Status of neutrino mixing measurements and future searches for CP violation in the leptonic sector

> Pasquale Migliozzi INFN – Napoli

Outline

- Why the neutrinos are so important?
- A brief introduction to v oscillations and their evidences
- Present knowledge of the mixing parameters
- The OPERA experiment
- The quest for θ_{13} : T2K and the reactor experiments
- Super-beams
- Beta-beams
- Neutrino Factories

Unique Role of Neutrino Mass

- Lowest order effect of new physics at short distances
- Tiny effect $(m_v/E_v)^2 \sim (0.1 \text{eV}/\text{GeV})^2 = 10^{-20!}$
- Inteferometry
 - Need coherent source
 - Need interference (*i.e.*, large mixing angles)
 - Need long baseline

Nature was kind to provide all of them!

- "neutrino interferometry" (a.k.a. neutrino oscillation) a unique tool to study physics at very high scales
- Not entirely surprising (in *retrospect*) that neutrino mass was the first evidence for physics beyond standard model

The PMNS leptonic mixing matrix If neutrinos have mass: $|\nu_{l}\rangle = \sum U_{li} |\nu_{i}\rangle$ Flavour e.s. Mass e.s. For three neutrinos $\boldsymbol{U}_{li} = \begin{pmatrix} \boldsymbol{U}_{e1} & \boldsymbol{U}_{e2} & \boldsymbol{U}_{e3} \\ \boldsymbol{U}_{\mu 1} & \boldsymbol{U}_{\mu 2} & \boldsymbol{U}_{\mu 3} \\ \boldsymbol{U}_{\tau 1} & \boldsymbol{U}_{\tau 2} & \boldsymbol{U}_{\tau 3} \end{pmatrix} = \begin{pmatrix} \boldsymbol{c}_{12} & \boldsymbol{s}_{12} & \boldsymbol{0} \\ -\boldsymbol{s}_{12} & \boldsymbol{c}_{12} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{0} & \boldsymbol{1} \end{pmatrix} \cdot \begin{pmatrix} \boldsymbol{1} & \boldsymbol{0} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{c}_{23} & \boldsymbol{s}_{23} \\ \boldsymbol{0} & -\boldsymbol{s}_{22} & \boldsymbol{c}_{22} \end{pmatrix} \cdot \begin{pmatrix} \boldsymbol{1} & \boldsymbol{0} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{1} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{0} & \boldsymbol{e}^{-\boldsymbol{i}\boldsymbol{\delta}} \end{pmatrix} \cdot \begin{pmatrix} \boldsymbol{c}_{13} & \boldsymbol{0} & \boldsymbol{s}_{13} \\ \boldsymbol{0} & \boldsymbol{1} & \boldsymbol{0} \\ -\boldsymbol{s}_{12} & \boldsymbol{0} & \boldsymbol{c}_{12} \end{pmatrix}$ where $c_{ii} = \cos \theta_{ii}$, and $s_{ii} = \sin \theta_{ii}$ Oscillation probability $P_{\nu_{\alpha} \to \nu_{\beta}}(L) = \sum_{k=1}^{3} \left| U_{\alpha k} \right|^{2} \left| U_{\beta k} \right|^{2} + 2 \operatorname{Re} \sum_{k=1}^{3} U_{\alpha k}^{*} U_{\beta k} U_{\alpha j} U_{\beta j}^{*} \exp \left(-i \frac{\Delta m_{k}^{2} L}{2E} \right)$ Fixed by nature Tuned by experiments

Notation

• Mixing parameters: $U = U(\theta_{12}, \theta_{13}, \theta_{23}, \delta)$ as for CKM matrix

• Mass-gap parameters: $M^2 = \Delta m_{12}^2$, $\pm \Delta m_{23}^2$

The absolute mass scale should be set by other measurements:

- β -decay
- $0\nu 2\beta$ -decay
- anisotropies in cosmic background radiation

$(\Delta m^2, \theta_{23})$ - driven oscillations in atmospheric neutrinos

From zenith distortions...

