

1. Ocean
2. Ellipsoid
3. Local 
plumb
4. 
Continent
5. Geoid



Geoid in 3D



Another image of the geoid



Comparison between the deviations of the geoid from an
idealized oblate ellipsoid and the deviations of the CMB from

the homogeneity



Deformations in 2D

� It is well known that all the two dimensional metrics
are related by conformal transformations, and are all
locally conform to the flat metric

gxg )(~ 2Ω=



A generalization?

� The question is if there exists an intrinsic and 
covariant way to relate similarly metrics in                     
dimensions

2>n



Riemann theorem

� In an n-dimensional manifold with metric

the metric has

degrees of freedom
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Deformation in three dimensions

In 2002 Coll, Llosa and Soler (General 
Relativity and Gravitation, Vol. 34,  269, 
2002) proved the theorem which states that
any metric in a 3D space(time)  is related toany metric in a 3D space(time)  is related to
a constant curvature metric by the following
relation 

baabab hg σεσ+Ω= 2



Generalization to an arbitrary number N of
dimensions

� It was conjuctered by Coll (gravitation as a 
universal deformation law)

and showed by Llosa and Soler (Class. 
Quantum Grav. 22 (2005) 893–908) that a Quantum Grav. 22 (2005) 893–908) that a 
similar relation can be extended to an N-
dimensional spacetime



Our definition of metric deformation

Let us see if we can generalize the preceding result
possibly expressing the deformations in terms of
scalar fields as for conformal transformations. 
What do we mean by metric deformation? Let us
first consider the decomposition of a metric in first consider the decomposition of a metric in 
tetrad vectors
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The deforming matrix
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Role of the deformation matrices

� The  deformation matrices are the corrections
introduced in known exact metrics to consider a 
realistic spacetime

� The inverse problem is instead to find an average
solution which is solution of the Einstein equationssolution which is solution of the Einstein equations
satisfying the given symmetries

� They are the unknown of our problem

� They can be obtained from phenomenolgy

� Or  are solutions of a set of differential equations

� Let us give an example in terms of Newtonian
gravity



Deformation of the gravitational potential



Properties of the deforming matrices

� are matrices of scalar fields in spacetime, 

� they are scalars with respect to coordinate 
transformations, 

� they are defined within a Lorentz transformation. 
They define an equivalent class
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Identity

The identity is obviously the Kronecker delta

but as seen before also the Lorentz matrices behave

B

Aδ
but as seen before also the Lorentz matrices behave
as identities, so we consider as identity the (infinite) 
the set

{ }BAB

AI Λ= ,δ



Deformations and the Lorentz group

The deformation matrices form a right coset for the 
Lorentz group, i.e. any element is an equivalent class
defined by the relation
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Conformal transformations

A particular class of deformations is given by

which represent the conformal transformations

A

B

A

B xx δ)()( Ω=Φ

DBCA~ 2Ω=ΦΦ=η
This is one of the first examples of deformations
known from literature. For this reason we can 
consider deformations as an extension of conformal
transformations.
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More precise definition of deformation

If the metric tensors of two spaces and         

are related by the relation
M

M
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(cfr. L.P. Eisenhart, Riemannian Geometry, pag. 89)
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Other properties of the deforming matrices

� They are not necessarily real

� They are not necessarily continuos (may associate 
spacetime with different topologies)

� They are not coordinate transformations (one should
transform correspondingly all the covariant and transform correspondingly all the covariant and 
contravariant tensors), i.e. they are not
diffeomorphisms of a spacetime M to itself

� They can be composed to give successive deformations

� They may be singular in some point, if we expect that
they lead to a solution of the Einstein equations



Second deforming matrix
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We note simply that General Relativity and all the 
other metric theories can be re-expressed in 
terms of tetrads (tetrad-gravity) as variables

The  matrix can be an alternative 
approach in terms of variables. We shall call this

)(xABG
approach in terms of variables. We shall call this
matrix the second deforming matrix and

the first deforming matrix.)( xB

AΦ



A third approach to define spacetime
deformations

can be written as a spacetime tensor

by contracting it with the tetrad

and using the identity then a metric can 
be written as
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� By lowering its index with a Minkowski matrix
we can decompose the first deforming matrix
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The deforming functions and the degree of
freedom

� is the trace of the first deforming matrix

� is the symmetric part

is the antisymmetric part

Ω
B

AΘ
Bω is the antisymmetric part

� Riemann theorem: a metric in n-dimensional
spacetime has degrees of freedom

� the components of the first deforming matrix are 
redundant
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Expansion of the second deforming matrix

Substituting in the expression for
deformation

the second deforming matrix takes the formthe second deforming matrix takes the form

Inserting the tetrad vectors to obtain the metric it
follows that (next slide)
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Tensorial definition of the deformations

Reconstructing a deformed metric leads to

ababab gg γ+Ω= 2~

This is the most general relation between two
metrics. 

