
Hunting for Cosmological 
Neutrino Background (CvB)

Alfredo Cocco Alfredo Cocco 
&&

Gianpiero ManganoGianpiero Mangano

INFN, Sezione di Napoli, INFN, Sezione di Napoli, ItalyItaly



CvB standard features

Neutrinos decoupled at T~MeV, keeping 
a “thermal” spectrum 1e
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At T~me, e+e- pairs annihilate heating photons

γγ→+ -ee

fν=fFD(p,Tν)[1+δf(p)]

CvB details

… and neutrinos. Non thermal features in v 
distribution (small effect). Oscillations slightly modify 
the result 
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CvB details



µν/Tv very small (bad for detection!)

BBN, CMB (LSS) + oscillations

µν/Tv
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CvB for optimists

V produced by decays at some cosmological epoch

Early on:      
(TBBN> T>TCMB)

Late (T<< TCMB):

Unstable DM (e.g. Majoron)

dm
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v H
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Lattanzi and Valle ’07

Lattanzi, Lesgourgues, GM 
and Valle (in progress)

Cuoco, Lesgourgues, GM and Pastor ‘05

Thermal FD spectrum

Distortion from Φ
decay
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CvB indirect evidences

T < eVT ~ MeV

Formation of Large 
Scale Structures

LSS

Cosmic Microwave 
Background

CMB

Primordial

Nucleosynthesis

BBN

Flavor blindflavor dependent



Effect of neutrinos on BBN

1. Neff fixes the expansion rate during BBN
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2. Direct effect of electron neutrinos and antineutrinos 
on the n-p reactions
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Effect of CvB on CMB and LSS
Mean effect (Sachs-Wolfe, M-R equality)+ perturbations

Melchiorri and Trotta ‘04



CvB locally: a closer look

Neutrinos cluster if massive (eV) on large
cluster scale

Escape velocity: Milky Way 600 Km/s   

clusters 103 Km/s
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Milky Way 
(1012 MO)

.

@ Earth

Ringwald and Wong ‘04
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Detection I: Stodolsky effect

Energy split of electron spin states
in the v background

requires v chemical potential (Dirac) or net helicity
(Majorana)

Requires breaking of isotropy (Earth velocity)

Results depend on Dirac or Majorana, 
relativistic/non relativistic, clustered/unclustered

Duda et al ‘01)nn(sgGE vvAF −⋅≈ ⊕β∆
rr



The only well established linear effect in GF

Coherent interaction of large De Broglie
wavelength

Energy transfer at order GF
2
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F ρ
Cabibbo and Maiani ’82

Langacker et al ‘83

Torque on frozen magnetized macroscopic piece 
of material of dimension R 

2
3

vv
3

27 s cm
cm 100
nn

10R
cm

A
10010a −

−−
⊕− ⎟

⎠
⎞

⎜
⎝
⎛ −
⎟
⎠
⎞

⎜
⎝
⎛
⎟
⎠
⎞

⎜
⎝
⎛⎟
⎠
⎞

⎜
⎝
⎛≈

β

Presently Cavendish torsion balances 212 s cm10a −−≈



Detection II: GF
2

V-Nucleus collision: net momentum transfer due 
to Earth peculiar motion
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Detection III

Accelerator: vN scattering hopeless

Cosmic Rays (indirect): resonant v annihilation
at mZ eV
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Absorption dip (sensitive to
high z)

Emission: Z burst above GZK 
(sensitive to GZK volume, (50 
Mpc)3)

Ringwald ‘05
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Question: “Is it possible to detect/measure the CvB ?”

Answer: NO !

All the methods proposed so far require either strong
theoretical assumptions or experimental apparatus
having unrealistic performances

Reviews on this subject: A.Ringwald hep-ph/0505024
G.Gelmini hep-ph/0412305



A ’62 paper by S. Weinberg and v chemical potential

In the original idea a large neutrino chemical potential distorts
the electron (positron) spectrum near the endpoint energy



Massive neutrinos and neutrino capture on beta 
decaying nuclei

A.G.Cocco, G.Mangano and M.Messina JCAP 06(2007) 015

e±

νe

(−)

(A, Z) (A, Z ± 1)

Beta decay

e±

νe

(−)

Neutrino Capture on a
Beta Decaying Nucleus

(A, Z) (A, Z ± 1)

This process has no energy threshold !



dn/dEe

Qβ

mν

Ee-me

2mν

A 2 mv gap in the electron spectrum centered around Qβ

Today we know that v are NOT degenerate but are massive !!