... to L/E osc. (half period)

 $(\Delta m^2, \theta_{23})$ - driven oscillations in LBL accelerator neutrinos

Fixed L, half-oscillation period (dip) seen in E spectrum

K2K final results

MINOS 2007 results

 $(\Delta m^2, \theta_{23})$ - complementarity of atmospheric/accelerator v

All results consistent with <u>muon flavor disappearance</u> and <u>no electron appearance</u> hence, with $\nu_{\mu} \rightarrow \nu_{\tau}$ oscillations. Missing piece: direct observation of ν_{τ} appearance

$(\delta m^2, \theta_{12})$ - driven oscillations in LBL reactor neutrinos

2002: electron flavor disappearance observed

2004: half-period of oscillation observed

2007: one period of oscillation observed

KamLAND

$(\delta m^2, \theta_{12})$ - driven oscillations in solar neutrinos

Evidence for solar matter (MSW) effects $\propto G_F N_{e}$ \rightarrow nonoscillatory pattern

Prog.Part.Nucl.Phys.57, 742 (2006)

Borexino has performed the first real-time detection of sub/MeV solar neutrinos

 with just 2 months of data a clear ⁷Be signal is visible better results to come in the near future

(+ checks on day/night, seasonal or long term effects)

the central value is well in agreement with MSW/LMA

theoretical prediction with oscillations

49 ± 4 counts/day/100t

measured rate

47 \pm 7_{stat} \pm 12_{syst} counts/day/100t no oscillation expectation 75 \pm 4 counts/day/100t

- future scientific plans
 - pp, pep and CNO neutrinos fluxes
 - antineutrinos (earth, reactors, Sun)
 - supernova
 - neutrino magnetic moment

BOREXINO first results

Rate consistent with MSW expectations within latest SSM (from A. Ianni, TAUP 2007) ⁷Be rate = $47 \pm 7_{stat} \pm 12_{sys}$ (max) LMA yearly averaged: 49 ± 4 No osc. : 75 ± 4 (2.6 σ excluded)

What about θ_{13} ?

Fogli et al., Prog.Part.Nucl.Phys.57, 742 (2006)

Grand total from full 3v oscillation analysis (Bari group) at 95% C.L. (2 standard deviations)

2006, published	2008, preliminary
$\sin^2 \theta_{13} < 3.1 \times 10^{-2}$	$\sin^2 heta_{13} \ < \ 3.2 imes 10^{-2}$
$\sin^2 \theta_{23} = 0.45^{+0.16}_{-0.09}$	$\sin^2 \theta_{23} = 0.45^{+0.16}_{-0.09}$
$\sin^2 \theta_{12} = 0.31^{+0.06}_{-0.05}$	$\sin^2 \theta_{12} = 0.32^{+0.06}_{-0.04}$
$\Delta m^2 / \text{eV}^2 = 2.6 \pm 0.4 \times 10^{-3}$	$\Delta m^2 / \text{eV}^2 = 2.4 \pm 0.3 \times 10^{-3}$
$\delta m^2 / \text{eV}^2 = 7.9 \pm 0.7 \times 10^{-5}$	$\delta m^2 / \text{eV}^2 = 7.65 \pm 0.35 \times 10^{-5}$

Small changes? Depends on viewpoint. For OPERA, reduction of best-fit Δm^2 implies about -1.5 expected tau events.

For another global analysis, see Strumia & Vissani, hep-ph/0606054

MiniBooNE was Prompted by the Positive LSND Result

LSND observed a (~3.8 σ) excess of v_e events in a pure v_μ beam: 87.9 ± 22.4 ± 6.0 events Oscillation probability $P(\overline{v}_\mu \rightarrow \overline{v}_e) = \sin^2 2\theta \sin^2 (1.27 \Delta m^2 L/E)$

The Karmen Exp. did not confirm the LSND oscillations but had a smaller distance.

LSND in conjunction with the atmospheric and solar oscillation results needed more than 3v's. \Rightarrow Models developed with 2 sterile v's

or Maybe one of the experiments is wrong. MiniBooNE's task: Confirm or refute LSND.

MiniBooNE First Results (April, 2007)

96 ± 17 ± 20 events above background, for 300< Ev QE <475 MeV

Deviation: 3.7 σ

Investigating the low E excess (E < 475 MeV)

Opened bin from 200- 300 MeV.

