

Fisica di precisione con KLOE @ DAΦNE

DAONE "o-factory"

- Collider $e^+e^- \sqrt{s}=M_{\phi}=1019,4 \text{ MeV}$
- Anelli separati per e+ ed e- per minimizzare interazioni fascio-fascio
- Due zone d'interazione
- Angolo di incrocio 12,5 mrad $\rightarrow p_T \sim 13$ MeV/c
- L_{progetto}=5x10³² cm⁻²s⁻¹
- Tempo tra due collisioni 2,7 ns
- Iniezione durante presa dati

Prestazioni nel 2004-05

- ~ 105 bunch e⁺ + e⁻
- I⁻_{picco} ~2,4 A I⁺_{picco} ~1,5 A
- $L_{picco} = 1,4x10^{32} \text{ cm}^{-2}\text{s}^{-1}$
- L integrata mese ~ 200 pb⁻¹

$\Phi\textsc{-}Factory$ come "fabbrica" di KK

 $\sigma(e^+e^-\rightarrow\phi)\sim 3 \ \mu b$ Per L=10³² cm⁻²s⁻¹ $\rightarrow \sim 300 \ \Phi/s$

 \rightarrow ovvero

K⁺K⁻ 49% ~150/s
 K_sK_L 34% ~100/s
 "Fabbrica" di K

Infatti puro stato J^{PC}=1⁻⁻ quindi

$$\left| K\overline{K}, t=0 \right\rangle = \frac{1}{\sqrt{2}} \left(\left| K^{0}\overline{K}^{0} \right\rangle - \left| \overline{K}^{0}K^{0} \right\rangle \right) \equiv \frac{1}{\sqrt{2}} \left(\left| K_{S}K_{L} \right\rangle - \left| K_{L}K_{S} \right\rangle \right)$$

$$\mathsf{K}_{\mathsf{L}}\left(\mathsf{K}^{+}\right) \longleftrightarrow \varphi \longrightarrow \mathsf{K}_{\mathsf{S}}\left(\mathsf{K}^{-}\right)$$

L'osservazione di un $K_L (K_S)$ segnala la presenza di un $K_S (K_L)$ Analogamente un K⁺ (K⁻) segnala un K⁻ (K⁺) *"TAGGING"*

Il decadimento della ϕ fornisce dei fasci puri di $K_s e K_L (K^+ e K^-)$

D-Factory

una

Perché

- Misura di vite medie e frazioni di decadimento (BR) assolute o misura di precisione di rapporti di tali BR
 - Studi di simmetrie fondamentali quali CP e CPT
 - Verifica conservazione numero leptonico
 - Universalità dell'accoppiamento debole

≻ Vus

- Studio dell'evoluzione temporale del sistema coerente K_SK_L
 Ancora CP e CPT
 - Test di proprietà fondamentali della meccanica quantistica

Decadimenti radiativi

- 1,3% ηγ $1 \rightarrow 0^{-}$ transizione di dipolo magnetico 6,5x10⁻⁵ ηγ 1,1x10⁻⁴ $1^{-} \rightarrow 0^{+}$ transizione di dipolo elettrico $t_0\gamma$ 6,2x10⁻⁵ $a_0\gamma$ Sonde uniche per studiare proprietà e struttura dei mesoni pseudoscalari e scalari \rightarrow i tassi di decadimento dipendono fortemente dalla funzione d'onda del mesone finale e dal suo contenuto in sapore
 - Inoltre e⁺e⁻ → π⁺π⁻γ √s_π=(s-2E_γ√s)^{1/2}
 > σ(e⁺e⁻ → π⁺π⁻) tra soglia e ~ 1GeV
 da essa dipende buona parte del contributo adronico ad a_μ

D-Factory

una

Perché

Sommario

- KLOE
- Fisica dei K
 - Vus e universalità
 - Test di simmetrie
 - Decadimenti rari

KLOE (K Long Experiment)

