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Fig. 22. Thermal conductivity of the FPU-! model versus lattice length N for T+ =0:11; T−=0:09, and "=1. The inset
shows the e!ective growth rate #e! versus N . Circles and diamonds correspond to free and "xed b.c., respectively.
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Fig. 23. Thermal conductivity of the FPU-! model, T+ = 150; T− = 15, "xed boundary condition. The data are taken
from Ref. [76].

of the e!ective exponent towards 0.4 (see the inset in Fig. 24) suggests that the presence of a
quadratic non-linearity in the force "eld does not modify the overall scenario observed in the FPU-!
model. Additionally, notice that changes in the temperature gradient, without modifying the average
T = (T+ + T−)=2, modify the e!ective conductivity only at relatively small sizes. In fact, we see
in Fig. 24 that the two sets of measures corresponding to #T = 0:1 and 0.02 (triangles and circles,
respectively) approach each other for N larger than 103. In both cases $(N ) increases linearly with
N for N ¡ 103 and no sizeable temperature gradient forms along the chain. Both facts hint at a
weakness of anharmonic e!ects up to this time/length scales. This is con"rmed by the comparison
with the results for a pure harmonic chain (with the same setup and same parameters) that exhibit
a clean linear growth of $ with N (see the solid line in Fig. 24) and a few-percent di!erences in
the initial size range. The fact that $ is smaller for larger #T can be thus attributed to a stronger
boundary scattering that reduces the conductivity.

diverging heat conductivity

Lepri, Livi, Politi
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Random Walk--2-Dimensional

In a plane, consider a sum of  two-dimensional vectors with random 

orientations. Use phasor notation, and let the phase of each vector be random. 

Assume  unit steps are taken in an arbitrary direction (i.e., with the angle 

uniformly distributed in  and not on a lattice), as illustrated above. The 

position  in the complex plane after  steps is then given by

(1)

which has absolute square

(2)

(3)

(4)

Therefore,

(5)

Each unit step is equally likely to be in any direction (  and ). The 

displacements are random variables with identical means of zero, and their

difference is also a random variable. Averaging over this distribution, which has

equally likely positive and negative values yields an expectation value of 0, so

(6)

The root-mean-square distance after  unit steps is therefore

(7)

so with a step size of , this becomes

(8)

In order to travel a distance 
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Lévy flight

From Wikipedia, the free encyclopedia

A Lévy flight, named after the French mathematician Paul Pierre Lévy, is a type of random walk in 

which the increments are distributed according to a "heavy-tailed" distribution.

A heavy-tailed distribution is a probability distribution which falls to zero as 1/|x|!+1 where 0 < ! < 2

and therefore has an infinite variance. According to the central limit theorem, if the distribution were to 

have a finite variance, then after a large number of steps, the distance from the origin of the random 

walk would tend to a normal distribution. In contrast, if the distribution is heavy-tailed, then after a 

large number of steps, the distance from the origin of the random walk will tend to a Lévy distribution.

Lévy flight is part of a class of Markov processes.

Two-dimensional Lévy flights were described by Benoît Mandelbrot in The Fractal Geometry of 

Nature. The exponential scaling of the step lengths gives Lévy flights a scale invariant property, and 

they are used to model data that exhibits clustering.

This method of simulation stems heavily from the mathematics related to chaos theory and is useful in 

stochastic measurement and simulations for random or pseudo-random natural phenomena. Examples 

include earthquake data analysis, financial mathematics, cryptography, signals analysis as well as many 

applications in astronomy and biology.

See also

Figure 1. An example of 1000 steps of a Lévy

flight in two dimensions. The origin of the 

motion is at [0,0] and the x and y components 

of each step are independent and distributed 

according to a symmetric, centered Lévy

distribution with c = 1 and ! = 1.2. Note the

presence of large jumps in location compared

to the Brownian motion illustrated in Figure 2.

Figure 2. An example of 1000 steps of an 

approximation to a Brownian motion in two 

dimensions. The origin of the motion is at

[0, 0] and the x and y components of each step 

are independent and are distributed according to 

a symmetric, centered Lévy distribution with

c = 1 and ! = 2 which is equivalent to a

normal distribution with a variance of 2 and a

mean of zero.

Help us provide free content to the world by donating today!

random walk (fixed increments)

Levy flight (increments from a power law 
distribution)

stochastic transport
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Abstract

In this work, we consider the problem of tracking players, during a soccer game, through the use of multiple cameras. The main goal
here consists in finding the position of the players on the pitch at each instance of time. The tracking is performed through a graph rep-
resentation in which the nodes correspond to the blobs obtained by image segmentation and the edges, weighted using the blobs infor-
mation and trajectory in the image sequence, represent the distance between nodes. We present a new way of trating occlusions by
splitting segmented blobs based on morphological operators and a backward and forward graph representation which allows an increas-
ing in the number of frames automatically tracked. Unlike other works in which the analysis of short video sequences is presented, this
paper illustrates the tracking results for all the players during a whole game.
! 2005 Elsevier Inc. All rights reserved.