Excess persists below 300 MeV

Future plans

- Run MiniBooNE in anti-neutrinos for several more years to make oscillations search in anti-neutrino mode.
 - Statistics are less but background are smaller and somewhat different.
 - Provides another low E data set and directly checks LSND.
- Constrain further the systematic errors in the analysis of NuMI beam events. This tests properties if the detector with a different beam.
- SciBooNE experiment can test properties of the Booster neutrino beam with different detector. Will provide new data on v cross sections.
- Study exotic scenarios (*e.g.* extra dimensions Päs, Pakvasa, Weiler, Phys.Rev. D72 095017, 2005-) that could explain low E excess.
- MicroBooNE
 - New proposed experiment to put a 70 ton Liquid Argon detector near MiniBooNE
 - High v_{e} efficiency down to low energies
 - Can tell electron from gamma events
 - Nearly free of background from misidentified particles

What we learned

- Lepton Flavor is not conserved
- Neutrinos have tiny mass, not very hierarchical
- Neutrinos mix a lot

the first evidence for *demise of the Minimal Standard Model* Very different from quarks

What still we have to observe or measure with higher precision

- The source of atmospheric oscillations (detect τ appearance)
- Three angles $(\theta_{12}, \theta_{13}, \theta_{23})$
- Two mass squared differences ($\Delta m_{12}^2, \Delta m_{23}^2$)
- The sign of the mass squared difference $\Delta m^2 (\pm \Delta m^2_{23})$
- One CP phase (δ)
- The absolute masse scale
- Are neutrino Dirac or Majorana particles (or both)?
- Are there more sterile neutrinos?

All the underlined items can be studied with LBL experiments

Discovery Precision meas.

The OPERA experiment at LNGS

OPERA @ LNGS

Aims

Direct observation of v_τ appearance in the
 CNGS v_µ beam due to v_µ →v_τ neutrino oscillations
 — sub-leading v_µ →v_e oscillations

Milestones

- 2002 Start of detector construction
- Mar 2003 First spectrometer completed
- Mar 2005 Second spectrometer completed
- May 2006 electronic detectors commissioning
- Aug 2006 First CNGS technical run, 0.76 x10¹⁸ integrated p.o.t.
- 319 v-interactions in the rock + mechanical structures (300 expected)
- Oct 2006 Start of brick production Very short CNGS run 29 ν-events (no emulsions)
- Oct 2007 New CNGS physics run with 40% target- Only 0.82 x10¹⁸ p.o.t delivered-38 neutrino interactions detected in the target
- Apr 2008 112000 bricks produced and installed (73% target)
- Jun 2008 New CNGS run (SPSC schedule) -
 - 30 10 x¹⁸ p.o.t. expected in 147 days of SPS run

INFN: 54 FTE - sez. AQ, BA, BO, LNGS, LNF, NA, SA, PD, RM1

BRUSSEL, ITEP, JINR, BERN UN., NEUCHATEL, ZURIGO, LYON UN.-IPNL, HAIFA, METU ANKARA, AICHI UN,TOHO UN,KOBE UN., NAGOYA UN., UTSONOMYA, LAPP (ANNECY), MUNSTER UN., IHEP(PECHINO), BERLINO, HAGEN, DESY, ROSTOK, STRASBURGO, ORSAY, ZAGABRIA

τ ⁻ Decay channels	Signal ÷ (∆ <i>m</i> ²	Background:	
	∆m² = 2.5 x 10 ⁻³ eV²	$\Delta m^2 = 3.0 \times 10^{-3} eV^2$	Charm Hadron interaction Muon scattering
$\tau^{-} \rightarrow \mu^{-}$	2.9	4.2	0.17
$\tau^{-} \rightarrow e^{-}$	3.5	5.0	0.17
$\tau^{-} \rightarrow h^{-}$	3.1	4.4	0.24
$\tau^{-} \rightarrow 3h$	0.9	1.3	0.17
ALL	10.4	15.0	0.76

Report on Charm candidate

F. Di Capua on behalf of Napoli group

Event classified as CC

Manual check in pl 19

Very nice view of 11 tracks crossing at same point

Trk	ТХ	ΤY	
1	0.009	0.037	SB
2	0.049	-0.015	
3	-0.033	0.067	SB
4	-0.010	0.031	
5	-0.027	0.045	SB
6	-0.033	0.067	SB
7	-0.076	0.068	SB
8	-0.081	0.133	
9	-0.184	0.109	
10	-0.305	-0.132	
11	0.005	0.142	

1cm² from plates 15 to 57

High multiplicity 1ry vertex and 2ry interaction Track from decay is a SB track!!!