K _i K _s	K+ K-
B [*] = 0.216	β * =0.245
p* = 110 MeV/c	<i>p</i> * = 127 <i>M</i> eV/c
$\lambda_{s} = 6 mm; \lambda_{t} = 3.4 m$	λ _± = 95 cm

Grande volume di decadimento (λ_{L} =3,5 m)

Massima trasparenza

"Ermetico"

"Unbiassed" trigger

Pipe sferica in Be-Al ϕ =10 cm, spessore 0,5 mm \rightarrow *Minimizza rigenerazione, conversione* γ , scattering

Quads low-beta instrumentati \rightarrow Ermeticità per rivelazione γ

Camera a drift "stereo", ϕ =4 m, L=3,4 m, pareti fibra di carbonio, gas a bassa densità (90%He+10%i-C4H10),12.582 celle "quadrate" (fili: sense W ϕ =25 µm, campo Al ϕ =50 µm)

Calorimetro 0,5 mm Pb, fibre scintillanti ϕ =1 mm, 15 X₀, 2440 celle doppia lettura

Magnete superconduttore B=0,52 T

I rivelatori di KLOE

- σ/p=0,4% (tracce θ>45°)
- $\sigma_{r\phi} \sim 150 \ \mu m, \ \sigma_z = 2mm$
- $\sigma_{\text{vertice}} \sim 2-3 \text{ mm}$
- σ (m_{ππ}) ~ 1 MeV

- $\epsilon > 95\%$ per E_{γ}>20 MeV
- $\sigma_{\rm E}$ /E=0,057/ $\sqrt{\rm E}$ (GeV)
- $\sigma_t = 54 \text{ ps/}{\sqrt{E}} (\text{GeV}) \oplus 50 \text{ps}$
- σ_{sciame} =1,3 cm/ \sqrt{E} (GeV)
- $\sigma_{\text{vertice}}(\gamma\gamma)=1,3 \text{ cm } (\mathsf{K}_{\mathsf{L}} \rightarrow \pi^+ \pi^- \pi^0)$

Ricostruzione di tracce

- Risoluzione spaziale
 - $~\sigma_{\rho\phi} \cong 150~\mu m$

Bhabha scattering events

126 128

130 132

134

 $K_S \rightarrow \pi^+ \pi^-$

Misura dei fotoni

Risoluzione in tempo

Risoluzione in energia

Misura dei fotoni/2

I dati di KLOE

- Presa dati nel periodo 2001-05
 ~2,5 fb⁻¹ √s=M(Φ)
 - ~2,5x10⁹ K_sK_L e 3,6x10⁹K⁺K⁻

• Presa dati 2006

4 punti "energy scan" intorno al picco della Φ 225 pb^-1

Fisica dei K Vus e universalità

Interesse per la misura di V_{us} con i K/1

14

MS – Accoppiamento W con corrente debole carica:

Decadimenti semileptonici e V_{us}

"Tagging" di $K_L e K_S$

K_L segnalato da $K_S \rightarrow \pi^+ \pi^-$

 K_L risoluzione angolare ~ 1° K_L risoluzione momento ~ 1 MeV/c

K_{S} segnalato da K_{L} in calorimetro

•Cluster di energia E > 200MeV • 0,17 $\leq \beta^* \leq 0,28$ ($\beta^* = r_{cl}/t_{cl}$ nel CM della Φ)

 ε ~ **30%** geometria & taglio energia K_S risoluzione angolare ~ 1° K_S risoluzione momento ~ 1 MeV/c