Keywords: Tracking; Soccer players; Motion analysis

1. Introduction

Soccer is a very popular sport in the world and there is a
great interest in better understanding its important funda-
ments if one wants to increase the performance of a team
during a game, and better adapt the planning of the train-
ings. The movement of the players on the field, as a func-
tion of time, is a useful information that can contribute
for improving the performance of the players at different
positions [1]. For tactical variations that a team can assume
during a game, for example, the measured values may be
associated to physiological variables as well as to technical
and tactical information [3,18].

The first studies concerned with the players movement
during the game were made by Reilly and Thomas [18]
which employed audio recorders to register the estimated
location of the players. Withers et al. [23] used a camera
to analyze the movement of a unique soccer player. May-
hew and Wenger [15] also used a camera to track two play-

ers, each one filmed alternately for 7 min. They computed
the time spent for each activity of these tracked players,
such as walking, running, jogging, staying, as well as the
frequency of the corresponding activities.

Aiming to better quantify the players movements, Erd-
mann [7] filmed a soccer game with one stationary TV cam-
era (using wide-angle lens of 130") and analyzed the
displacement of one player, by replaying frame by frame,
using a videotape player and a transparent squared sheet
adapted to the monitor of the screen. The player position
was annotated each 1 s, during 5 min, and the kinematic
quantities were calculated.

Henning and Briehle [10] analyze the soccer players
movement by using a global positioning system (GPS). This
kind of system locates the global position of the object by
satellites which receive the signal emitted by a transmitter
located on the earth surface. This methodology demands
a device of 250 g to be carried by the tracked object from
which the data are collected at a frequency of 1 Hz.

D!Ottavio and Tranquilii [6] presents a method based on
a potentiometer and two cameras for tracking one player
during 90 min. The operator focus on the player of interest

1077-3142/$ - see front matter ! 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.cviu.2005.07.006

* Corresponding author. Fax: +55 19 3788 5847.
E-mail address: neucimar@ic.unicamp.br (N.J. Leite).

www.elsevier.com/locate/cviu
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tracers motion in chaotic fluids
Random Walks and Anomalous Diffusion

Work done by Eric Weeks, Jeff Urbach, and Harry Swinney. Related to work done by those three
and Tom Solomon. You may be interested in a paper we wrote for Nonlinear Science Today. If 
you'd like to directly download the paper, it is now only available here!

Random walks and Levy flights observed in fluid flows
ER Weeks and HL Swinney, formerly online at Nonlinear Science Today (Springer-Verlag, 1998). 

Normal walk on the left, anomalous walk on the right. 10000 steps.

Random Walks

A random walk considers a "walker" which starts somewhere, and takes steps in a random direction.
In some cases the steps can be of random length as well. The random walk can take place in a plane,
along a line, or in higher dimensions. The simplest random walk considers a walker that takes steps
of length 1 to the left or right along a line. More complicated random walks can include fancier
considerations, such as giving each step a velocity (random or fixed), and perhaps allowing the
random walker to pause for random amounts of time in between the steps.

In the limit as the step length goes to zero and the time between steps goes to zero, the random
walker typically exhibits a form of Brownian motion. In the work we do at CNLD, we study
random walks that take place in experiments where the individual steps can be seen, and thus the
motion is not Brownian motion.

In most cases, a whole group of random walkers spread out in a way called normal diffusion, which 
is what you probably think of when you think of diffusion. This is what you see if you put dye into
a glass of water. The cases where normal diffusion does not occur are called anomalous diffusion, 
which is what our research is about.

Why might anomalous diffusion occur? If you're stirring the glass of water whenyou put dye in it,
you can imagine the dye might spread out differently. Why is this important? In real life, factory
smokestacks can dump pollution into the air, which definitely is moving around in complicated
ways. Oil tankers spill oil into the ocean, where the motion of the water determines how the oil
spreads (rather than just Brownian motion).

random walk Levy flight

Weeks, Urbach, Solomon, Swinney



Navier-Stokes Equation

Waves follow our boat as we meander across the lake, and turbulent air

currents follow our flight in a modern jet. Mathematicians and physicists

believe that an explanation for and the prediction of both the breeze and the

turbulence can be found through an understanding of solutions to the

Navier-Stokes equations. Although these equations were written down in the

19th Century, our understanding of them remains minimal. The challenge is to

make substantial progress toward a mathematical theory which will unlock the

secrets hidden in the Navier-Stokes equations.

The Millennium Problems
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Charles Fefferman

Lecture by Luis Cafarelli (video)
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A Lévy flight for light
Pierre Barthelemy1, Jacopo Bertolotti1 & Diederik S. Wiersma1

A random walk is a stochastic process in which particles or waves
travel along random trajectories. The first application of a random
walk was in the description of particle motion in a fluid (brownian
motion); now it is a central concept in statistical physics, describ-
ing transport phenomena such as heat, sound and light diffusion1.
Lévy flights are a particular class of generalized random walk in
which the step lengths during the walk are described by a ‘heavy-
tailed’ probability distribution. They can describe all stochastic
processes that are scale invariant2,3. Lévy flights have accordingly
turned out to be applicable to a diverse range of fields, describing
animal foraging patterns4, the distribution of human travel5 and
even some aspects of earthquake behaviour6. Transport based on
Lévy flights has been extensively studied numerically7–9, but
experimental work has been limited10,11 and, to date, it has not
seemed possible to observe and study Lévy transport in actual
materials. For example, experimental work on heat, sound, and
light diffusion is generally limited to normal, brownian, diffusion.
Here we show that it is possible to engineer an optical material in
which light waves perform a Lévy flight. The key parameters that
determine the transport behaviour can be easily tuned, making
this an ideal experimental system in which to study Lévy flights
in a controlled way. The development of a material in which the
diffusive transport of light is governed by Lévy statistics might
even permit the development of new optical functionalities that
go beyond normal light diffusion.

