

# Fisica di precisione con KLOE @ DAΦNE



# DAΦNE "φ-factory"



- Collider  $e^+e^-\sqrt{s}=M_0=1019,4 \text{ MeV}$
- Anelli separati per e+ ed e- per minimizzare interazioni fascio-fascio
- Due zone d'interazione
- Angolo di incrocio 12,5 mrad → p<sub>T</sub>~13 MeV/c
- L<sub>progetto</sub>=5x10<sup>32</sup> cm<sup>-2</sup>s<sup>-1</sup>
- Tempo tra due collisioni 2,7 ns
- Iniezione durante presa dati

### Prestazioni nel 2004-05

- $\sim 105 \text{ bunch } e^+ + e^-$
- I-<sub>picco</sub> ~2,4 A I+<sub>picco</sub> ~1,5 A
- $L_{picco} = 1,4x10^{32} \text{ cm}^{-2}\text{s}^{-1}$
- L integrata mese ~ 200 pb<sup>-1</sup>





# Perché una Φ-Factory

# Φ-Factory come "fabbrica" di KK



$$\sigma$$
(e<sup>+</sup>e<sup>-</sup> $\rightarrow$  $\phi$ )~3 μb Per L=10<sup>32</sup> cm<sup>-2</sup>s<sup>-1</sup>  $\rightarrow$  ~300 Φ/s  $\rightarrow$ ovvero

- K+K- 49% ~150/s
- K<sub>S</sub>K<sub>L</sub> 34% ~100/s

"Fabbrica" di K

Infatti puro stato JPC=1<sup>--</sup> quindi

$$\left| K\overline{K}, t = 0 \right\rangle = \frac{1}{\sqrt{2}} \left( \left| K^{0} \overline{K}^{0} \right\rangle - \left| \overline{K}^{0} K^{0} \right\rangle \right) \equiv \frac{1}{\sqrt{2}} \left( \left| K_{S} K_{L} \right\rangle - \left| K_{L} K_{S} \right\rangle \right)$$

$$K_L(K^+) \longleftarrow \phi \longrightarrow K_S(K^-)$$

L'osservazione di un  $K_L$  ( $K_S$ ) segnala la presenza di un  $K_S$  ( $K_L$ ) Analogamente un  $K^+$  ( $K^-$ ) segnala un  $K^-$  ( $K^+$ ) "TAGGING"

Il decadimento della  $\phi$  fornisce dei fasci puri di  $K_S$  e  $K_L$  ( $K^+$  e  $K^-$ )



## Fisica dei K



- Misura di vite medie e frazioni di decadimento (BR) assolute o misura di precisione di rapporti di tali BR
  - > Studi di simmetrie fondamentali quali CP e CPT
  - Verifica conservazione numero leptonico
  - Universalità dell'accoppiamento debole
  - > Vus
- Studio dell'evoluzione temporale del sistema coerente K<sub>S</sub>K<sub>L</sub>
  - ➤ Ancora CP e CPT
  - Test di proprietà fondamentali della meccanica quantistica



# Decadimenti radiativi



ηγ 1,3%

1<sup>-</sup>→0<sup>-</sup> transizione di dipolo magnetico

• η'γ 6,5x10<sup>-5</sup>

•  $f_0 \gamma$  1,1x10<sup>-4</sup>

1<sup>-</sup>→0<sup>+</sup> transizione di dipolo elettrico

•  $a_0 \gamma$  6,2x10<sup>-5</sup>

- ➤ Sonde uniche per studiare proprietà e struttura dei mesoni pseudoscalari e scalari → i tassi di decadimento dipendono fortemente dalla funzione d'onda del mesone finale e dal suo contenuto in sapore
- Inoltre e<sup>+</sup>e<sup>-</sup>  $\rightarrow \pi^+\pi^-\gamma$   $\sqrt{s_{\pi}}=(s-2E_{\gamma}\sqrt{s})^{1/2}$ 
  - $ightharpoonup \sigma(e^+e^- o \pi^+\pi^-)$  tra soglia e ~ 1GeV da essa dipende buona parte del contributo adronico ad  $a_\mu$





# Sommario



- KLOE
- Fisica dei K
  - Vus e universalità
  - Test di simmetrie
  - Decadimenti rari



# KLOE (K Long Experiment)





 $K_L K_S$  $\beta$  \* = 0.216  $p^* = 110 \text{ MeV/c}$  $\lambda_S = 6 \text{ mm}; \lambda_L = 3.4 \text{ m} \quad \lambda_{\pm} = 95 \text{ cm}$ 

K+ K- $\beta * = 0.245$  $p^* = 127 \text{ MeV/c}$  Grande volume di decadimento ( $\lambda_1 = 3,5 \text{ m}$ )

Massima trasparenza

"Ermetico"

"Unbiassed" trigger

Pipe sferica in Be-Al  $\phi$ =10 cm, spessore 0,5 mm  $\rightarrow$ Minimizza rigenerazione, conversione  $\gamma$ , scattering

Quads low-beta instrumentati → Ermeticità per rivelazione γ

Camera a drift "stereo",  $\phi$ =4 m, L=3,4 m, pareti fibra di carbonio, gas a bassa densità (90%He+10%i-C4H10),12.582 celle "quadrate" (fili: sense W  $\phi$ =25  $\mu$ m, campo Al φ=50 μm)

Calorimetro 0,5 mm Pb, fibre scintillanti  $\phi$ =1 mm, 15  $X_0$ , 2440 celle doppia lettura

Magnete superconduttore B=0,52 T



# I rivelatori di KLOE





- $\sigma/p=0.4\%$  (tracce  $\theta>45^{\circ}$ )
- $\sigma_{r\phi} \sim 150 \mu m$ ,  $\sigma_z = 2mm$
- $\sigma_{\text{vertice}} \sim 2-3 \text{ mm}$
- $\sigma$  (m<sub> $\pi\pi$ </sub>) ~ 1 MeV



- $\epsilon$  > 95% per E<sub>y</sub>>20 MeV
- $\sigma_{\rm E}/{\rm E} = 0.057/\sqrt{\rm E} \, ({\rm GeV})$
- $\sigma_t$ = 54 ps/ $\sqrt{E}$  (GeV)  $\oplus$  50ps
- $\sigma_{\text{sciame}}$ =1,3 cm/ $\sqrt{E}$  (GeV)
- $\sigma_{\text{vertice}}(\gamma\gamma)=1,3 \text{ cm } (\mathsf{K}_{\mathsf{L}} \to \pi^+\pi^-\pi^0)$



# Ricostruzione di tracce



### Risoluzione spaziale

- $\sigma_{\rho\phi} \cong 150 \ \mu m$
- $-\sigma_z \cong 2 \text{ mm}$

### Bhabha scattering events









# Misura dei fotoni



### Risoluzione in energia

$$\phi \rightarrow \pi^+\pi^-\pi^0$$

 $\mathsf{E}_{\scriptscriptstyle\gamma}$  dalla ricostruzione di  $\pi^+\pi^-$ 





### Risoluzione in tempo



 $\sigma_t$ =54ps/ $\sqrt{E(GeV)}$  $\oplus$ 120ps $\oplus$ 40ps

dalla struttura a bunch



da errori di calibrazione





# Misura dei fotoni/2



$$l\gamma^2 = d^2 + l_K^2 - 2dl_K \cos \theta$$
$$ct_{\gamma} = l_K/\beta_K + l_{\gamma}$$