Marco Napolitano - Napoli, 3 aprile 2008

Decadimenti principali del K_L/1

Decadimenti principali del K_L/2

Decadimenti principali del K_L/3

 $\tau_L = 50,72 \ \pm 0,17 \ \pm 0,33$

$$\begin{split} &\mathsf{BR}(\mathsf{K}_{\mathsf{L}} {\to} \pi e \nu(\gamma) = 0,4007 {\pm} 0,0006 ~{\pm} 0,0014 \\ &\mathsf{BR}(\mathsf{K}_{\mathsf{L}} {\to} \pi \mu \nu(\gamma) = 0,2698 ~{\pm} 0,0006 ~{\pm} 0,0014 \\ &\mathsf{BR}(\mathsf{K}_{\mathsf{L}} {\to} \pi^{0} \pi^{0} \pi^{0} = 0,1997 ~{\pm} 0,0005 ~{\pm} 0,0019 \\ &\mathsf{BR}(\mathsf{K}_{\mathsf{L}} {\to} \pi^{+} \pi^{-} \pi^{0}(\gamma) = 0,1263 ~{\pm} 0,0005 ~{\pm} 0,0011 \end{split}$$

Marco Napolitano - Napoli, 3 aprile 2008

Vita media del K_L

2000 events/0.3 ns $\times 10^{2}$ Da eventi $K_1 \rightarrow \pi^0 \pi^0 \pi^0$ con K_S -tag 1750 \rightarrow massimizza eventi e minimizza tag bias 1500 400 pb⁻¹ 1,2x10⁹ ϕ 10⁷ K₁ 1250 1000 Ampia accettanza ~ 0,4λ₁ \rightarrow Importante, più basso $\sigma(\tau_1)$ 6 - 24.8 ns 750 Efficienza ε_{ντx} molto alta e ~ costante con la 40 -165 cm 500 lunghezza di decadimento ≈ 0.4 λ • $K_1 \rightarrow \pi^+ \pi^- \pi^0$ per valutare risoluzione 250 e scala dei tempi 5 10 15 20 25 30 35 0 $\tau_1 = 50,92 \pm 0,17 \pm 0,25$ ns $L/\beta\gamma c$ (ns) Facendo la media pesata di questa K⁰ MEAN LIFE e della precedente (sono scorrelate): VALUE (10^{-8} s) EVTS DOCUMENT ID TECN 5.116±0.020 OUR FIT $\tau_1 = 50,84 \pm 0,23$ ns 5.099±0.021 OUR AVERAGE ¹³ AMBROSINO 06 KLOE 13M $5.072 \pm 0.011 \pm 0.035$ $5.092 \pm 0.017 \pm 0.025$ 15M AMBROSINO 05C KLOE 5.154 ± 0.044 0.4M VOSBURGH 72 CNTR

Decadimenti semileptonici del K_S

Tagging di K⁺ e K⁻

Usati i decadimenti in due corpi $K^{\pm} \rightarrow \mu^{\pm} \nu$ e $K^{\pm} \rightarrow \pi^{\pm} \pi^{0}$

- Due tracce con curvature dello stesso segno che formano un vertice (kink) nel VF
- K identificato da 70 $< p_K < 130$ MeV/c e punto di max avvicinamento a IP tale che r < 10cm e |z| < 20cm
- Secondario identificato da picco nella distr. di p* (imp. nel CM del K) calcolato in ip. $m_{\mu} e m_{\pi}$ $K_{\mu 2} \rightarrow 231 < p_{\mu}^* < 241 MeV/c$ $K_{\pi 2} \rightarrow 201 < p_{\pi}^* < 209 MeV/c$
- Richiesto self-trigger calorimetrico per ridurre tag-bias
- Efficienza complessiva 5-6%

Marco Napolitano - Napoli, 3 aprile 2008

 $K^+ \rightarrow \mu^+ \nu(\gamma)$

Grazie a QCD su reticolo (f_{K}^{2}/f_{π}^{2}) \rightarrow alternativa ai dec. semileptonici per misurare V_{us} Misura pìù recente nel 1972: non furono pienamente considerati effetti radiativi. KLOE ha misurato il BR assoluto inclusivo di radiazione

Misurati BR assoluti usando un campione di oltre $600x10^{6} \phi \rightarrow K^{+}K^{-}$