In recent years, light has become a tool widely used to study trans-
port phenomena. Various analogies between electron, light and
matter-wave transport have been discovered, including weak and
strong localization12, the Hall effect13, Bloch oscillations14 and uni-
versal conductance fluctuations15. Understanding light in disordered
systems is of primary importance for applications inmedical imaging
(for example tumour diagnostics)16, random lasing17 and image
reconstruction18. Most of these studies have been limited to the sim-
plified case in which the light performs a random walk that can be
described as a diffusion process.

In a Lévy flight, the steps of the randomwalk process have a power-
law distribution, meaning that extremely long jumps can occur2,19,20

(Fig. 1). Consequently, the average step length diverges and the dif-
fusion approximation breaks down for Lévy flights. Power-law dis-
tributions often appear in other physical phenomena that exhibit
very large fluctuations, for instance the evolution of the stock mar-
ket21,22 and the spectral fluctuations in random lasers23,24.

A random walk in which the step length is governed by Lévy
statistics leads to superdiffusion; that is, the average squared displace-
ment Æx2æ increases faster than linearly with time t

x2
! "

~Dt c

where c is a parameter that characterizes the superdiffusion andD is a
generalized diffusion constant. For c. 1 we have superdiffusion,
whereas for c5 1 we recover normal diffusive behaviour. Normal
diffusions are therefore limiting cases of Lévy flights. In Lévy
flights, superdiffusion is purely a result of the long-tailed step-length

distribution. Random walks in which the step time (and thus a finite
velocity) is also important are called Lévy walks19. A long-tailed dis-
tribution in the scattering dwell time can give rise to, for example,
subdiffusion25 (c, 1). There is no practical difference between a Lévy
walk and a Lévy flight in the experiments described in this paper,
because all of the experiments are static (time independent).

We report here on the creation of an optical material in which the
step-length distribution can be specifically chosen. We use this to
produce a structure in which light performs a Lévy flight. In a set of
experiments, we show that the optical transport in such a material is
superdiffusive. To produce such a structure requires an approach
that initially seems counter-intuitive. The material that we have
obtained is, however, relatively easy to make and provides the first
well-controlled experimental test ground for Lévy transport pro-
cesses. We propose the name Lévy glass for this material.

To obtain an optical Lévy flight it might seem best to develop
scattering materials with self-similar (fractal) structures. This
approach turns out not to work in practice, owing to the dependence
of the scattering cross-section on size. In, for instance, a fractal col-
loidal suspension, the larger particles would be subject to resonant
(Mie) scattering, whereas the smaller particles would hardly scatter at
all (Rayleigh limit). The solution is to find away tomodify the density
of scatterers instead of their size. This makes it possible to obtain a
scattering mean free path that depends strongly on the position
inside the sample.

We have found a relatively easy, but so far unstudied, method of
doing this, using high-refractive-index scattering particles (of tita-
nium dioxide in our case) in a glass matrix. The local density of
scattering particles is modified by including glass microspheres of a
particular, highly non-trivial size distribution. These glass micro-
spheres do not scatter, because they are incorporated into a glass host
with the same refractive index. Their sole purpose is locally tomodify
the density of scattering elements.

1European Laboratory for Nonlinear Spectroscopy and INFM-BEC, via Nello Carrara 1, 50019 Sesto Fiorentino (Florence), Italy.

a b

Figure 1 | Random walk trajectories. a, Normal diffusive random walk;
b, Lévy random walk with c5 2 (Lévy flight). In the normal diffusive
random walk, each step contributes equally to the average transport
properties. In the Lévy flight, long steps are more frequent and make the
dominant contribution to the transport.
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The random walk in normal diffusive materials has a gaussian
step-length distribution with average step length given by the mean
free path ,

‘~
1

Nsh i
ð1Þ

where s is the scattering cross-section andN is the density of scatter-
ing elements. The angle brackets indicate an average over the sample
volume. To permit Lévy flights, thematerial should give rise to a step-
length distribution with a heavy tail, decaying as26

P zð Þ?
1

zaz1

where P(z) is the probability of a step of length z and a is a parameter
that determines the type of Lévy flight. The parameter a can be shown
to be related to the superdiffusion exponent c by c5 32 a, for
1# a, 2 (ref. 7). The moments of this distribution diverge for
a, 2, which means that the average in equation (1) can no longer
be taken over the entire sample. However,Ns can still be interpreted
as the local scattering strength of the material.