M=134,5 MeV  $\sigma_{M} \approx 14 \text{ MeV}$ 



# I dati di KLOE



Presa dati nel periodo 2001-05

~2,5 fb<sup>-1</sup> 
$$\sqrt{s}=M(\Phi)$$

•  $\sim 2.5 \times 10^9 \text{ K}_{\text{S}} \text{K}_{\text{L}} \text{ e } 3.6 \times 10^9 \text{K}^{+} \text{K}^{-}$ 



Presa dati 2006

4 punti "energy scan" intorno al picco della Φ 225 pb⁻¹





# Fisica dei K Vus e universalità



# Interesse per la misura di V<sub>us</sub> con i K/1



### MS – Accoppiamento W con corrente debole carica:

$$\frac{g}{\sqrt{2}}W_{\mu}^{+}\left(\bar{\mathbf{U}}_{L}\mathbf{V}_{CKM}\gamma^{\mu}\mathbf{D}_{L}+\bar{e}_{L}\gamma^{\mu}\nu_{eL}+\bar{\mu}_{L}\gamma^{\mu}\nu_{\mu L}+\bar{\tau}_{L}\gamma^{\mu}\nu_{\tau L}\right)+h.c.$$

A bassa energia

$$G_F = \frac{g^2}{4\sqrt{2}M_W^2}$$



### Allora:

- $\frac{\Gamma(K \to \pi e \nu)}{\Gamma(K \to \pi \mu \nu)} \implies universalità e \mu$
- $\Gamma(K \to \pi e \nu) = \Gamma(K \to \pi \mu \nu) \implies g^4 |V_{us}|^2$
- $\Gamma(K \to \pi e \nu)$  e  $\Gamma(K \to \pi \mu \nu)$  più dec.  $\beta \Longrightarrow$  unitarietà  $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 \simeq |V_{ud}|^2 + |V_{us}|^2 = 1$   $(|V_{ub}|^2 \sim 1, 5 \times 10^{-5})$
- $\frac{\Gamma(K \to \mu\nu)}{\Gamma(\pi \to \mu\nu)} \implies \text{misura indipendente di } \frac{|V_{us}|^2}{|V_{ud}|^2}$



# Decadimenti semileptonici e V<sub>II</sub>



Decadimento del 
$$\mu$$
 –  $\vee$  e A

Decadimento del 
$$\mu$$
 –  $\frac{\mathsf{V}}{\mathsf{e}}$  e A  $\Gamma\left(\mu \to e \nu \bar{\nu}\right) = \frac{G_F^2 m_\mu^5}{192 \pi^3} \left(1 + \mathcal{O}\left(m_e^2/m_\mu^2\right) + \mathcal{O}\left(\alpha/\pi\right)\right)$ 





Decadimento del K:  $0^- \rightarrow 0^-$ , Fermi super-permesso solo V, Cabibbo "soppresso"

$$\Gamma\left(K_{l3(\gamma)}\right) = \frac{G_F^2 M_K^5}{192\pi^3} C_K^2 \left|V_{us}\right|^2 \left|f_+\left(0\right)\right|^2 I_K^l S_{EW} \left(1 + \delta_K^{SU(2)} + \delta_K^{em}\right)$$

$$\text{correzione em}$$

 $BR(K \rightarrow \pi l \nu)/\tau_K$ 

f(t): fattore di forma  $K \rightarrow \pi$  $t=(p_K-p_\pi)^2$ 

fattore di isospin  $C_{K}=1 (1/\sqrt{2}) \text{ per } K^{0} (K^{\pm})$ 

 $I_{K}^{I}(\lambda'_{+}, \lambda''_{+}, \lambda_{0})$ integrale spazio fasi

lunga distanza correzione rottura isospin

Correzione ew breve distanza  $\approx 1 + (2\alpha/\pi) \ln(M_7/M_K)$ 

### Da misurare

- Rapporti di decadimento
- Vite medie dei K
- Masse dei K
- Dipendenza da t dei FF

### Da calcolare

- Fattore di forma a t=0
- Correzioni
  - $S_{\text{EW.}}$ ,  $\delta^{\text{SU(2)}}$ ,  $\delta^{\text{em}}$



# "Tagging" di K<sub>L</sub> e K<sub>S</sub>



### $K_1$ segnalato da $K_S \rightarrow \pi^+ \pi^-$

•Due tracce con curvatura opposta

•Vertice "vicino" al punto d'incrocio

 $p_1 + p_2 \sim 110 \text{ MeV/c}$ 

•M<sub>12</sub>~M<sub>K</sub> assegnando m<sub>π</sub> alle tracce



 $\epsilon$  ~ 70% geometria & vertice  $K_l$  risoluzione angolare ~ 1° K₁ risoluzione momento ~ 1 MeV/c

### K<sub>s</sub> segnalato da K<sub>l</sub> in calorimetro

•Cluster di energ • 0,17  $\leq \beta^* \leq$  0,28 • ( $\beta^* = r_{cl}/t_{cl}$  nel 0 •Cluster di energia E > 200MeV

 $(β* = r_{cl}/t_{cl} \text{ nel CM della } Φ)$ 



ε ~ 30% geometria & taglio energia  $K_{\rm S}$  risoluzione angolare ~ 1° K<sub>S</sub> risoluzione momento ~ 1 MeV/c

# Decadimenti principali del K<sub>L</sub>/1





3500

K<sub>L</sub>-tag 328 pb<sup>-1</sup> 13x10<sup>6</sup> K<sub>L</sub>

¾ per la misura¼ per valutare efficienze

### $\pi^+\pi^-\pi^0$ , $\pi\mu\nu$ , $\pi\Theta\nu$

- Due tracce con vertice nel VF
- PID
  - Posizione del centroide del cluster
  - Rapporto E<sub>cl</sub>/p<sub>traccia</sub>
- $\Delta_{\mu\pi}$ =min(p<sub>miss</sub>-E<sub>miss</sub>) ip.  $\pi$ - $\mu$  e  $\mu$ - $\pi$ 
  - Fit di  $\Delta_{u\pi}$  con distr. MC (incluso radiativi)

### events / 0.5 MeV 3000 πεν 2500 χμν 2000 $\blacksquare$ $\pi^+\pi^-\pi^0$ 1500 $\pi^+\pi^-$ 1000 500 $\Delta_{\mu\pi}$ (MeV) -150-100 -50 0 50 100 150

### $\pi^0\pi^0\pi^0$

- Almeno 3 γ con vertice in FV
- Tagli addizionali per n<sub>√</sub>>3
- Vertice da TOF fotoni



# Decadimenti principali del K<sub>1</sub>/2





-  $K_I \rightarrow \pi e \nu$ ,  $\pi \mu \nu$ 

~55%

- K<sub>L</sub>  $\rightarrow \pi^{+}\pi^{-}\pi^{0}$  ~40%

-  $K_L \rightarrow \pi^0 \pi^0 \pi^0$ 

~99%



Calcola inizialmente i BR usando τ<sub>I</sub> del PDG  $\varepsilon_{\text{FV}}$  dipende da  $\tau_{\text{I}}$  – Allora:

~26%

Somma tutti i BR

Integrale sul VF

 $BR(\pi\pi\pi + \pi\mu\nu + \pi e\nu)_{KLOF} + BR(\pi\pi)_{PDG04} = 1,0104 \pm 0,0076$ 