The CS confirmation is a very good validation of the topology

Kink analysis

2ry Vertex Impact Parameter
Parent track 1.70 μm
Daughter track 3.76 μm

Parent track slopes

Plate	ТХ	ΤY
19	0.005	0.139
20	0.005	0.141
21	0.008	0.147

Daughter track first segment TX=0.113 TY=-0.028

1ry Vertex position

X=60338.0 Y=67065.0 Z=-422.7

2ry Vertex position

Flight length=3247.2µm

Daughter slopes wrt to average slope

Daughter momentum P=3.9^{+1.7}-0.9 GeV

Kink analysis

Daughter track transverse momentum

 P_{T} =796 MeV

 P_{T}^{MIN} =606 MeV (90% CL)

1ry vertex analysis

Trks	TX	ΤY	IP	Momentum(GeV)	Comment
1	0.005	0.036	3.30	1.7 ^{+0.5} -0.3	
2	0.005	0.139	1.01	-	parent
3	0.002	0.064	6.64	>20.0	SB
4	-0.021	0.064	7.15	2.1 ^{+0.7} -0.4	SB
5	-0.029	0.046	2.83	>8.4	SB
6	-0.031	0.064	7.32	2.4 ^{+0.8} -0.5	SB
7	-0.076	0.068	4.19	1.8 ^{+1.6} -0.6	SB
8	-0.089	0.141	6.88	2.5 ^{+1.4} -0.7	
9	-0.183	0.106	5.39	0.7 ^{+0.2} -0.1	
10	-0.297	-0.143	19.17	0.7 ^{+0.3} -0.1	
11	-0.067	0.008	7.26	3.5 ^{+3.6} -1.2	e-pair
12	-0.069	0.005	16.80	2.0+3.1	e-pair

ment

 E_{vis}^{v} >50 GeV

shower

Conclusion

A charm candidate is found

Muon track is difficult to be reconstructed in the electronic detector, but strong indication there is combining emulsion-electronic information

Further study will be done on charm daughter slopes, attempt to reduce error on momentum estimation (training for much more important decays)

The full event look like good for particle physic books: kink, high multiplicity, electromagnetic shower

The quest for θ_{13}

• T2K

Reactor experiments

The problem of degeneracies

J-PARC Schedule

On the quest for Θ_{13} : reactor vs accelerator experiments

∇ Θ₁₃ measurements from reactors suffer from correlation with Δm²₃₂
 ∇ Accelerator experiments are affected by degeneracies, ambiguities & other correlations in addition (uncertainty on Θ₂₃ , uncertainty in CP violating phase delta)

A precise measurement of Θ_{13} by reactors and accelerators could resolve some degeneracies Or, a null result at reactors, would show the way to LBL experiments

Schedule and sensitivity

- Detector installation to start in May 2008
- FD data-taking starting mid-2009
- sin² 2θ₁₃ < 0.06 after 1.5 years

- ND data-taking starting mid-2010
 - sin² 20₁₃ < 0.03 after an additional 3 years
 - Can surpass the CHOOZ limit within 6 months

Global Systematic error <0.5% (Chooz 3%)

Reactor	Estimated start date	GW-t-yr (yr)	90% CL $sin^2 2\theta_{13}$ sensitivity	For ∆m ² (10 ⁻³ eV ²)	Far event rate	
Double Chooz	Mar 2009 (far) 2010 (near)	75 (1) 300 (1+3)	0.07 0.03	2.5	18,000/yr	
Daya Bay	2010	3500 (3)	0.01	2.5	70,000/yr 110,000/yr (after 2010)	
RENO	Late 2009	750 (3)	0.03	2.5	35,000/yr	

- A second generation experiment: Daya Bay with forseen sensitivity ~ 0.01.
- → To go below 0.01 with reactor experiments seems difficult.