Our samples were made by suspending titanium dioxide nanopar-
ticles in sodium silicate, together with a precisely chosen distribution
Ps(d) of glass microspheres of different diameters d. The total concen-
tration of titanium dioxide nanoparticles was chosen such that,
on average, about one scattering event takes place in the titanium-
dioxide-filled spaces between adjacent glass microspheres. The step-
length distribution is then determined by the density variations
induced by the distribution Ps(d) of the glass microspheres. We have
calculated that a diameter distribution Ps(d)5 1/d21a is required to
obtain a Lévy flight with parameter a, and show this experimentally
below. Although with ourmethod we can obtain a Lévy flight with any
value of a, we have chosen toworkwith a5 1, because this is one of the
few cases in which the Lévy distribution has a simple analytical expres-
sion (namely that of theCauchy distribution27). For all other details on
sample preparation and the derivation of the diameter distribution for
Lévy flights with parameter a, see Supplementary Information.

We made a series of samples of different thicknesses in the range
30–550 mm. This allowed us to record the thickness dependence of
the total transmission. To do so, a collimated He–Ne laser beam was
used incident on the sample on a spot of area 1mm2. The total
transmitted light was then collected by means of an integrating
sphere. Total transmission in normal diffusive systems is known to

decay following Ohm’s law, which means that the transmission
depends linearly on the inverse sample thickness12. For superdiffu-
sion this can be generalized as follows, where A is a constant and L is
the thickness28:
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1
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Figure 2 | Thickness dependence of the total transmission. For
superdiffusion the transmission decays much more slowly than for normal
diffusion, and should follow a power lawwith exponent a/2. The dashed grey
curve shows the normal diffusive behaviour (a5 2), whereas the black line is
a fit to the data with only a as free parameter. We obtain a5 0.9486 0.09,
which is very close to the expected value, a5 1, for a lorentzian Lévy flight.
For very thick samples (550mm), optical absorption decreases the
transmission to slightly below the ideal curve. Error bars, s.d.
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Figure 3 | Spatial dependence of the transmission on the output surface.
a, Spatial distributions of the transmitted intensity for the Lévy samples
(top) and for normal diffusive samples of the same thickness (bottom). The
images were taken using a Peltier-cooled charged-coupled-device camera on
the output surface of the sample, which was illuminated from the front with
a focused (2mm-spot-size) He–Ne laser. The sample was placed between
crossed polarizers to make sure that any residual ballistic light was blocked.
The normal diffusive sample was made by using only sodium silicate and
titanium dioxide powder. In the Lévy case we can see that the transmission
profiles strongly fluctuate from onemeasurement to another, whereas in the
normal diffusive case they are nearly constant. b, Distributions of the radius
R (normalised to its average, ÆRæ)and total intensity I (normalised to its
average, ÆIæ) of the transmission profiles for the normal diffusive (blue) and
Lévy (red) samples. We can see that the very large fluctuations in the Lévy
case correspond to a broad distribution function of both the intensity and
radius of the transmission profile.
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images were taken using a Peltier-cooled charged-coupled-device camera on
the output surface of the sample, which was illuminated from the front with
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crossed polarizers to make sure that any residual ballistic light was blocked.
The normal diffusive sample was made by using only sodium silicate and
titanium dioxide powder. In the Lévy case we can see that the transmission
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heavy tailed distribution of scattering centers
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Game A - simple coin 
winning probability 1/2-ε



Ratchet effect - Parrondo paradox

Game A - simple coin 
winning probability 1/2-ε

Game B - if the capital is a multiple of 3
           winning probability 1/10-ε
            - if not
           winning probability 3/4-ε



Ratchet effect - Parrondo paradox

Game A - simple coin 
winning probability 1/2-ε

Game B - if the capital is a multiple of 3
           winning probability 1/10-ε
            - if not
           winning probability 3/4-ε

If ε>0 both games are unfair
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556 CHAPTER 25. DETERMINISTIC DIFFUSION

Figure 25.1: Deterministic diffusion in a finite
horizon periodic Lorentz gas. (Courtesy of T.
Schreiber)

not the best one to exemplify the theory, due to its complicated symbolic
dynamics. Therefore we apply the theory first to diffusion induced by a 1-d
maps in sect. 25.2and return to the Lorentz systems in sect. 25.4, after a

⇓PRIVATE
brief discussion of anomalous diffusion in sect. 25.3.

⇑PRIVATE

25.1 Diffusion in periodic arrays

The 2-d Lorentz gas is an infinite scatterer array in which diffusion of a light
molecule in a gas of heavy scatterers is modeled by the motion of a point
particle in a plane bouncing off an array of reflecting disks. The Lorentz
gas is called “gas” as one can equivalently think of it as consisting of any
number of pointlike fast “light molecules” interacting only with the station-
ary “heavy molecules” and not among themselves. As the scatterer array
is built up from only defocusing concave surfaces, it is a pure hyperbolic
system, and one of the simplest nontrivial dynamical systems that exhibits
deterministic diffusion, figure 25.1. We shall now show that the periodic
Lorentz gas is amenable to a purely deterministic treatment. In this class of
open dynamical systems quantities characterizing global dynamics, such as
the Lyapunov exponent, pressure and diffusion constant, can be computed
from the dynamics restricted to the elementary cell. The method applies to
any hyperbolic dynamical system that is a periodic tiling M̂ =

⋃
n̂∈T Mn̂

of the dynamical state space M̂ by translates Mn̂ of an elementary cell M,
with T the Abelian group of lattice translations. If the scattering array has
further discrete symmetries, such as reflection symmetry, each elementary
cell may be built from a fundamental domain M̃ by the action of a dis-
crete (not necessarily Abelian) group G. The symbol M̂ refers here to the
full state space, i.e.,, both the spatial coordinates and the momenta. The
spatial component of M̂ is the complement of the disks in the whole space.