- Imponi ΣBR=1
- Rivaluta  $\tau_1$  imponendo  $\Sigma$ BR=1
- Rinormalizza BR



# Decadimenti principali del K<sub>L</sub>/3



```
\begin{split} & \mathsf{BR}(\mathsf{K_L} \!\!\to\!\! \pi e \nu(\gamma) = 0,\!4007 \!\!\pm\!\! 0,\!0006 \pm\!\! 0,\!0014 \\ & \mathsf{BR}(\mathsf{K_L} \!\!\to\!\! \pi \mu \nu(\gamma) = 0,\!2698 \pm\!\! 0,\!0006 \pm\!\! 0,\!0014 \\ & \mathsf{BR}(\mathsf{K_L} \!\!\to\!\! \pi^0 \pi^0 \pi^0 = 0,\!1997 \pm\!\! 0,\!0005 \pm\!\! 0,\!0019 \\ & \mathsf{BR}(\mathsf{K_L} \!\!\to\!\! \pi^+ \!\! \pi^- \!\! \pi^0(\gamma) = 0,\!1263 \pm\!\! 0,\!0005 \pm\!\! 0,\!0011 \end{split}
```

$$\tau_L = 50,72 \pm 0,17 \pm 0,33$$





# Vita media del K<sub>I</sub>



Da eventi  $K_L \rightarrow \pi^0 \pi^0 \pi^0$  con  $K_S$ -tag  $\rightarrow$  massimizza eventi e minimizza tag bias 400 pb<sup>-1</sup> 1,2x10<sup>9</sup>  $\phi$  10<sup>7</sup>  $K_L$ 

- Ampia accettanza ~  $0,4\lambda_L$ → Importante, più basso  $\sigma(\tau_I)$
- Efficienza ε<sub>VTX</sub> molto alta e ~ costante con la lunghezza di decadimento
- $K_L \to \pi^+\pi^-\pi^0$  per valutare risoluzione e scala dei tempi

$$\tau_L = 50,92 \pm 0,17 \pm 0,25 \text{ ns}$$

Facendo la media pesata di questa e della precedente (sono scorrelate):

$$\tau_L = 50.84 \pm 0.23 \text{ ns}$$



### $\mathcal{K}_L^0$ MEAN LIFE

| $VALUE (10^{-8} \text{ s})$ | EVTS  | DOCUMENT ID             |     | TECN |
|-----------------------------|-------|-------------------------|-----|------|
| 5.116±0.020 OUR FIT         | •     |                         |     |      |
| 5.099 ± 0.021 OUR AV        | ERAGE |                         |     |      |
| $5.072 \pm 0.011 \pm 0.035$ | 13M   | <sup>13</sup> AMBROSINO | 06  | KLOE |
| $5.092 \pm 0.017 \pm 0.025$ | 15M   | AMBROSINO               | 05C | KLOE |
| $5.154 \pm 0.044$           | 0.4M  | VOSBURGH                | 72  | CNTR |



# Decadimenti semileptonici del K<sub>s</sub>



 $K_S \rightarrow \pi e \nu$   $K_L$ -tag 410 pb<sup>-1</sup> – 13.000 eventi  $\pi e \nu$ 

Prima volta



- Due tracce di curvatura opposta
- Vertice vicino al punto d'incrocio

$$- r \le 4 cm, z \le 10 cm$$

- $M_{\pi\pi}$  < 490 MeV assegnando la massa del  $\pi$
- $e-\pi$  con TOF (dopo associazione cluster)
- Fit della distribuzione E<sub>miss</sub>-p<sub>miss</sub> per determinare Nev

Normalizzando a 
$$\pi + \pi$$
-
$$BR(K_S \to \pi^- e^+ \nu_e) = (3,528 \pm 0,062) \times 10^{-4}$$

$$BR(K_S \to \pi^+ e^- \bar{\nu}_e) = (3,517 \pm 0,058) \times 10^{-4}$$

$$BR(K_S \to \pi e \nu) = (7,046 \pm 0,91) \times 10^{-4}$$

$$A_{S} = \frac{\Gamma(K_{S} \to \pi^{-}e^{+}\nu_{e}) - \Gamma(K_{S} \to \pi^{+}e^{-}\bar{\nu}_{e})}{\Gamma(K_{S} \to \pi^{-}e^{+}\nu_{e}) + \Gamma(K_{S} \to \pi^{+}e^{-}\bar{\nu}_{e})} = \frac{\Gamma(K_{S} \to \pi^{-}e^{+}\nu_{e}) + \Gamma(K_{S} \to \pi^{+}e^{-}\bar{\nu}_{e})}{(1,5 \pm 9,6 \pm 2,9) \times 10^{-3}} A_{S} = A_{L} CPT (mixing) e/s AS$$

 $A_S \neq A_L$  CPT (mixing) e/o  $\Delta S \neq \Delta Q$  (dec)



# Tagging di K<sup>+</sup> e K<sup>-</sup>





Usati i decadimenti in due corpi  $K^{\pm} \rightarrow \mu^{\pm} \nu$  e  $K^{\pm} \rightarrow \pi^{\pm} \pi^{0}$ 

- Due tracce con curvature dello stesso segno che formano un vertice (kink) nel VF
- K identificato da 70 <  $p_K$  < 130 MeV/c e punto di max avvicinamento a IP tale che r < 10cm e |z| < 20cm
- Secondario identificato da picco nella distr. di p\* (imp. nel CM del K) calcolato in ip.  $m_{\mu}$  e  $m_{\pi}$

$$K_{\mu 2} \rightarrow 231 < p_{\mu}^{*} < 241 \text{MeV/c}$$
  
 $K_{\pi 2} \rightarrow 201 < p_{\pi}^{*} < 209 \text{MeV/c}$ 

- Richiesto self-trigger calorimetrico per ridurre tag-bias
- Efficienza complessiva 5-6%









# $K^+ \rightarrow \mu^+ \nu(\gamma)$



Grazie a QCD su reticolo ( $f_{\kappa}^2/f_{\pi}^2$ )  $\rightarrow$  alternativa ai dec. semileptonici per misurare  $V_{\mu s}$ Misura più recente nel 1972: non furono pienamente considerati effetti radiativi. KI OF ha misurato il BR assoluto inclusivo di radiazione

- 175 pb<sup>-1</sup>, ~60 per la misura, ~115 per valutare efficienze e fondo
- K<sup>+</sup>→ μ<sup>+</sup>ν taggati con K<sup>-</sup>→ μ<sup>-</sup>ν per minimizzare effetti interazioni nucleari
- Selezione eventi secondo procedura tagging
- Sottratto il fondo  $K^+ \rightarrow \pi^+ \pi^0$
- Eventi contati per  $225 \le p^* \le 400 \text{ MeV/c}$ (nell'ipotesi m\_)
- Efficienza ~32%



$$BR(K^+ \to \mu^+ \nu(\gamma)) = 0,6366 \pm 0,0009 \pm 0,0015$$

$$\frac{\Gamma(K^{\pm} \to \mu^{\pm} \nu(\gamma))}{\Gamma(\pi^{\pm} \to \mu^{\pm} \nu(\gamma))} = \underbrace{\frac{|V_{us}|^2}{|V_{ud}|^2}} \underbrace{\frac{f_K^2}{f_\pi^2} \frac{m_K (1 - m_\mu^2 / m_K^2)^2}{m_\pi (1 - m_\mu^2 / m_\pi^2)^2}}_{\text{Dalla teoria}} \underbrace{[1 + \mathcal{O}(\alpha / \pi)]}_{\text{Dalla teoria}}$$

### $\Gamma(\mu^+\nu_\mu)/\Gamma_{\text{total}}$

±0.14 OUR FIT Error includes scale factor of 1.2.