SuperBeam, BBeam, NuFact

La reinterpretazione dei dati di Chooz

 $O(10^1) \times MINOS/NUMI$ Sorgenti convenzionali: T2K, NOVA, Modular etc. $O(10^2) \times MINOS/NUMI$ Ai limiti dell'utilizzo dei Superbeam: T2HK.
Ideale per le sorgenti non convenzionali (Neutrino
Factiories, Beta-beams) $O(10^3) \times MINOS/NUMI$ Sorgenti non-convenzionali: Neutrino factoriesSe $\vartheta_{13} < 3^\circ$ le sorgenti convenzionali sono
sostanzialmente inutilizzabili

Superbeams

La piu' ambiziosa estensione della tecnica tradizionale basata sul decadimento in volo del π fino a potenze di 2-4 MW

Caratteristiche: osservazione delle oscillazioni $v_{\mu} \rightarrow v_{e}$ e anti- $v_{\mu} \rightarrow$ anti- v_{e} (stato finale: elettroni). Rivelatori a bassa densita': Water Cherenkov $\mathcal{O}(1000)$ kton, Liquid Argon $\mathcal{O}(100$ kton), scint.liquido.

arXiv:0711.2950v2)

S.F.King et al., "The ISS physics report" arXiv:0710.4947

- Narrow band a baselines di 100-300 km: fornisce la migliore precisione su δ ma non ha praticamente sensibilita' sul sign Δm^2
- Wide band a 1000-2000 km. Performance su CPV peggiori ma una certa sensibilita' alla gerarchia di massa dei neutrini
- La conoscenza dei flussi e delle sezioni d'urto alle basse energie (0.5-3 GeV) ha un ruolo cruciale
- Rivelatori di questo tipo sono multipurpose (proton-decay, supernovae, atm neutrinos). Gli atmosferici aiutano ad alti θ_{13} (v.dopo)

Il contributo dei neutrini atmosferici

Multi-GeV v_e: impossibile distinguere il segno del leptone. Perturbazioni nel rate inclusivo

(Water Cherenkov)

Risonanza MSW

 $E_R = \pm \Delta m_{31}^2 L_{magic} \cos 2\theta_{13}/4\pi$

 $\Gamma_R = |\Delta m_{31}^2| L_{magic} \sin 2\theta_{13}/2\pi$

Multi-GeV v_{μ} : segno osservabile in riv. magnetizzati (NuFact, high-E BetaBeam)

A Donini et al. EPJ C53 (2008) 599 F.Terranova @ NuFact07, Okayama

Sub-GeV v_e : ~ cos² θ_{23} sensibilita' all'ottante di θ_{23} (Water Cherenkov)

$$\epsilon_e^{\rm sub} \equiv \frac{N_e}{N_e^0} - 1 \approx \left(r \, \cos^2 \theta_{23} - 1 \right) \left< P_{21}^{2 \rm s} \right>. \label{eq:eq:estimate}$$

Neutrino Factories

La piu' ambiziosa tra le tecniche non-convenzionali. Originariamente considerata un by-product dell'R&D per i muon collider: oggi riottimizzata per la fisica del neutrino. J.S.Berg et al., PR ST Accel.Beams 9 (2006) 011001

Neutrini prodotti dal decadimento in volo dei muoni e non dei pioni. Non vi e' fondo intrinseco dai decadimenti dei K e la violazione di CP viene osservata in appearance dei v_{μ} ("wrong sign muons")

	$\mu^+ \rightarrow e^+ \nu_e \overline{\nu}_\mu$	$\mu^- \to e^- \overline{\nu}_e$		
	$\overline{ u}_{\mu} ightarrow \overline{ u}_{\mu}$	$ u_{\mu} ightarrow u_{\mu}$	disappearance	
	$\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$	$ u_{\mu} ightarrow u_{e}$	appearance (challenging)	
	$\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{\tau}$	$ u_{\mu} ightarrow u_{ au}$	appearance (atm. oscillation)	
	$\nu_e \rightarrow \nu_e$	$\bar{\nu}_{c} \rightarrow \bar{\nu}_{c}$	disappearance	
Ð	$\nu_e \rightarrow \nu_\mu$	$\bar{\nu}_e ightarrow \bar{\nu}_\mu$	appearance: "golden" channel	
	$\nu_e \rightarrow \nu_\tau$	$\bar{\nu}_e \rightarrow \bar{\nu}_\tau$	appearance: "silver" channel	

$$\mu^-$$
 (μ^+) decay in (u_μ , $\overline{
u}_e$) (($\overline{
u}_\mu, \,
u_e$)).

Golden channel: search for $\nu_e \rightarrow \nu_\mu$ ($\overline{\nu}_e \rightarrow \overline{\nu}_\mu$) transitions by detecting wrong sign muons. Default detector: 40-100 kton iron magnetized calorimeter (Minos like)

Silver channel: search for $\nu_e \rightarrow \nu_\tau$ transitions by detecting ν_τ appearance.