We shall now relate the dynamics in M to diffusive properties of the
Lorentz gas in M̂.
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Fig. 1. The full sawtooth map 1.

Associated to f̂(x̂) we thus also consider the circle map

f(x) = f̂(x̂) −
[
f̂(x̂)

]
, x = x̂ − [x̂] ∈ [0, 1] (4)

(see fig.(2), where [· · ·] stands for the integer part. In our treatment a key
role will be played by periodic orbits of the dynamical system: we see here
that periodic orbits of the torus map are of two types: a periodic orbit p =
{x1, x2, . . . xn}, fnxj = xj , is called standing if it is also periodic orbit of the
dynamics on the line, f̂n(x̂j) = xj . and it is called running if it correspond
to a translation in the dynamics on the line (in the theory of area–preserving
maps such orbits are usually called accelerator modes), f̂n(xj) = xj + n̂p We
shall refer to n̂p ∈ Z as the jumping number of the p cycle.

Though maps (1) have a particularly simple form, transport properties are
not trivial: Klages and Dorfman [1] have shown how the diffusion coefficient
D is a fractal function of the slope Λ.

1.2 Transfer operator for diffusion

We now briefly recall how the diffusion coefficient D may be obtained by
taking into account periodic orbits of the (torus) map[2, 3, 4] (see also [5, 6]).
Our analysis is not confined to simple maps of the form (1), the only require-
ments will be that symmetry properties (2,3) hold, as well as hyperbolicity
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〈(xt − x0)2〉 ∼ D · t

δx(t) ∼ δx(0)eλt
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Microscopic instability: Lyapunov exponent

Transport properties: diffusion constant

Fractal diffusion coefficient from dynamical zeta functions 7

Using the fact that M = (Λ − 1)/2 the relation (28) becomes

∆(1, 0) = 1 −
1

Λ
(Λ − 1)

Λ

Λ − 1
= 0 (30)

Similar relations are found for even integer Λ were again the address of a0 can be

written in closed form due to the fact that fn(0) = 1/2 ∀n > 0.

In the same spirit it is possible to compute the diffusion coefficient for a generic
value of Λ, rewriting Eq. (5) as

D = −
1

2

(

∂2∆(z, β)

∂β2
/
∂∆(z, β)

∂z

)
∣

∣

∣

∣

z=1,β=0

(31)

where
∂2∆(z, β)

∂β2

∣

∣

∣

∣

1,0

=
1

2Λ

∑

k,j

[

k2sj(z, β)#x(j)k + 2k
∂sj(z, β)

∂β
#y(j)k +

+
∂2sj(z, β)

∂β2
#x(j)k

]

∣

∣

∣

∣

1,0

(32)

∂∆(z, β)

∂z

∣

∣

∣

∣

1,0

= − 1 +
1

2Λ

∑

k,j

∂sj(z, β)

∂z
#x(j)k

∣

∣

∣

∣

∣

1,0

(33)

The evaluation of expression (31) for a parameter choice Λ ∈ [2, 3] is shown in Fig. (2)

and can be compared, for example, with Fig.10 in [4] .

Figure 2. Fractal diffusion coefficient as a function of the slope of the map fΛ(x)
computed from the smallest zero of the dynamical zeta function. The insert is a blow
up of a part of the main figure

Klages, Dorfmann, Cristadoro
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non-trivial transport without chaos

classes may be appreciated by looking at different resolution

reconstructions; see Fig. 3: !a" and !b" refer to the same class
B case as Fig. 2, with spectral measure reconstructed from

correlation functions ut to times t!216 and t!28, respec-
tively: we see that central peaks do not scale by changing

resolution, while for the C class #the same case as Fig. 2; the
same resolutions of !a" and !b"$, we see that the peaks near
the origin in !c" and !d" have a nontrivial scaling behavior.
We remark that these approximations of the spectral measure

are used to estimate generalized dimensions #cf. !5", !6"$.
Typical results for class C are shown in Fig. 4.

A similar behavior was observed with other irrational

directions or a different irrational ratio L/l: therefore, nu-

merical data suggest that a fixed billiard exhibits directional

flows endowed with a singular continuous spectral compo-

nent for several irrational directions. Further indications in

that sense are given by the values of D1 that are always

strictly smaller than one !see Table I for a list of dynamical
and spectral indices of class C billiard tables".

It is worth remarking that, although available rigorous

results do not discriminate between rational and irrational

directions in this non-almost-integrable case, some peculiari-

ties emerged from numerical data when certain rational di-

rections were chosen. For example, choosing directions

equal to bad rational approximants of the inverse Golden

Mean !i.e., tan %!2;32" and L/l!&/2, C int
x does not seem to

decay to zero: we interpret this fact as a difficulty to reach

the asymptotic regime by numerical experiments.