This is the third way to define a deformation



Deforming the contravariant metric

To complete the definition of a deformation we need
to define the deformation of the corresponding
contravariant tensor

abg~g
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A third way to define the controvariant metric
deformed

In tensorial terms we can procede as we did for the 
covariant tensor. We can make the ansatz

ababab gg λα += 2~

If , then , and we can suppose this
condition true even for

0=abλ 1−Ω=α

0≠abλ



Third way to define the contravariant metric
deformations

Regarding ,  it is related to by the following
relation,

abλ abγ
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where indices are raised and lowered with the 
undeformed metrics.
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Deformed connections

We are now able to define the connections

where ccc C+Γ=Γ
~where

is a tensor
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Deformed geodesic equations

� The deformed connection suggests that in a  
deformed spacetime the geodesic equations
correspond to a deviation of the geodesic motion in 
the undeformed spacetime
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Deformed geodesic motion

� Therefore the deformed geodesic motion takes
into account of our ‘’ignorance’’ of the real
spacetime metric, independently of the origin
of the deformationof the deformation

� Examples: Pioneer anomaly, unexpected
lensing properties,  dark matter distribution, 
deviation from the supposed spacetime
symmetries, different metric theories, and so 
on



The Pioneer anomaly

� Pioneer anomaly
� From Wikipedia, the free encyclopedia
� Unsolved problems in physics: What causes the apparent residual 
sunward acceleration of the Pioneer spacecraft?

� The Pioneer anomaly or Pioneer effect is the observed 
deviation from expectations of the trajectories of various unmanned 
spacecraft visiting the outer solar system, notably Pioneer 10 and spacecraft visiting the outer solar system, notably Pioneer 10 and 
Pioneer 11. Both spacecraft are escaping from the solar system, and 
are slowing down under the influence of the Sun's gravity. Upon 
very close examination, however, they are slowing down slightly 
more than expected from influence of all known sources. The effect 
can be modelled as a slight additional acceleration towards the Sun.

� At present, there is no universally accepted explanation for this 
phenomenon; while it is possible that the explanation will be 
mundane—such as thrust from gas leakage—the possibility of 
entirely new physics is also being considered.



Deformed Curvature tensors

Finally we can define how the curvature tensors are 
deformed
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Einstein equations for the deformed spacetime in 
the vacuum

The equations in the vacuum take the form
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The deformed Einstein equations in presence
of deformed matter sources

In presence of matter sources the equations for
the deformed metric are of the form
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Standard gravitational theories

� History of gravitational theory

� Newtonian gravity (NG)

� Classical mechanics

� General relativity (GR)

� History

� Mathematics

� Resources

� Tests

� Twistors



Alternatives to GR

� Classical theories of gravitation

� Conformal gravity

� Scalar theories
� Nordström

� Yilmaz� Yilmaz

� Scalar-tensor theories
� Brans–Dicke

� Self-creation cosmology

� Bimetric theories

� f(R) theories



Other alternatives

� Einstein–Cartan

� Cartan connection

� Whitehead

� Nonsymmetric gravitation

� Scalar-tensor-vector� Scalar-tensor-vector

� Tensor-vector-scalar

� f(R) theories with torsion



Unified field theories

� Teleparallelism

� Geometrodynamics

� Quantum gravity

� Semiclassical gravity

� Discrete Lorentzian QG

� Euclidean QG

� Induced gravity

� Causal sets

� Loop quantum gravity

� Wheeler–deWitt eqn



Theory of everything

� Supergravity

� M-theory

� Omega Point quantum gravity TOE

� Superstrings

� String theory� String theory

� String theory topics



Other

� Higher-dimensional GR
� Kaluza–Klein
� DGP model

� Alternatives to NG 
� Aristotle
� Mechanical explanations

� Fatio–Le Sage

� MOND

� Unclassified
� Composite gravity
� Massive gravity

� Electrogravitics
� Gravitomagnetism
� Anti-gravity
� Levitation



Conformal transformations

� Conformal transformations have often been thought
as a mathematical device to find solutions of the 
Einstein equations

� They were used to find a relation between the 
solutions of alternative gravitational theories (e.g. solutions of alternative gravitational theories (e.g. 
Brans-Dicke, f(R) theories) and Einstein’s general
relativity



Deformation and bimetric theories

� Bimetric theory refers to a class of modified theories 
of gravity in which two metric tensors are used instead 
of one. Often the second metric is introduced at high 
energies, with the implication that the speed of light
may be energy dependent.may be energy dependent.