- 4 campioni distinti con tag: $K^- \rightarrow \mu^- \nu$, $K^+ \rightarrow \mu^+ \nu$, $K^- \rightarrow \pi^- \pi^0$, $K^+ \rightarrow \pi^+ \pi^0$
- analizzati indipendentemente per ridurre sistematiche
- Tagli cinematici su secondario carico per rigettare due corpi e $K_{3\pi}$
- Tempo di volo per separazione $e-\mu$
- Numero di eventi dal fit di m²lept

Mediando i dati dei quattro campioni:

$$BR(K_{e3}) = (4,965 \pm 0,038 \pm 0,037) \times 10^{-2}$$

$$BR(K_{\mu3}) = (3,233 \pm 0,029 \pm 0,026) \times 10^{-2}$$

 $\frac{\Gamma(K_{\mu3})}{\Gamma(K_{e3})} = 0,6511 \pm 0,0064 \text{ accordo entro } 1,5\sigma \text{ con } R_{\mu e}^{SM} = 0,6646 (61)$

Vita media di K[±]

- 210 pb⁻¹ Eventi taggati con $K \rightarrow \mu \nu$
- Usati due metodi per controllo incrociato errori sistematici
- 1° metodo: τ[±] dalla lunghezza di decadimento (solo DC)
- Usati tutti i tipi di decadimento
- Identificato il vertice di decadimento (nel VF)
- Ricostruita la lunghezza di decadimento
- $\tau_{\rm K}$ dal fit del tempo proprio $t_{\rm K}$ =L/ $\beta\gamma$ c

2° metodo: τ^{\pm} dal tempo di decadimento (solo cal.)

- Usati K[±] \rightarrow X[±] π^0
- Usato il tag per stimare T⁰
- $t_{K} = (t_{\gamma} L_{\gamma}/c T^{0})\gamma_{K}$
- τ_{K} dal fit del tempo proprio t_{K}

$$au = (12, 337 \pm 0, 030) \, ns$$

 $PDG: \ \ \tau = (12, 384 \pm 0, 024) \, ns$

$$\frac{\tau^+}{\tau^-} = 1,004 \pm 0,004$$

$K \rightarrow \pi I_{V}$: fattori di forma

$$\langle \pi | J_{\mu}^{adr} | K \rangle = f_{+}(t) (P + p)_{\mu} + f_{-}(t) (P - p)_{\mu}$$

$$f_{0}(t) = f_{+}(t) + \frac{t}{m_{K}^{2} - m_{\pi}^{2}} f_{-}(t) \qquad f_{+}(0) = f_{0}(0)$$

$$\langle \pi | J_{\mu}^{adr} | K \rangle = f_{+}(0) [(P + p)_{\mu} \tilde{f}_{+}(t) + (P - p)_{\mu}) (\tilde{f}_{0}(t) - \tilde{f}_{+}(t)) \frac{m_{K}^{2} - m_{\pi}^{2}}{t}]$$
Sviluppati in potenze di t
$$solo \tilde{f}_{+} \text{ per Ke3}$$

$$\tilde{f}_{+}(t) = 1 + \lambda'_{+} \frac{t}{m_{\pi}^{2}} + \frac{1}{2} \lambda''_{+} \left(\frac{t}{m_{\pi}^{2}} \right)^{2} + \dots \qquad \underbrace{g_{0}}_{0} \qquad \tilde{f}_{0}(t) = 1 + \lambda'_{0} \frac{t}{m_{\pi}^{2}} + \frac{1}{2} \lambda''_{0} \left(\frac{t}{m_{\pi}^{2}} \right)^{2} + \dots$$
o come polo
$$\tilde{f}_{+}(t) = \frac{1}{1 - t/M_{V}^{2}} \qquad \tilde{f}_{0}(t) = \frac{1}{1 - t/M_{S}^{2}} \implies \lambda' = (m_{\pi}/M)^{2} \qquad \lambda'' = 2\lambda'^{2}$$
I parametri λ sono estratti fittando la funzione densità degli eventi
$$\lambda' \in \lambda'' \text{ fortemente correlati}$$
KLOE ha usato una nuova parametrizzazione basata su relazioni di dispersioni
$$Marco Napolitano - Napoli, 3 aprile 2008 \qquad \underbrace{f(t) = 1 + \lambda'_{0} (t) = 1 +$$