TRANSPORT

In doubly connected billiard tables, billiard trajectories

revolving around the ‘‘hole’’ give rise to a transport, which

has a special physical interest. We define it by counting the

number of revolutions completed at time t by a given trajec-

tory, assumed positive in the counterclockwise sense. The

possible growth in time of this number is the kind of trans-

port in which we are interested. Let z and Bz be a point in a

chosen invariant manifold and its image, and draw the seg-

ment that joins the corresponding points of the billiard

boundary. Let '(z) denote the angle under which the seg-
ment is seen from the center of the billiard table, assumed

positive in the counterclockwise direction. Define

(!z ,t "!)
s!0

t"1

'!Bsz ".

The integer part of (/(2&) yields the number of revolutions
of the trajectory around the inner square, taken with the ap-

propriate sign. We want to analyze the growth in time of

*2! t "!! d+!z "(2!z ,t ".

We first derive an exact relation between the algebraic

growth of *2(t) and the scaling properties of the spectral
measure of the observable '(z). From the definitions we get

FIG. 3. Different recontructions of the spectral measure. !a" and !b" refer to
the same B example of Fig. 2, while !c" and !d" refer to the C class case of
Fig. 2. See the text for a detailed explanation.

FIG. 4. Estimates of D1 !empty circles" and D2 !full circles" !class C case of
Fig. 2", by using finer and finer reconstructions of the spectral measure:
dimensions are estimated by a linear fit over available points #see !5", !6"$,
and coincide with the slope of the dashed lines.

TABLE I. Dynamical and spectral indices for x correlations !class C".

L/l tan % , D2 D1

-"1 &/4 0.54#0.01 0.53#0.02 0.71#0.02
-"1 )"1 0.44#0.01 0.44#0.02 0.65#0.02
&/2 -"1 0.50#0.01 0.49#0.02 0.72#0.02
&/2 &"3 0.38#0.02 0.38#0.01 0.58#0.02
&/2 &/4 0.44#0.02 0.45#0.02 0.68#0.02
&/2 &/2 0.43#0.02 0.45#0.02 0.65#0.02
(e"2)"1 -"1 0.50#0.01 0.51#0.03 0.73#0.03
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!2" t #! $
s ,r!0

t"1 ! d%"z #&"Brz #&"Bsz #

! $
r ,s!0

t"1

Cp
& "r"s #

! $
r ,s!0

t"1 !
0

2'
d(&")#ei)"r"s #

!!
0

2'
d(&")#

sin2" )t

2
#

sin2" )

2
# . "7#

We define the exponent of algebraic growth of !2(t) as the
real number * such that the sum "actually a discrete Mellin
transform#,

I"+#!$
t!1

#,
1

t1#+ !2" t #,

converges for +$* and diverges for +%* .13

From "7# we find

I"+#!!
"'

#'
d(&")#$

t!1

#,
1

t+#1

sin2" )t

2
#

sin2" )

2
# .

It is easy to see that the inner sum behaves like )+"2g(+),
with g(+) finite for +$0 and infinite otherwise. Therefore
*!max(0,2"*̄), where *̄ is such that the integral

!
"'

#'
d(&")#)"-

converges if -%*̄ and diverges if -$*̄ . The number *̄ thus
defined is the scaling exponent of the spectral measure

d(&()) at )!0, defined via the Mellin transform.14 In fact,
if the measure (&.("/ ,#/)0 of small intervals centered at 0
scales like /1, then *̄!1; however, *̄ is well defined even

in cases when the spectral measure has no well-defined scal-

ing exponent at 0.

We have thus found that the exponent * of algebraic

growth of !2(t) and the scaling exponent of the spectral
measure d(& at 0 are related by *#*̄!2. Hof15 has given a
similar result, somewhat more complicated due to a different

definition of the dynamical and spectral exponents.

Transport is therefore faster, the slower the scaling of the

spectral measure at 0. In particular, *!2 if *̄!0; this is the
case, e.g., if (&(203)$0, that is, if the observable & is not
orthogonal to constant functions. We note, however, that *̄

$0 does not by itself imply that the spectral measure has a
continuous component, because such a scaling at 0 may re-

sult, e.g., of a pure point spectrum clustering at 0.

To illustrate these general aspects, consider two different

doubly connected billiards: "i# the annular billiard "replace
the squares by circles with the same center#, "ii# the Sinai
billiard "replace the inner square by a circle#. In case "i#, the
billiard is integrable, the invariant manifolds are labeled by

the value of the conserved angular momentum, and & is a
constant on every such manifold, leading to !2(t)4t2. In

case "ii# the invariant manifold is the full phase space "at unit
velocity#; !2(t) is numerically seen to increase linearly with
t see Fig. 5 "diffusive transport#. This entails a scaling expo-
nent 1 for the spectral measure at 0, fully consistent with the

fact that the billiard flow has a Lebesgue spectrum "in the
complement of constant functions#.

In class A we have observed a quadratic increase of !2,
i.e., ballistic transport. The integrated squared correlation

function of the observable &(z) tends to a constant value
C int

& (,)50 in the limit t→, . C int
& (,) depends on the chosen

values of L/l .

We remark that when analyzing the spectrum in the A

class one faces the following problem: the point character of

the spectrum leads to the theoretical expectation D1!D2

!0, but this is numerically hard to verify, as noise generated
in the finite size reconstruction process has a major influence

FIG. 6. !2(t) for a class C case .L/l!(!5#1)/2, tan )!'"3], with 28

initial conditions. The slope is 1.83&0.01, compatible with the spectral
index 2"*̄!1.80&0.04.