Beta decay

Neutrino Capture on a
Beta Decaying Nucleus

dn/dEe

Ee-me

Qβ

mν



NCB Cross Section
a new parametrization

Beta decay rate

NCB

The nuclear shape factors Cβ and Cν both depend on the same nuclear
matrix elements

It is convenient to define

In a large number of cases A can be evaluated in an exact way and
NCB cross section depends only on Qβ and t1/2 (measurable)



NCB Cross Section
on different types of decay transitions

• Superallowed transitions

• This is a very good approximation also for allowed
transitions since

• i-th unique forbidden



NCB Cross Section Evaluation
The case of Tritium

Using the expression

we obtain

where the error is due to Fermi and Gamow-Teller matrix
element uncertainties

Using shape factors ratio

where the error is due only to uncertainties on Qβ and t1/2

lim β → 0 
=

lim β → 0
=



NCB Cross Section Evaluation

allowed 1st unique forbidden 2nd unique forbidden 3rd unique forbidden

allowed 1st unique forbidden 2nd unique forbidden 3rd unique forbidden

β+ (bottom)
β− (top) Qβ =     1 keV

Qβ = 100 keV
Qβ =   10 MeV



NCB Cross Section Evaluation
using measured values of Qβ and t1/2

1272 β− decays

799 β+ decays

Beta decaying nuclei having BR(β±) > 5 %
selected from 14543 decays listed in the ENSDF database

3H



NCB Cross Section Evaluation
specific cases

Superallowed 0+ 0+ decays
used for CVC hypotesis testing
(very precise measure of Qβ and t1/2) Nuclei having the highest product

σNCB  t1/2



Relic Neutrino Detection

In the case of Tritium we estimate that 7.5 neutrino capture events
per year are obtained using a total mass of 100 g

The cosmological relic neutrino capture rate is given by

Tν = 1.7 ⋅ 10-4 eV

after the integration over neutrino momentum and inserting
numerical values we obtain



Relic Neutrino Detection
signal to background ratio

In the case of Tritium (and using nν=50) we found that

Taking into account the beta decays occurring in the last bin of width ∆
at the spectum end-point we have that

The ratio between capture (λν) and beta decay rate (λβ) is obtained
using the  previous expressions

∼ 10- 10



Relic Neutrino Detection
signal to background ratio

Observing the last energy
bins of width ∆

∆

It works for ∆<mv

dn/dTe ββ

mν Te

2mν

∆ ∆∆

where the last term is the probability for a beta decay electron
at the endpoint to be measured beyond the 2mν gap



Relic Neutrino Detection
discovery potential

As an example, given a neutrino mass of 0.7 eV and an
energy resolution at the beta decay endpoint of 0.2 eV
a signal to background ratio of 3 is obtained

In the case of 100 g mass target of Tritium it would take
one and a half year to observe a 5σ effect

In case of neutrino gravitational clustering we expect a
significant signal enhancement

FD = Fermi-Dirac NFW= Navarro,Frenk and White
MW=Milky Way (Ringwald, Wong)



Question: “Is it possible to detect/measure the CvB ?”

Answer: Maybe….it depends on S/B ratio !

The relevance of this statement can be pictured as

≠ 0
0 = ∞



KATRIN
Karlsruhe Tritium Neutrino Experiment

Aim at direct neutrino mass measurement through the
study of the 3H endpoint(Qβ =18.59 keV, t1/2=12.32 years)

Phase I:
Energy resolution: 0.93 eV
Tritium mass: ∼ 0.1 mg
Noise level 10 mHz
Sensitivity to νe mass: 0.2 eV

Magnetic Adiabatic Collimator + Electrostatic filter



KATRIN
Karlsruhe Tritium Neutrino Experiment

MonteCarlo simulation of phase I data

First results in 2011
End of Phase I data taking: 2015

Phase II:
Energy resolution: 0.2 eV
Noise level 1 mHz



MARE

Aim at direct neutrino mass measurement through the
study of the 187Re endpoint (Qβ =2.66 keV, t1/2=4.3 x 1010 years)
Using TEs+micro-bolometers @ 10 mK temperature

187Re crystal

TES



MARE

Energy resolution: 2÷3 eV
Total 187Re mass: ∼ 100 g

Phase II:
Energy resolution: < 1 eV



Neutrino masses

Terrestrial bounds

ve  <2 eV (3H decay)

vµ <0.19 MeV (pion decays)

vτ <18.2 MeV (τ decays)

Cosmology

Bounds on Σi mi

Courtesy of A.Marrone

G. Fogli et al. 2007



Conclusions

The fact that neutrino has a nonzero mass has renewed
the interest on Netrino Capture on Beta decaying nuclei
as a tool to measure very low energy neutrino

A detailed study of NCB cross section has been performed for
a large sample of known beta decays avoiding the uncertainty
due to nuclear matrix elements evaluation

The relatively high NCB cross section when considered in
a favourable scenario could bring cosmological relic neutrino
detection within reach in a few years



vAP Collaboration
CvB map 20??



Variation on the theme:

Beta-beams

Electron-capture nuclei (fighting with energy
threshold!)

Best nucleus candidate?

Already there ? (Troisk anomaly) Unlikely
large flux!!

Waiting for Katrin