9 AMBROSINO 06A KLOE + 63.66±0.09±0.15 63.24±0.44 62k CHIANG 72 OSPK +



|Vus|=0,2223±0,0026

# Decadimenti semileptonici di K<sup>±</sup>



### Misurati BR assoluti usando un campione di oltre 600x10<sup>6</sup> ♦→K<sup>+</sup>K<sup>-</sup>

- 4 campioni distinti con tag:  $K^- \rightarrow \mu^- \nu$ ,  $K^+ \rightarrow \mu^+ \nu$ ,  $K^- \rightarrow \pi^- \pi^0$ ,  $K^+ \rightarrow \pi^+ \pi^0$
- analizzati indipendentemente per ridurre sistematiche
- Tagli cinematici su secondario carico per rigettare due corpi e K<sub>3π</sub>
- Tempo di volo per separazione e-μ
- Numero di eventi dal fit di m<sup>2</sup>lept

### Mediando i dati dei quattro campioni:

$$BR(K_{e3}) = (4,965 \pm 0,038 \pm 0,037) \times 10^{-2}$$
  
 $BR(K_{\mu 3}) = (3,233 \pm 0,029 \pm 0,026) \times 10^{-2}$ 



Radiazione inclusa non essendo richiesta chiusura cinematica

$$\frac{\Gamma(K_{\mu 3})}{\Gamma(K_{e3})} = 0,6511 \pm 0,0064 \text{ accordo entro } 1,5\sigma \text{ con } R_{\mu e}^{SM} = 0,6646 (61)$$



# Vita media di K<sup>±</sup>



- 210 pb<sup>-1</sup> Eventi taggati con K→μν
- Usati due metodi per controllo incrociato errori sistematici
- 1° metodo: τ<sup>±</sup> dalla lunghezza di decadimento (solo DC)
- Usati tutti i tipi di decadimento
- Identificato il vertice di decadimento (nel VF)
- Ricostruita la lunghezza di decadimento
- $\tau_{K}$  dal fit del tempo proprio  $t_{K}$ =L/ $\beta\gamma$ c

 $2^{\circ}$  metodo:  $\tau^{\pm}$  dal tempo di decadimento (solo cal.)

- Usati K<sup>±</sup>→X<sup>±</sup>π<sup>0</sup>
- Usato il tag per stimare T<sup>0</sup>
- $t_K = (t_\gamma L_\gamma / c T^0) \gamma_K$
- τ<sub>K</sub> dal fit del tempo proprio t<sub>K</sub>

$$\tau = (12, 337 \pm 0, 030) \, ns$$

$$PDG: \quad \tau = (12, 384 \pm 0, 024) \, ns$$

$$\frac{\tau^+}{\tau^-} = 1,004 \pm 0,004$$



# $K \rightarrow \pi l \nu$ : fattori di forma



$$\langle \pi | J_{\mu}^{adr} | K \rangle = f_{+}(t) (P + p)_{\mu} + f_{-}(t) (P - p)_{\mu}$$

$$f_0(t) = f_+(t) + \frac{t}{m_K^2 - m_\pi^2} f_-(t)$$
  $f_+(0) = f_0(0)$ 

$$\langle \pi | J_{\mu}^{adr} | K \rangle = f_{+}(0) \left[ (P+p)_{\mu} \tilde{f}_{+}(t) + (P-p)_{\mu} (\tilde{f}_{0}(t) - \tilde{f}_{+}(t)) \frac{m_{K}^{2} - m_{\pi}^{2}}{t} \right]$$

Sviluppati in potenze di t

 $\approx$ m<sub>l</sub>  $\longrightarrow$  Solo  $\tilde{f}_+$  per Ke3

$$\tilde{f}_{+}(t) = 1 + \lambda'_{+} \frac{t}{m_{\pi}^{2}} + \frac{1}{2} \lambda''_{+} \left(\frac{t}{m_{\pi}^{2}}\right)^{2} + \dots$$

$$\tilde{f}_{0}(t) = 1 + \lambda'_{0} \frac{t}{m_{\pi}^{2}} + \frac{1}{2} \lambda''_{0} \left(\frac{t}{m_{\pi}^{2}}\right)^{2} + \dots$$

$$\tilde{f}_0(t) = 1 + \lambda'_0 \frac{t}{m_\pi^2} + \frac{1}{2} \lambda''_0 \left(\frac{t}{m_\pi^2}\right)^2 + \dots$$

o come polo

$$\tilde{f}_{+}(t) = \frac{1}{1 - t/M_V^2}$$

$$\tilde{f}_{0}(t) = \frac{1}{1 - t/M_S^2} \implies \lambda' = (m_{\pi}/M)^2 \qquad \lambda'' = 2\lambda'^2$$

$$\tilde{f}_0\left(t\right) = \frac{1}{1 - t/M_S^2}$$



$$\lambda'' = 2\lambda'^2$$

I parametri  $\lambda$  sono estratti fittando la funzione densità degli eventi

 $\lambda'$  e  $\lambda''$  fortemente correlati

KLOE ha usato una nuova parametrizzazione basata su relazioni di dispersioni





# $K \rightarrow \pi l \nu$ : fattori di forma/2



- 328 pb<sup>-1</sup>, 2 10<sup>6</sup> K₁ stesso campione decad. K₁
  - Tagli cinematici più stringenti
  - TOF per separazione  $e^{-\mu-\pi}$
  - Misure separate per ciascuno stato di carica ( $e+\pi$ -,  $e-\pi$ +)

Sviluppo quadratico 
$$\lambda'_{+}=(25,5\pm1,5\pm1,0)\ 10^{-3}$$

$$\lambda''_{+}$$
=(1,4±0,7±0,4) 10<sup>-3</sup>

 $\lambda_{+}$ =(28,6±0,5±0,4) 10<sup>-3</sup>

$$M_V = (870 \pm 6 \pm 7) \text{ MeV}$$

$$M_V = (882,3 \pm 6,5) \text{ MeV}$$

$$M_V = (859 \pm 18) \text{ MeV}$$





# $K \rightarrow \pi l \nu$ : fattori di forma/3



• K<sub>Lμ3</sub>

Più difficile – Separazione  $\pi-\mu$  problematica – Invece di  $E_{\pi}$  (equiv. a t) fit di  $E_{\nu}$  dopo integraz. su  $E_{\pi}$ .  $E_{\nu}$  =momento mancante (nel CM del K)  $\rightarrow$  nessuna necessità di separare  $\pi-\mu$ 