TABLE II. Dynamical and spectral indices for transport "class B#.

L/l tan ) - D2 D1 + "2# 2-*̄

2 ()"1)/2 0.62&0.02 0.65&0.03 0.84&0.03 1.63&0.01 1.47&0.06
2 (!13#2)/2 0.33&0.02 0.32&0.02 0.76&0.02 1.77&0.01 1.56&0.04
2 (195"!5)/19 402 0.07&0.01 0.14&0.04 0.48&0.05 1.58&0.01 1.58&0.03
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Lorentz gas with infinite horizon

Anomalous diffusion in infinite horizon billiards
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We consider the long time dependence for the moments of displacement #!r!q$ of infinite horizon billiards,
given a bounded initial distribution of particles. For a variety of billiard models we find #!r!q$%t&q !up to
factors of ln t). The time exponent, &q , is piecewise linear and equal to q/2 for q!2 and q"1 for q#2. We
discuss the lack of dependence of this result on the initial distribution of particles and resolve apparent

discrepancies between this time dependence and a prior result. The lack of dependence on initial distribution

follows from a remarkable scaling result that we obtain for the time evolution of the distribution function of the

angle of a particle’s velocity vector.
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I. INTRODUCTION

Diffusion of particles in an infinite domain billiard is a

well studied problem '1–7(. By a billiard we refer to the
motion of a point particle in a two-dimensional domain in
which the particle moves with constant velocity in straight
line orbits executing specular reflection !i.e., angle of inci-
dence equals angle of reflection" from fixed boundaries. By
an infinite domain we refer to an unbounded two-
dimensional region. An early consideration of diffusion in a
billiard as a model in physics was made by Lorentz '1( to
model electrons in a metal. In this model !called the Lorentz
gas" particles move freely and reflect specularly from fixed,
randomly placed, hard-wall scatterers. A modification of the
two-dimensional Lorentz gas in which there are circular scat-
terers on a square lattice is an example of an infinite horizon
billiard, called the Sinai billiard '5(, and is illustrated in Fig.
1!a". Infinite horizon billiards are the subset of infinite do-
main billiards that contain channels through which a particle
may pass without ever reflecting off a billiard wall. In this
paper we consider diffusion in infinite horizon billiards. The
examples that we study numerically are shown in Figs. 1!a"–
1!d". The billiards in Fig. 1 include: !a" the Sinai billiard,
composed of circular, hard-wall scatterers arranged on a
square lattice such that the scatterers do not touch each other;
!b" a modification of model !a" in which the circular scatter-
ers are randomly displaced !random in direction and magni-
tude" by at most )!L/2"R , so that there are channels of
width L"2(R$)) accommodating free motion; !c" ran-
domly oriented square scatterers on a square lattice; and !d"
the scalloped channel, in which the domain is infinite in the
y direction and bounded in the x direction by circular arc
segments, each subtending an angle less than or equal to
180°. Figure 1!d1" shows the case of the scalloped channel
where the circular arc segments are semicircles, while Fig.
1!d2" shows the case where the arcs subtend an angle less

than 180°. Particle motion for the situation in Fig. 1!d1" is
equivalent to particle motion for a stadium-type billiard 'see
Fig. 2!a"(; the particle motion within the scalloped channel
can be folded into the stadium billiard via reflection of the
particle at a straight wall as it passes to the next cell. By cells
we mean each portion of the scalloped channel domain be-
tween the dotted lines of Fig. 1!d". In a similar manner, par-
ticle motion in the bounded billiard of Fig. 2!b" can be
thought of as equivalent to motion in the infinite billiard of
Fig. 1!a". One important means of characterizing transport in
an infinite domain two-dimensional billiard is through the
phase space probability distribution function !pdf",
P(x ,y ,* ,t), where * is the angle of the particle velocity and
we take all particle velocities to have magnitude 1. From the
pdf one can calculate the displacement moments of the dis-

*Electronic address: dna2@physics.umd.edu

FIG. 1. The four infinite horizon billiard structures that we con-

sider include !a" the Sinai billiard such that the channel width W
%L"2R#0; !b" the Sinai billiard with random displacements )
away from the square matrix such that W%L"2(R$))#0; !c"
randomly oriented squares such that W%L"!2d#0; !d" scalloped
channel with !d1" semicircular arcs and !d2" arcs subtending an
angle less than 180°.
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infinite free flights 
are possible

〈(−→x t −−→x 0)
2〉 ∼ t · ln t

logarithmic divergence of D



Transport exponents

Normal, gaussian transport yields β(q)=q/2 

Anomalous behavior in moments’ spectrum

〈| xt − x0 |q〉 ∼ t
ν(q)

= t
q·β(q)

Different parameter values 
for the standard map

Castiglione, Mazzino, Muratore, Vulpiani

〈|xt − x0|q〉 ∼ tβ(q)

q



The approach

     Transfer matrix - Perron Frobenius operator

     Employ periodic orbits (families of them)
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Unbounded vs torus dynamics

Correspondence is complete once we assign 
“jumping numbers” σ

forse qualcosa di meglio



Unbounded vs torus dynamics

Correspondence is complete once we assign 
“jumping numbers” σ

-1             0         +1

forse qualcosa di meglio
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4 
0 0 0  

Figure 1. Three equivalent representations of the Sinai billiard. (a) The fundamental domain. 