$K \rightarrow \pi I_{\nu}$: fattori di forma/2

- K_{Le}
 - 328 pb⁻¹, 2 10⁶ K_L stesso campione decad. K_L
 - Tagli cinematici più stringenti
 - TOF per separazione e- μ - π
 - Misure separate per ciascuno stato di carica ($e+\pi$ -, $e-\pi$ +)

$K \rightarrow \pi I_{\nu}$: fattori di forma/3

Più difficile – Separazione $\pi-\mu$ problematica – Invece di E_{π} (equiv. a t) fit di E_{ν} dopo integraz. su E_{π} . E_{ν} =momento mancante (nel CM del K) \rightarrow nessuna necessità di separare $\pi-\mu$

- 328 pb^-1, 1,8 106 KL $\,$ - stesso campione decad. K_L

$$\begin{array}{rcl} \lambda'_+ &=& (22,3\pm9,8\pm3,7)\times10^{-3}\\ \lambda''_+ &=& (4,8\pm4,9\pm1,6)\times10^{-3}\\ \lambda'_0 &=& (9,1\pm5,9\pm2,6)\times10^{-3} \end{array}$$

• Combinando questi con quelli di Ke3

$$\lambda'_{+} = (25, 6 \pm 1, 7) \times 10^{-3}$$

$$\lambda''_{+} = (1, 5 \pm 0, 8) \times 10^{-3}$$

$$\lambda'_{0} = (15, 4 \pm 2, 2) \times 10^{-3}$$

• C'è una forte correlazione tra i parametri del fit quadratico. KLOE ha usato una nuova parametrizzazione basata su relazione di dispersione, con la quale si fitta un solo parametro sia per FF scalare che vettoriale. Combinando K_{e3} e K_{µ3} si ha

- $\lambda_0 = (14,0 \pm 1,6 \pm 1,3) \ 10^{-3}$

$|f_{+}(0)V_{us}|$

Parametri	$\mathbf{I}\left(K_{e3}^{0} ight)$	$\mathbf{I}\left(K_{\mu3}^{0} ight)$	$\mathbf{I}\left(K_{e3}^{+}\right)$	$\mathbf{I}\left(K_{\mu3}^{+}\right)$
$\lambda'_+, \lambda''_+ \lambda'_0$	0,15483(40)	0,10271(52)	0,15919(54)	0,10568(54)
$\lambda_+ \lambda_0$	0,15477(35)	0,10262(47)	0,15913(36)	0,10559(48)
$\Delta(\%)$	0,04	0,09	0,04	0,09

Canale	$\delta_K^{SU(2)}$	δ^{em}_{Kl}
K_{e3}^{0}	0	0,57(15)%
$K^{0}_{\mu 3}$	0	0,80(15)%
K_{e3}^{\pm}	2,36(22)%	0,08(15)%
$K_{\mu3}^{\pm}$	2,36(22)%	0,05(15)%

Calcolato indipendentemente per i cinque modi

$$K_{Le3}^0, K_{L\mu3}^0, K_{Se3}^0, K_{e3}^{\pm} \in K_{\mu3}^{\pm}$$

• Mediando

$$|f_{+}(0) V_{us}| = 0,2157 \pm 0,0006$$

$$r_{\mu e} \equiv \frac{\left|f_{+}\left(0\right)V_{us}\right|^{2}_{\mu 3,sper}}{\left|f_{+}\left(0\right)V_{us}\right|^{2}_{e3,sper}} = \frac{\Gamma_{\mu 3}}{\Gamma_{e3}}\frac{I_{e3}\left(1+\delta_{Ke}\right)^{2}}{I_{\mu 3}\left(1+\delta_{K\mu}\right)^{2}}$$

$$\delta_{Kl} = \delta_K^{SU(2)} + \delta_{Kl}^{em} \qquad \qquad r_{\mu e} = \frac{g_{\mu}^2}{g_e^2} \quad \longrightarrow \quad = 1 \quad nel \quad MS$$