328 pb<sup>-1</sup>, 1,8 10<sup>6</sup> KL - stesso campione decad. K<sub>I</sub>

$$\lambda'_{+} = (22, 3 \pm 9, 8 \pm 3, 7) \times 10^{-3}$$

$$\lambda''_{+} = (4, 8 \pm 4, 9 \pm 1, 6) \times 10^{-3}$$

$$\lambda'_{0} = (9, 1 \pm 5, 9 \pm 2, 6) \times 10^{-3}$$

Combinando questi con quelli di Ke3

$$\lambda'_{+} = (25, 6 \pm 1, 7) \times 10^{-3}$$

$$\lambda''_{+} = (1, 5 \pm 0, 8) \times 10^{-3}$$

$$\lambda'_{0} = (15, 4 \pm 2, 2) \times 10^{-3}$$

• C'è una forte correlazione tra i parametri del fit quadratico. KLOE ha usato una nuova parametrizzazione basata su relazione di dispersione, con la quale si fitta un solo parametro sia per FF scalare che vettoriale. Combinando  $K_{\rm e3}$  e  $K_{\rm n3}$  si ha

$$-\lambda_{+}=(25,7\pm0,4\pm0,4)\ 10^{-3}$$

$$-\lambda_0$$
=(14,0 ±1,6 ±1,3) 10<sup>-3</sup>



# $|f_{+}(0)V_{us}|$



| Parametri                            | $\mathbf{I}\left(K_{e3}^{0} ight)$ | $\mathbf{I}\left(K_{\mu3}^{0} ight)$ | $\mathbf{I}\left(K_{e3}^{+}\right)$ | $\mathbf{I}\left(K_{\mu3}^{+}\right)$ |
|--------------------------------------|------------------------------------|--------------------------------------|-------------------------------------|---------------------------------------|
| $\lambda'_+, \lambda''_+ \lambda'_0$ | 0,15483(40)                        | 0,10271(52)                          | 0,15919(54)                         | 0,10568(54)                           |
| $\lambda_{+} \lambda_{0}$            | 0,15477(35)                        | 0,10262(47)                          | 0,15913(36)                         | 0,10559(48)                           |
| $\Delta$ (%)                         | 0,04                               | 0,09                                 | 0,04                                | 0,09                                  |

| Canale            | $\delta_K^{SU(2)}$ | $\delta^{em}_{Kl}$ |
|-------------------|--------------------|--------------------|
| $K_{e3}^{0}$      | 0                  | 0,57 (15) %        |
| $K_{\mu 3}^0$     | 0                  | 0,80 (15) %        |
| $K_{e3}^{\pm}$    | 2,36 (22) %        | 0,08 (15) %        |
| $K_{\mu 3}^{\pm}$ | 2,36 (22) %        | 0,05 (15) %        |



• Calcolato indipendentemente per i cinque modi

$$K^0_{Le3},\,K^0_{L\mu3},\,K^0_{Se3},\,K^\pm_{e3} \,{
m e}\,K^\pm_{\mu3}$$

Mediando



$$|f_{+}(0) V_{us}| = 0,2157 \pm 0,0006$$



# Universalità e-µ



$$r_{\mu e} \equiv \frac{\left| f_{+}\left(0\right) V_{us} \right|_{\mu 3, sper}^{2}}{\left| f_{+}\left(0\right) V_{us} \right|_{e 3, sper}^{2}} = \frac{\Gamma_{\mu 3}}{\Gamma_{e 3}} \frac{I_{e 3} \left(1 + \delta_{Ke}\right)^{2}}{I_{\mu 3} \left(1 + \delta_{K\mu}\right)^{2}}$$

$$\delta_{Kl} = \delta_K^{SU(2)} + \delta_{Kl}^{em}$$

$$r_{\mu e} = \frac{g_{\mu}^2}{g_e^2} \longrightarrow = 1 \quad nel \quad MS$$

Mediando i modi carichi e neutri troviamo

$$r_{\mu e}$$
= 1,000 ± 0,008

Per confronto:

$$\begin{split} &(r_{\mu e})_{\pi}\text{= 1,0042} \pm 0,0033 \text{ (Ramsey\_Musolf et al., Phys. Rev. D76 (2007) 095017)} \\ &(r_{\mu e})_{\tau}\text{= 1,000} \pm 0,004 \quad \text{ (Davier et al., Rev. Mod. Phys. 78 (2006) 1043)} \end{split}$$



# Unitarietà di CKM



Usando un valore recente di f<sub>+</sub>(0) da QCD su reticolo (Boyle et al., arXiv:

0710.5136) 
$$f_{+}(0)=0.9644\pm0.0049$$

$$\Rightarrow |V_{us}| = 0.2237 \pm 0.0013$$

e con un valore recente  $|V_{ud}|$  = 0,97418 da dec.  $\beta$  superpermessi (Towner,

Hardy, arXiv: 0710.3181)

$$\Rightarrow |V_{ud}|^2 + |V_{us}|^2 - 1 = -0,0009 \pm 0,0008$$

compatibile con unitarietà CKM entro ~0,1%

Ulteriori informazioni calcolando |V<sub>us</sub>/V<sub>ud</sub>|



0,9930±0,0035 (Marciano, Phys. Rev. Lett. 93(2004)231803





$$|V_{us}|^2/|V_{ud}|^2 = 0.0541\pm0.007$$

$$\begin{array}{ll} > |V_{us}|^2 / |V_{ud}|^2 & \text{questo} \\ > |V_{ud}| & \text{dec } \beta \\ > |V_{us}| & \text{KLOE} \end{array}$$

fit  $\begin{cases} |V_{us}| = 0.2249 \pm 0.0010 \\ |V_{ud}| = 0.97417 \pm 0.0026 \\ 1 - |V_{ud}|2 - |V_{us}|2 = 0.0004 \pm 0.0007 \quad (\sim 0.6\sigma) \end{cases}$ 



# Fisica dei K Test di simmetrie



# Gli stati $K_S$ e $K_I$ - $Re(\epsilon'/\epsilon)$ - *Richiami*



### Il sistema dei K<sup>0</sup> è descritto dall'equazione

$$i\frac{\partial}{\partial t}\psi\left(t\right) = H\psi\left(t\right) = \left(M - \frac{i}{2}\Gamma\right)\psi\left(t\right)$$

$$K_{S,L} = \frac{1}{\sqrt{2(1+|\epsilon_{S,L}|^2)}} \left[ (1+\epsilon_{S,L}) K^0 \pm (1-\epsilon_{S,L}) \bar{K}^0 \right]$$

### Con

$$\epsilon_{S,L} = \frac{-i\operatorname{Im}(m_{12}) - \frac{1}{2}\operatorname{Im}(\Gamma_{12}) \pm \frac{1}{2}\left[m_{K^0} - m_{\bar{K}^0} - \frac{i}{2}\left(\Gamma_{\bar{K}^0} - \Gamma_{K^0}\right)\right]}{m_L - m_S + i\frac{(\Gamma_S - \Gamma_L)}{2}}$$

CPT  $\begin{cases} M_{11} = M_{22} & \text{(ovvero } m_{K^0} = m_{\bar{K}^0}) \\ \Gamma_{11} = \Gamma_{22} & \text{(ovvero } \Gamma_{K^0} = \Gamma_{\bar{K}^0}) \end{cases}$ 



I parametri  $\varepsilon$  e  $\delta$  si collegano a grandezze misurabili per mezzo delle ampiezze di decadimento in stati finali definiti. Per il decadimento in  $2\pi$ 

$$\eta_{+-} = \frac{\langle \pi^{+}\pi^{-} | T | K_{L} \rangle}{\langle \pi^{+}\pi^{-} | T | K_{S} \rangle} \simeq \tilde{\epsilon} + \epsilon'$$

$$\eta_{00} = \frac{\langle \pi^{0}\pi^{0} | T | K_{L} \rangle}{\langle \pi^{0}\pi^{0} | T | K_{S} \rangle} \simeq \tilde{\epsilon} - 2\epsilon'$$