0) The original Sinai billiard with definitions of the variables 0 and a.  (c) The unfolded system 
with a sample of orbits which are periodic of period one in the fundamental domain 

The trajectory of the Sinai billiard consists of laminar intervals, when bouncing between 

the straight sections, interrupted by scatterings on the central disk. When the radius of the 
disk is small it is reasonable to assume that a disk bounce will almost destroy the memory 

of the previous laminar phase. The Sinai billiard seems therefore ideally suited for the BER 
approximation. Unfortunately the BER method does not offer us any means of controlling 

the errors, however we will find some support that they are small for small disk radii R. The 
length of the chaotic interval is infinitely short so that A is simply the length of the trajectory 

between two disk scatterings. For big radii, there is  another source of intermittency [24,25], 

the trajectory may be trapped between the disk and the straight section. For these reasons 
we will focus on the limit of small disk radii. 

3.1. Symbolic dynamics 

First we will define a symbolic dynamics for the Sinai billiard. The reason is twofold. 

First we need it for the application of the BER approximation. Secondly we will use it for 

finding the periodic orbits of the system, which we will need to test the results obtained 

from the BER approximation. The casual reader may omit many of the details. 

The canonical variables are 

(t, pi.) = ( R q 5 , a s i n a )  where the angles q5: 0 < q5 < ~ 2 n  and a: -$ < a < $ 
We let the disk be our Poiocari surface of section. 

running mode, periodic orbit for billiard

standing mode



Statistical mechanics approach

Northeastern

Illinois

University Ising Model (1D)

Consider a one dimensional array of N-spins...

i =
si =

1
+1

2
−1

3
−1

4
+1

5
+1

. . .

N − 1
−1

N
+1

Total Energy

U = −ε (s1s2 + s2s3 + s3s4 + . . . sN−1sN )

Number of States

No. of states = 2N

The Ising Model – p.9/16

1d Ising partition function

ZN (β,H) =
∑

{si}

e−βEI({si}) = Tr TN

leading eigenvalue yields Gibbs free energy

spectral gap rules spatial correlation decay



dynamical systems transfer operator

∫

Ω
dx!(x)(F ◦ T )(x) =

∫

Ω
dx(L!)(x)F (x)

evolution on 
observables (Koopman)

evolution on 
probability densities 
(Perron-Frobenius)

spectral analysis of L

1 is the leading eigenvalue (invariant measure)

the spectral gap rules temporal correlation decay



transfer operators and transport

the spectral problem is in general highly non 
trivial: even the choice of a function space is 
delicate (this is not a mathematical detail: ugly 
observables generally decay at a slower rate).

we introduce a “generalized” transfer operator 
accounting for transport properties

(L!)(x) =
∑

y:Ty=x

1
T ′(y)

!(y) =
∫

Ω
dz !(z)δ(x− T (z))



(Lβh) (x) =
∫

Ω
dz h(z) eβ(T (z)−z)δ(x− T (z))

what’s the use?

Gn(β) = 〈eβ(T n(x0)−x0)〉0 ∼ λ(β)n

the generating function grows asymptotically as 
the leading eigenvalue

moments are obtained by Taylor expansion of G



how to compute λ(β)

smallest zeroes of generalized zeta functions

product over the set of unstable periodic 
orbits of the dynamical systems



ζ−1
β (z) =

∏

{p}

(
1− znp

eβ·σp

|Λp|

)
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set of unstable periodic orbits
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ζ−1
β (z) =

∏

{p}

(
1− znp

eβ·σp

|Λp|

)

their instability



ζ−1
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ζ−1
β (z) =

∏

{p}

(
1− znp

eβ·σp

|Λp|

)

their “space shift”



transport and analytic properties

D = lim
n→∞

1
2n

d2

dβ2

(
1

2πı

∫ a+ı∞

a−ı∞
ds esn

∂sζ
−1
β,(0)(e

−s)

ζ−1
β,(0)(e−s)

)

β=0

〈(xn − x0)k〉0 ∼ ∂k

∂βk

1
2πı

∫ a+ı∞

a−ı∞
ds esn d

ds
ln

[
ζ−1
β,(0)(e

−s)
]∣∣∣∣

β=0

analytic properties of zeta functions near their 
first zero give the asympotics of moments (via 
Tauberian theorems for Laplace transforms)

RA, Cristadoro, Dahlqvist



Qualitative  1-d intermittency



Qualitative  1-d intermittency

“strong chaos” exponential instability Λn≈an

“weak chaos” power-law instability Λn≈na



Qualitative  1-d intermittency



Qualitative  1-d intermittency

“strong chaos” simple zero  (polynomial)

“weak chaos” non analytic behavior



take-home message

even low-dimensional dynamical systems can 
provide a rich variety of transport properties 
(diffusion, anomalous scaling, ratchet behavior)

analysis in terms of periodic orbits (zeta 
functions) yields exact results for some models, in 
the realm of a purely deterministic approach



RA, G. Cristadoro: Deterministic (anomalous) 
transport