• Mediando i modi carichi e neutri troviamo

 $r_{\mu e}$ = 1,000 ± 0,008

• Per confronto: $(r_{\mu e})_{\pi} = 1,0042 \pm 0,0033$ (Ramsey_Musolf et al., Phys. Rev. D76 (2007) 095017) $(r_{\mu e})_{\tau} = 1,000 \pm 0,004$ (Davier et al., Rev. Mod. Phys. 78 (2006) 1043)

Unitarietà di CKM

Usando un valore recente di $f_{+}(0)$ da QCD su reticolo (Boyle et al., arXiv: $f_{+}(0)=0,9644\pm0,0049$ 0710.5136) \Rightarrow |V_{us}|=0,2237 ± 0,0013 e con un valore recente $|V_{ud}| = 0,97418$ da dec. β superpermessi (Towner, Hardy, arXiv: 0710.3181) $|V_{us}|^2$ \Rightarrow $|V_{ud}|2 + |V_{us}|2 - 1 = -0,0009 \pm 0,0008$ 0.052 $K \rightarrow \mu \nu$ compatibile con unitarietà CKM entro ~0,1% $\pi \rightarrow \mu \nu$ 0.051Ulteriori informazioni calcolando |V_{us}/V_{ud}| $K \rightarrow \pi l \nu$ 0,9930±0,0035 0.050 $f_{\kappa}/f_{\pi}=1,189\pm0,007$ (Marciano, Phys. Rev. Lett. (E. Follana et al., arXiv: 0706.1726) $0^+ \rightarrow 0^+$ unitarity 1σ contour **PDG** 93(2004)231803 0.049 3-decay $0.950 |V_{ud}|^2$ 0.948 0.949 $\frac{|V_{us}|^2}{|V_{ud}|^2} \frac{f_K^2}{f_\pi^2} \frac{m_K \left(1 - m_\mu^2 / m_K^2\right)^2}{m_\pi \left(1 - m_\mu^2 / m_K^2\right)^2} \left(\frac{1 + \frac{\alpha}{\pi} C_K}{1 + \frac{\alpha}{\pi} C_\pi} \right)^{\frac{1}{2}}$ $\Gamma\left(K_{\mu 2(\gamma)}\right)$ $|V_{us}|^2 / |V_{ud}|^2 = 0.0541 \pm 0.007$ $\Gamma\left(\pi_{\mu 2(\gamma)}\right)$ $\begin{aligned} |V_{us}| &= 0,2249 \pm 0,0010 \\ |V_{ud}| &= 0,97417 \pm 0,0026 \\ 1 - |V_{ud}|2 - |V_{us}|2 = 0,0004 \pm 0,0007 \quad (\sim 0,6\sigma) \end{aligned}$ $>|V_{us}|^2/|V_{ud}|^2$ questo fit 🚽 $\succ |V_{ud}|$ dec β ≻|V_{us}| KLOE Marco Napolitano - Napoli, 3 aprile 2008 31