CPT esatta 
$$\begin{cases} \tilde{\epsilon} = \epsilon \\ \epsilon' \end{cases}$$
 "indiretta" 
$$R = \left| \frac{\eta_{+-}}{\eta_{00}} \right|^2 = \frac{\Gamma(K_L \to \pi^+ \pi^-) \Gamma(K_S \to \pi^0 \pi^0)}{\Gamma(K_L \to \pi^0 \pi^0) \Gamma(K_S \to \pi^+ \pi^-)} \simeq 1 + 6 \operatorname{Re}(\epsilon'/\epsilon) \\ \operatorname{Re}(\epsilon'/\epsilon) \approx \epsilon'/\epsilon = (1.66 \pm 0.26) \times 10^{-3} \end{cases}$$

$$\operatorname{Re}(\epsilon'/\epsilon) \approx \epsilon'/\epsilon = (1.66 \pm 0.26) \times 10^{-3}$$



# Decadimento $K_L \rightarrow \pi^+\pi^-$





- Due tracce di carica opposta
- Che fanno un vertice nel VF
- $\sqrt{(E_{\text{miss}}^2 + p_{\text{miss}}^2)}$  migliore discr. per  $(\pi^+\pi^-\pi^0, \pi e \nu, \pi \mu \nu)$
- Fit della distribuzione con andamenti MC
- Normalizzazione a K<sub>L</sub>→πμν per ridurre sistematiche dovute a tag bias

BR(
$$K_1 \rightarrow \pi^+\pi^-$$
)=(1,963±0,012 ±0,017)x10<sup>-3</sup>

[Include radiazione di stato finale (sia IB che DE)]

\* Data

\* Data

\* Data

\*  $K_{e3}$ \*  $K_{\mu 3}$ \*  $K_{\mu$ 

In this 2006 edition of the Review of Particle Physics, the values of  $|\epsilon|$ ,  $|\eta_{+-}|$ , and  $|\eta_{00}|$  decrease significantly as a result of the high precision measurements of  $K_L^0$  branching ratios from KTeV, KLOE, and NA48. These measurements reduce the branching ratio  $\Gamma(K_L^0 \to \pi^+\pi^-)/\Gamma(\text{total})$  by 5.5 percent, a 4.6 $\sigma$  decrease relative to the 2004 edition [21].

# Decadimenti principali del KS



Misura di 
$$R_S = \Gamma[K_S \rightarrow \pi^+\pi^-(\gamma)]/\Gamma[K_S \rightarrow \pi^0\pi^0]$$

K<sub>L</sub>-tag 410 pb<sup>-1</sup>



# $K_S \rightarrow \pi + \pi -$

- Due tracce di curvatura opposta
- Vertice vicino al punto d'incrocio
  - r≤4 cm, z≤10 cm
- 120
- accettanzaxefficienza~0,59

$$K_S \rightarrow \pi^0 \pi^0$$

- Almeno 3 cluster "pronti"
- $I t_{cl} r_{cl} / c I < 5 \sigma_t$
- $E_{cl} > 20 \text{ MeV/c} \quad 25^{\circ} < \theta_{cl} < 155^{\circ}$ 
  - Riduce il fondo macchina
- Accettanza x efficienza ~ 0,85

$$R_S = 2,2549 \pm 0,0054$$

dall'altro con universalità

Includendo  $K_S \rightarrow \pi e \nu$  e  $K_S \rightarrow \pi \mu \nu$  e normalizzando  $\Sigma_i BR_i = 1$ 



BR(
$$K_S \to \pi^+\pi^-(\gamma)$$
) =(69,196 ±0,051)%

BR(
$$K_S \to \pi^0 \pi^0$$
) = (30,678 ± 0,051)%



# Relazione di Bell-Steinberger – Test di CPT



### Il sistema dei K<sup>0</sup> fornisce la sonda più sensibile per test di CPT

$$\begin{split} i\frac{\partial}{\partial t}\psi\left(t\right) &= H\psi\left(t\right) = \left(M - \frac{i}{2}\Gamma\right)\psi\left(t\right) \\ K_{S,L} &= \frac{1}{\sqrt{2\left(1 + \left|\epsilon_{S,L}\right|^{2}\right)}} \left[\left(1 + \epsilon_{S,L}\right)K^{0} \pm \left(1 - \epsilon_{S,L}\right)\bar{K}^{0}\right] \\ \epsilon_{S,L} &= \frac{-i\operatorname{Im}\left(m_{12}\right) - \frac{1}{2}\operatorname{Im}\left(\Gamma_{12}\right) \pm \frac{1}{2}\left[m_{K^{0}} - m_{\bar{K}^{0}} - \frac{i}{2}\left(\Gamma_{\bar{K}^{0}} - \Gamma_{K^{0}}\right)\right]}{m_{L} - m_{S} + i\frac{\left(\Gamma_{S} - \Gamma_{L}\right)}{2}} \\ &\equiv \epsilon \pm \delta \end{split}$$

$$CPT \left\{ \begin{array}{c} M_{11} &= M_{22} \quad (\text{ovvero } m_{K^{0}} = m_{\bar{K}^{0}}) \\ \Gamma_{11} &= \Gamma_{22} \quad (\text{ovvero } \Gamma_{K^{0}} = \Gamma_{\bar{K}^{0}}) \end{array} \right.$$

$$\varepsilon \rightarrow \mathcal{CP}$$

### L'unitarietà permette di scrivere

$$\Gamma_{ij}=\sum_{f}\mathcal{A}_{i}\left(f
ight)\mathcal{A}_{j}^{st}\left(f
ight)\quad\left(i,j=1,2\equiv K^{0},ar{K}^{0}
ight)$$
 e quindi

$$\left[\frac{\Gamma_{S} + \Gamma_{L}}{\Gamma_{S} - \Gamma_{L}} + i \tan \phi_{SW}\right] \left[\frac{\operatorname{Re}(\epsilon)}{1 + |\epsilon|^{2}} - \operatorname{Im}(\delta)\right] = \frac{1}{\Gamma_{S} - \Gamma_{L}} \sum_{f} \mathcal{A}_{L}(f) \,\mathcal{A}_{S}^{*}(f)$$



$$\tan \phi_{SW} = \frac{2(m_L - m_S)}{\Gamma_S - \Gamma_L} = \frac{2\Delta m}{\Gamma_S - \Gamma_L}$$

BRS: una relazione tra  $Re(\varepsilon)$ ,  $Im(\delta)$  e ampiezze di decadimento

Se  $Im(\delta) \neq 0$  allora CPT o l'unitarietà (o entrambe) sono violate

# Relazione di Bell-Steinberger – Test di CPT/2



Vantaggio  $K^0$  - solo pochi stati finali da considerare  $(\pi\pi(\gamma), \pi\pi\pi, \pi l\nu)$  per significatività al livello  $10^{-7}$  I prodotti delle ampiezze sono espressi da parametri  $\alpha_i$  ricavabili dai ris. sperimentali. Così:

$$\begin{bmatrix} \frac{\operatorname{Re}(\epsilon)}{1+|\epsilon|^2} \\ \operatorname{Im}(\delta) \end{bmatrix} = \frac{1}{N} \begin{bmatrix} 1+\kappa(1-2b) & (1-\kappa)\tan\phi_{SW} \\ (1-\kappa)\tan\phi_{SW} & -(1+\kappa) \end{bmatrix} \begin{bmatrix} \sum_{i}\operatorname{Re}(\alpha_i) \\ \sum_{i}\operatorname{Im}(\alpha_i) \end{bmatrix}$$

$$\kappa = \frac{\tau_S}{\tau_L}$$

$$b = (K_L \to \pi l \nu)$$

$$N = N(k, b, \tan \phi_{SW})$$

### Modi adronici

$$\alpha_{i} = \frac{1}{\Gamma_{S}} \langle \mathcal{A}_{L}(i) \mathcal{A}_{S}^{*}(i) \rangle = \eta_{i} BR(K_{S} \to i)$$

$$i = \pi^{0} \pi^{0}, \pi^{+} \pi^{-}(\gamma), \pi^{0} \pi^{0} \pi^{=}, \pi^{+} \pi^{-} \pi^{0}(\gamma)$$