� In general relativity, it is assumed that the distance 
between two points in spacetime is given by the metric 
tensor. Einstein's field equations are then used to 
calculate the form of the metric based on the 
distribution of energy.



Bimetric theories (N. Rosen)

� The first bimetric theory was introduced by
Nathan Rosen (remember EPR) in the early ‘40s

� Gravitation is interpreted as a physical field
described by a tensor (physical metric) on a described by a tensor (physical metric) on a 
geometrical background with a geometrical
metric

� The decomposition is like found by us with

� The field equations for the physical metric are 
precisely the ones written previously

12 =Ω abababg γη +=



Einstein equations for the deformed in
physical metric of the bimetric theory in the 

vacuum

The equations in the vacuum take the form

0

0
~

=−+

∇−∇+⇒=

ae
d

db
e

de
d

ab
e

db
d

aab
d

dabab

CCCC

CCRR



Kerr-Schild deformation



Kerr-Schild metrics

� Eddington: Schwarzschild metric (1924)

� Trautman: Gravitational waves transport information 
(1962)

� Kerr: rotating spherical body (rotating black hole) (1963)

� Newmann and Raina complex coordinate transformation� Newmann and Raina complex coordinate transformation
from a Schwarzschild to a Kerr metric (1966)

� Kerr and Schild: the Kerr-Schild ansatz

� Coll, Hildebrandt and Senovilla: ‘’Kerr-Schild
symmetries’’  (2000)



Eddington metric

� Eddington found that the Schwarzschild metric in a 
coordinate system can be written in the following
form
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Propagation of information by Gravitational
Waves

� Trautman showed that gravitational waves propagate 
information.

� He studied the metric
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The Kerr-Schild deformation matrix

� We can reformulate Kerr-Schild’s ansatz introducing
a suitable first deformation matrix
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Applications: Gravitational waves and 
perturbations

� The gravitational waves solutions are considered
as from linearizing the metric, perturbing the 
Minkowski spacetime,

ababab hg +≅η

with the condition and restricting the 
coordinate transformations to the Lorentz ones.   

ababab hg +≅η

1<<abh



Gravitational waves

� Imposing the gauge conditions

0=∇ ab

ah 0=aah

the linearized Einstein equations are

0=∂∂ bc
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a h



Gravitational waves

� In our approach the approximation is given by the 
conditions

� This conditions are covariant for three reasons: 1) we
are using scalar fields; 2) this objects are 

)()( xx B
AB

AB
A ϕδ +≅Φ 1)( <<xB

Aϕ

are using scalar fields; 2) this objects are 
adimensional; 3) they are subject only to Lorentz
transformations; 4) They are tensors with respect to
Lorentz transformations of rank (1,1)



Gravitational Waves

� It follows that

� The metric decomposition we have found does not

( ) B
AA

B

A

B ϕδ −=Φ−1

� The metric decomposition we have found does not
need to be a linearization

� However applying the usual approach to
gravitational waves we have to consider the following
equations in the vacuum



Gravitational waves and perturbations
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The equations for the scalar potentials



Gravitational waves and perturbations

� We have used the gauge conditions which are no 
more coordinate conditions.

� They appear as restrictions on the deforming
matrices. 

� The linearized Einstein equations can be translated� The linearized Einstein equations can be translated
in equations on the deforming matrices .



Discussion and Conclusions

� We have presented the deformation of spacetime metrics as the corrections one has
to introduce in the metric in order to deal with our ignorance of the fine spacetime
structure.

� Conceptually this can simplify many calculations, but also suggests us more 
ambitious goals

� To this aim we have introduced the in 4 dimensional spacetime 6 independent
scalar gravitational potentials

� The conditions to be imposed on these potentials are not restrictive
As  a result we showed that we can consider the gravitational theory as a theory of� As  a result we showed that we can consider the gravitational theory as a theory of
these potential given in a background geometry

� We showed that this scalar field are suitable for a covariant definition of
perturbations and gravitational waves

� But also to study the relation between GR and alternative gravitational theories
� They can connect spacetime with different topologies
� We found that the can suggest a way to show the production of the area entropy in 

Black Holes
� It could be interesting to consider the quantization of these potentials in order to

find a quantum gravity theory
� A great deal of work in the future years!!!!



Thanks for coming!