Fisica dei K Test di simmetrie

Il sistema dei K⁰ è descritto dall'equazione

$$i\frac{\partial}{\partial t}\psi(t) = H\psi(t) = \left(M - \frac{i}{2}\Gamma\right)\psi(t)$$

$$CPT \begin{cases} M_{11} = M_{22} \text{ (ovvero } m_{K^0} = m_{\bar{K}^0}) \\ \Gamma_{11} = \Gamma_{22} \text{ (ovvero } \Gamma_{K^0} = \Gamma_{\bar{K}^0}) \end{cases}$$

$$K_{S,L} = \frac{1}{\sqrt{2\left(1 + |\epsilon_{S,L}|^2\right)}} \left[(1 + \epsilon_{S,L})K^0 \pm (1 - \epsilon_{S,L})\bar{K}^0\right]$$

$$\varepsilon \rightarrow \swarrow P$$

$$\delta \rightarrow \circlearrowright T$$

$$\delta \rightarrow \circlearrowright T$$

I parametri ε e δ si collegano a grandezze misurabili per mezzo delle ampiezze di decadimento in stati finali definiti. Per il decadimento in 2π

$$\eta_{+-} = \frac{\langle \pi^{+}\pi^{-} | T | K_{L} \rangle}{\langle \pi^{+}\pi^{-} | T | K_{S} \rangle} \simeq \tilde{\epsilon} + \epsilon'$$

$$\eta_{00} = \frac{\langle \pi^{0}\pi^{0} | T | K_{L} \rangle}{\langle \pi^{0}\pi^{0} | T | K_{S} \rangle} \simeq \tilde{\epsilon} - 2\epsilon'$$

$$\mathsf{CPT} \text{ esatta } \begin{cases} \tilde{\epsilon} = \epsilon \\ \epsilon' \end{cases} \quad \text{``indiretta''} \quad \mathsf{``indiretta''} \\ \epsilon' \end{cases} \quad \mathsf{``indiretta''} \quad \mathsf{``indiretta''} \quad \mathsf{``indiretta''} \\ \mathsf{Re}(\epsilon'/\epsilon) \approx \epsilon'/\epsilon = (1.66 \pm 0.26) \times 10^{-3} \end{cases}$$

$$\mathsf{Marco Napolitano - Napoli, 3 aprile 2008} \quad \mathsf{PDG} \qquad 33$$

Decadimento $K_L \rightarrow \pi^+ \pi^-$

- Due tracce di carica opposta
- Che fanno un vertice nel VF
- $\sqrt{(E_{miss}^2 + p_{miss}^2)}$ migliore discr. per $(\pi^+\pi^-\pi^0, \pi e\nu, \pi \mu\nu)$
- Fit della distribuzione con andamenti MC
- Normalizzazione a $K_L{\rightarrow}\pi\mu\nu$ per ridurre sistematiche dovute a tag bias

BR(K_L $\rightarrow \pi^{+}\pi^{-}$)=(1,963±0,012 ±0,017)×10⁻³

[Include radiazione di stato finale (sia IB che DE)]

In this 2006 edition of the *Review of Particle Physics*, the values of $|\epsilon|$, $|\eta_{+-}|$, and $|\eta_{00}|$ decrease significantly as a result of the high precision measurements of K_L^0 branching ratios from KTeV, KLOE, and NA48. These measurements reduce the branching ratio $\Gamma(K_L^0 \to \pi^+\pi^-)/\Gamma(\text{total})$ by 5.5 percent, a 4.6 σ decrease relative to the 2004 edition [21].