### Modi semileptonici

$$\alpha_{\pi l \nu} = \frac{1}{\Gamma_S} \sum_{\pi l \nu} \langle \mathcal{A}_L (\pi l \nu) \mathcal{A}_S^* (\pi l \nu) \rangle + 2i \frac{\tau_S}{\tau_L} BR (K_L \to \pi l \nu) \operatorname{Im} (\delta)$$

$$= 2i \frac{\tau_S}{\tau_L} BR (K_L \to \pi l \nu) [(A_S + A_L) / 4 - i \operatorname{Im} (x_+)]$$

$$A = \frac{\Gamma (K \to \pi^- l^+ \nu) - \Gamma (K \to \pi^+ l^- \bar{\nu})}{\Gamma (K \to \pi^- l^+ \nu) + \Gamma (K \to \pi^+ l^- \bar{\nu})}$$

$$\begin{array}{lll}
\mathcal{A}\left(K^{0} \to \pi^{-}l^{+}\nu\right) & = & \mathcal{A}_{0}\left(1-y\right) \\
\mathcal{A}\left(K^{0} \to \pi^{+}l^{-}\bar{\nu}\right) & = & \mathcal{A}_{0}^{*}\left(1+y^{*}\right)\left(x_{+}-x_{-}\right)^{*} \\
\mathcal{A}\left(\bar{K}^{0} \to \pi^{+}l^{-}\bar{\nu}\right) & = & \mathcal{A}_{0}^{*}\left(1+y^{*}\right) \\
\mathcal{A}\left(\bar{K}^{0} \to \pi^{-}l^{+}\nu\right) & = & \mathcal{A}_{0}\left(1-y\right)\left(x_{+}+x_{-}\right)
\end{array}$$

$$\begin{array}{lll}
x_{+} & \longrightarrow & \text{NO } \Delta S = \Delta Q \; ; \; \text{SI } CPT \\
x_{-} & \longrightarrow & \text{NO } \Delta S = \Delta Q \; ; \; \text{NO } CPT \\
y & \longrightarrow & \text{SI } \Delta S = \Delta Q \; ; \; \text{NO } CPT \\
\mathcal{A}\left(\bar{K}^{0} \to \pi^{-}l^{+}\nu\right) & = & \mathcal{A}_{0}\left(1-y\right)\left(x_{+}+x_{-}\right)
\end{array}$$



# Re( $\varepsilon$ ), Im( $\delta$ ), $\Delta$ M



| Origine                  |
|--------------------------|
| PDG                      |
| media KLOE               |
| PDG                      |
| $media \; \mathbf{KLOE}$ |
| media KLOE               |
| KLOE                     |
| $media \; \mathbf{KLOE}$ |
| media KLOE               |
| PDG                      |
| PDG                      |
| E731                     |
| KLOE $MC$                |
| E773                     |
| E773                     |
| media KLOE               |
| CPLEAR                   |
| $media \; \mathbf{KLOE}$ |
| KLOE                     |
| media KLOE               |
| PDG                      |
| KLOE                     |
| CPLEAR, NA48, KLOE       |
|                          |

### Risultati

$$\mathfrak{Re}(\epsilon) = (159.6 \pm 1.3) \times 10^{-5}$$
  
 $\mathfrak{Im}(\delta) = (0.4 \pm 2.1) \times 10^{-5}$ 

Si ottiene, inoltre, nel lim.  $\Gamma_{K^o} = \Gamma_{\bar{K}^05}$ 

 $-5,3 \ 10^{-19} < \Delta M < 6,3 \ 10^{-19} \ GeV$  (95% CL)

$$\Delta M = m_{K^0} - m_{\bar{K}^0}$$

Migliorano notevolmente i risultati precedenti di CPLEAR

$$\Re e(\varepsilon) = (164.9 \pm 2.5) \times 10^{-5}$$
  
 $\Im m(\delta) = (2.4 \pm 5.0) \times 10^{-5}$ 

 $|\Delta M|$  < 12,7 10<sup>-19</sup> GeV (90% CL)





# Evoluzione di K<sub>S</sub> e K<sub>L</sub> - Interferometria



$$|i\rangle = \frac{1}{\sqrt{2}} \left[ K_S(\mathbf{p}) K_L(-\mathbf{p}) - K_S(-\mathbf{p}) K_L(\mathbf{p}) \right]$$



### Evoluzione temporale del sistema data da

$$\left\langle f_{1},t_{1};f_{2},t_{2}\right| i
ight
angle =rac{1}{\sqrt{2}}\left[\left\langle f_{1},t_{1}
ight|K_{S}\left(\mathbf{p}
ight)
ight
angle \left\langle f_{2},t_{2}
ight|K_{L}\left(-\mathbf{p}
ight)
ight
angle -\left\langle f_{2},t_{2}
ight|K_{S}\left(-\mathbf{p}
ight)
ight
angle \left\langle f_{1},t_{1}
ight|K_{L}\left(\mathbf{p}
ight)
ight
angle 
ight]$$

$$=\frac{\langle f_1|K_S\rangle \langle f_2|K_S\rangle}{\sqrt{2}} [\eta_2 e^{-(\Gamma_S t_1 + \Gamma_L t_2)/2} e^{-i(m_S t_1 + m_L t_2} - \eta_1 e^{-(\Gamma_S t_2 + \Gamma_L t_1)/2} e^{-i(m_S t_2 + m_L t_1)}]$$

### Numero dei decadimenti allo stato $f_1$ a $t_1$ e $f_2$ a $t_2$

$$I(f_{1}, t_{1}; f_{2}, t_{2}) = \frac{\left|\langle f_{1} | K_{S} \rangle \langle f_{2} | K_{S} \rangle\right|^{2}}{2} \left[\left|\eta_{1}\right|^{2} e^{-(\Gamma_{L} t_{1} + \Gamma_{S} t_{2})} + \left|\eta_{2}\right|^{2} e^{-(\Gamma_{S} t_{1} + \Gamma_{L} t_{2})} -2\left|\eta_{1}\right| \left|\eta_{2}\right| e^{-(\Gamma_{S} + \Gamma_{L})(t_{1} + t_{2})/2} \cos\left(\Delta m \left(t_{2} - t_{1}\right) + \phi_{1} - \phi_{2}\right)$$

### e integrando su $t_1$ e $t_2$ per $\Delta t = |t_2 - t_1|$ fissato

$$I(f_{1}, f_{2}, \Delta t) = \frac{|\langle f_{1} | K_{S} \rangle \langle f_{2} | K_{S} \rangle|^{2}}{2(\Gamma_{S} + \Gamma_{L})} [|\eta_{2}|^{2} e^{-\Gamma_{S} \Delta t} + |\eta_{1}|^{2} e^{-\Gamma_{L} \Delta t}$$
$$-2|\eta_{1}| |\eta_{2}| e^{-(\Gamma_{S} + \Gamma_{L}) \Delta t/2} \cos(\Delta m \Delta t + \phi_{2} - \phi_{1})]$$