Ideal detectors: $4 \times$ Opera or 10 Kton LAr detector.

La fisica alle Neutrino Factories e' sostanzialmente diversa da quella dei superbeam

Gli stati finali sono puramente muonici: rivelatori densi e sale sperimentali simili a quelle del Gran Sasso

Le energie sono >10 GeV (dominano DIS e RES), le baseline sono grandi (L=3000 km) e sono grandi gli effetti di materia

Il fondo dominante e' dagli anti- v_{μ} CC: wrong charge rejection <10⁻³

Grazie alle alte energie+flussi e all'assenza di fondi intrinseci rappresenta al momento la facility di gran lunga piu' performante

Una (ragionevole) inversione di tendenza: rivelatori piu' sofisticati per ridurre il costo esorbitante della facility di fascio

•Utilizzo l'appearance del τ per risolvere le degenerazioni nei parametri (OPERAlike) D.Autiero et al., EPJC 33 (2004) 243

- •Abbassare i tagli in E_{μ} P.Huber et al., PRD 74 (2006) 073003, A.Cervera @Nufact07, Okayama
- •Low energy neutrino factory S.Geer et al, PRD 75 (2007) 093001, A.Bross et al.,arXiv:0709.3889.
- •Identificazione degli elettroni P.Huber et al., PLB (2007) 655

Un'interessante alternativa: i Beta Beam

- Works in v_{μ} appearance mode but only one flavor is present in the initial state: Ideal condition at t=0 !!
- It makes estensive use of current technologies (ISOL technique for ion production, existing accelerators at CERN or Fermilab)
- Main drawback: $q/m \ll q/m_{\mu}...$ we mainly work with low-energy neutrinos (sub GeV if we use ¹⁸Ne, ⁶He and the SPS as terminal booster)

<u>Una tecnica versatile</u>: molte varianti proposte (high-E BB, electronic capture J.Bernabeu et al., JHEP 0512 (2005) 14, uso di rivelatori ad alta densita' etc.) e alcuni punti fermi.

La principale debolezza dei Beta Beam e' la bassa energie degli ioni:

• Utilizzare un booster a piu' alto gamma: J.Burguet-Castell et al., NPB 695 (2004) 217, NBP 725 (2005) 306, F.Terranova et al., EPJC 38 (2004) 69, P.Huber et al., PRD73 (2005) 053002

• Utilizzare ioni a piu' alto Q²: C.Rubbia et al. NIM A568 (2006)

Ma finora nessuno ha dimostrato che i flussi ottenibili siano confrontabili con l'opzione baseline.

Qualche considerazione finale

- ✓ La generazione di esperimenti post-T2K sembra lontana (>2015) e sicuramente gli investimenti per le sorgenti non convenzionali sono inadeguati. Ma questo e' perfettamente comprensibile (ignoranza su 9₁₃, costi >500 M€ etc.)
- ✓ La situazione rischia di cambiare rapidamente nei prossimi 4-5 anni in caso di segnale da parte di T2K, Double Chooz, Daya-Bay, Nova etc. e probabilmente ci sara' una brusca accelerazione
- ✓ In Europa, dovremo essere pronti a rispondere almeno ad alcune domande:
 - Se 9₁₃ >3°, un superbeam da' la garanzia di chiudere la matrice di mixing leptonica? Vale l'enorme investimento per costruire il laboratorio sotterraneo?
- ✓ In caso di risposta negativa dobbiamo essere consapevoli che:
 - La Neutrino Factory offre al momento la migliore chance di fare fisica di precisione sulla PMNS ma i costi e la durata dell'R&D sono incerti
 - I Beta-Beam offrono una buona sinergia con il CERN e potrebbero essere un'opzione praticabile in Europa. L'R&D e' meno challenging di una NF ma, almeno nell'opzione baseline, le performance di fisica sono "un po' troppo vicine ai Superbeam" per prendersi il rischio di una sorgente non-convenzionale.

Rispetto a 5 anni fa (Kamland results) oggi abbiamo una buona conoscenza delle performance di fisica di queste facility. Ma credo che le risposte alle domande chiave arriveranno dagli acceleratoristi e non dai fisici del neutrino.

Ringraziamenti

E. Lisi, L. Patrizii, F. Terranova per aver utilizzato alcune delle loro trasparenze presentate alla Commissione 2 dell'INFN