# $\varphi \to K_S K_L \to \pi^+ \pi^- \, \pi^+ \pi^-$



### Diverse figure d'interferenza per i diversi modi di decadimento

$$f_1 = f_2 = \pi^+ \pi^-$$

$$I\left(\pi^{+}\pi^{-}, \Delta t\right) = \frac{\left|\left\langle \pi^{+}\pi^{-} | K_{S} \right\rangle\right|^{4}}{2\left(\Gamma_{S} + \Gamma_{L}\right)} \left|\eta_{+-}\right|^{2} \left[e^{-\Gamma_{L}\Delta t} + e^{-\Gamma_{S}\Delta t} - 2e^{-(\Gamma_{S} + \Gamma_{L})\Delta t/2} \cos\left(\Delta m \Delta t\right)\right]$$



 $\Delta m = m_L - m_S$ 

posizione e altezza picco sensibile a ∆m

I = 0 per ∆t = 0 ! ⇒ paradosso EPR





Fit con esponenziale convoluto con gaussiana

 $\tau_{\rm S}$ =(0,9030±0,0056) 10<sup>-10</sup> s PDG (0,8935±0,0008) 10<sup>-10</sup> s



# Test della coerenza quantistica e di CPT



380 pb<sup>-1</sup> – 7366 eventi

### Prima volta

Rigenerazione  $K_L \rightarrow K_S$  sulla beam pipe

Fondo non risonante e<sup>+</sup>e<sup>-</sup> $\rightarrow \pi^+\pi^-\pi^+\pi^-$ 

Test coerenza quant. fittando un param. di decoerenza  $\zeta$ 

$$I\left(\Delta t\right) \propto e^{-\Gamma_S \Delta t} + e^{-\Gamma_L \Delta t} - 2\left(1 - \zeta\right) e^{-\left(\Gamma_S + \Gamma_L\right) \Delta t/2} \cos\left(\Delta m \Delta t\right)$$

Modelli di gravità quantistica prevedono la possibilità di decoerenza e violazione di CPT. Fluttuazioni spaziotemporali alla scala di Plank farebbeo traf. stato puro in misto dando luogo a violazioni di MQ e CPT. In tale contesto lo stato iniziale C=-1 può acquistare una componente C=+1

$$|i\rangle = \frac{1}{\sqrt{2}} \left[ \left( \left| K^0, \bar{K}^0 \right\rangle - \left| \bar{K}^0, K^0 \right\rangle \right) + \omega \left( \left| K^0, \bar{K}^0 \right\rangle + \left| \bar{K}^0, K^0 \right\rangle \right) \right]$$

 $\zeta_{\rm SL}$  < 0,098 al 95 % CL

$$\zeta_{00}$$
 < 0,50 x 10<sup>-3</sup> al 95% CL

Migliorato CPLEAR



 $\Delta m = (5,34 \pm 0,34) \times 10^9 \text{ s}^{-1}$ 

 $\Delta$ m fissato al valore del PDG (5,290  $\pm$  0,016)x10<sup>9</sup> s<sup>-1</sup>



 $|\omega|$  < 2,1 x 10<sup>-3</sup> al 95% CL prima volta



# Fisica dei K Decadimenti rari



# Decadimenti rari del K<sub>S</sub> - K<sub>S</sub> $\rightarrow \pi^0 \pi^0 \pi^0$



# VIOLA CP

$$\eta_{000} = \frac{\langle \pi^0 \pi^0 \pi^0 | K_S \rangle}{\langle \pi^0 \pi^0 \pi^0 | K_L \rangle} = \epsilon + \epsilon'_{000} \cos |\epsilon'_{000}| \ll |\epsilon|$$

$$BR(K_S \to \pi^0 \pi^0 \pi^0) \simeq |\eta_{000}|^2 BR(K_L \to \pi^0 \pi^0 \pi^0) \frac{\tau_S}{\tau_L} \simeq 1,9 \times 10^{-9}$$

Miglior limite prima di KLOE BR( $K_S \rightarrow \pi^0 \pi^0 \pi^0$ )<7,4 10<sup>-7</sup> 90%CL (NA48) (fittando interferenza KS/KL a piccoli t)

KLOE ha fatto la misura diretta migliorando di un fattore 6 questo limite e di due ordini di grandezza il limite diretto di SND

- Sei cluster "neutri" pronti
- Nessuna traccia dalla regione di interazione
- Rimangono ~40.000 ev, prevalentemente  $K_S \to \pi^0 \, \pi^0$  + 2 cluster

Stratategia di eliminazione del fondo a partire da un fit a 11 vincoli (p, E,  $m_K$ , velocità dei 6 fotoni) Restano 2 ev con circa  $3\pm1$  di fondo

BR(
$$K_S \to \pi^0 \pi^0 \pi^0$$
) < 1,2 10<sup>-7</sup> (90% CL)

 $|\eta_{000}| < 0.018 (90\% CL)$ 



# Decadimenti rari del K<sub>S</sub>: K<sub>S</sub> $\rightarrow \gamma\gamma$ – Test di $\chi$ PT



Test di  $\chi$ PT che prevede BR(K<sub>S</sub> $\rightarrow \gamma \gamma$ )=2,1 10<sup>-6</sup> Migliore misura BR(K<sub>S</sub> $\rightarrow \gamma \gamma$ )=2,1 10<sup>-6</sup> differisce per 30% da  $\chi$ PT

Dati 1,9 fb<sup>-1</sup> -  $\sim$  700 10<sup>6</sup> K<sub>S</sub> da cui 1900 da cui  $\sim$  1900 K<sub>S</sub>  $\rightarrow \gamma \gamma$  aspettati

- 2 e solo 2 cluster
- $|t_{v}$ -r/c| < min(5 $\sigma_{tv}$ , 2ns)
- E $\dot{\gamma}$  > 7 MeV,  $|\cos\theta\gamma|$  < 0,93 grande accet. per aumentare reiezione K<sub>S</sub>  $\rightarrow\pi^0\pi^0$
- No eventi con almeno un fotone in QCAL migliora S/B
- Fit cinematico e taglio su χ2
- Taglio su scatterplot M $\gamma\gamma$  vs  $\theta\gamma\gamma$  per riduzione ulteriore K<sub>S</sub>  $\rightarrow \pi^0\pi^0$  (ora unico fondo)

Normalizzazione a  $K_S \rightarrow \pi^0 \pi^0$ 

BR(
$$K_S \to \gamma \gamma$$
)=(2,26±0,12±0,06)10<sup>-6</sup>  $\chi$ PT ~OK<sup>1.75</sup>





Marco Napolitano - Napoli,

# Decadimenti rari del K<sub>S</sub> - K<sub>S</sub>→ e<sup>+</sup>e<sup>-</sup>



Decadimento "FCNC" con amp. dominata da -

$$\frac{\Gamma(K_S \to e^+ e^-)}{\Gamma(K_S \to \gamma \gamma)} = 8 \times 10^{-9} \quad (\pm 10\%)$$

$$\chi PT \left(\mathcal{O}(p4)\right)$$





CPLEAR 
$$\longrightarrow$$
  $BR\left(K_S \to e^+e^-\right) < 1,4 \times 10^{-7} \quad (90\% CL)$ 

BR(
$$K_S \to e + e - (\gamma) < 1.65 \times 10^{-8}$$