Il sistema dei K⁰ fornisce la sonda più sensibile per test di CPT

$$\begin{split} &i\frac{\partial}{\partial t}\psi\left(t\right) = H\psi\left(t\right) = \left(M - \frac{i}{2}\Gamma\right)\psi\left(t\right) \\ &K_{S,L} = \frac{1}{\sqrt{2\left(1 + |\epsilon_{S,L}|^2\right)}} \begin{bmatrix} (1 + \epsilon_{S,L})K^0 \pm (1 - \epsilon_{S,L})\bar{K}^0 \end{bmatrix} \\ &\epsilon_{S,L} = \frac{-i\operatorname{Im}\left(m_{12}\right) - \frac{1}{2}\operatorname{Im}\left(\Gamma_{12}\right) \pm \frac{1}{2}\left[m_{K^0} - m_{\bar{K}^0} - \frac{i}{2}\left(\Gamma_{\bar{K}^0} - \Gamma_{K^0}\right)\right]}{m_L - m_S + i\frac{(\Gamma_S - \Gamma_L)}{2}} \\ &\equiv \epsilon \pm \delta \end{split} \\ \begin{aligned} \mathsf{CPT} \begin{cases} M_{11} = M_{22} \quad (\text{ovvero } m_{K^0} = m_{\bar{K}^0}) \\ \Gamma_{11} = \Gamma_{22} \quad (\text{ovvero } \Gamma_{K^0} = \Gamma_{\bar{K}^0}) \\ \varepsilon \to \mathcal{OP} \\ \delta \to \mathcal{OPT} \end{cases}$$

L'unitarietà permette di scrivere

$$\Gamma_{ij} = \sum_{f} \mathcal{A}_{i}\left(f\right) \mathcal{A}_{j}^{*}\left(f\right) \quad (i, j = 1, 2 \equiv K^{0}, \bar{K}^{0})$$

e quindi

$$\tan \phi_{SW} = \frac{2\left(m_L - m_S\right)}{\Gamma_S - \Gamma_L} = \frac{2\Delta m}{\Gamma_S - \Gamma_L}$$

BRS: una relazione tra $Re(\varepsilon)$, $Im(\delta)$ e ampiezze di decadimento

Se $Im(\delta) \neq 0$ allora CPT o l'unitarietà (o entrambe) sono violate

Marco Napolitano - Napoli, 3 aprile 2008

Vantaggio K^0 - solo pochi stati finali da considerare ($\pi\pi(\gamma)$, $\pi\pi\pi$, $\pi l\nu$) per significatività al livello 10⁻⁷ I prodotti delle ampiezze sono espressi da parametri α_i ricavabili dai ris. sperimentali. Così:

	$\frac{R}{1+}$ Im	$\begin{bmatrix} \mathbf{e}(\epsilon) \\ - \epsilon ^2 \\ \mathbf{n}(\delta) \end{bmatrix} =$	$\frac{1}{N}$	$\frac{1+\kappa \left(1-\kappa\right)}{\left(1-\kappa\right)}$	$1-2b) \\ an \phi_{SW}$	(1 -	$-\kappa$) ta -(1 +	$\operatorname{n} \phi_{SW} \ \kappa)$		$\begin{bmatrix} \sum_{i} \operatorname{Re}\left(\alpha \right) \\ \sum_{i} \operatorname{Im}\left(\alpha\right) \end{bmatrix}$	$\binom{i}{i}$	
κ	=	$\frac{\tau_S}{\tau_L}$				Modi a	dronic	i				
b	=	$(K_L \to \pi l)$	/)		C	$\alpha_i =$	$\frac{1}{\Gamma_{S}}\langle$.	$\mathcal{A}_{L}\left(i ight)$.	$\mathcal{A}_{S}^{*}\left(i\right)$	$\langle t \rangle \rangle = \eta_i BR(t)$	$K_S \rightarrow i)$	
N Mod	= li ser	N (k, b, tar nileptonici	ϕ_{SW})		i =	$\pi^0\pi^0$	$,\pi^+\pi^-$	(γ) ,	$\pi^0\pi^0\pi^=,\pi^+$	$\pi^{-}\pi^{0}\left(\gamma\right)$	
$\alpha_{\pi l \nu}$	=	$\frac{1}{\Gamma_S} \sum_{\pi l \nu} \langle \mathcal{A} \rangle$	$A_L(\pi)$	$l u$) $\mathcal{A}_{S}^{*}(\pi l)$	$ u\rangle + 2i \frac{\tau_z}{\tau_z}$	$\frac{S}{L}BR(L)$	$K_L \to 0$	$\pi l \nu$) In	$n\left(\delta ight)$	$A = \frac{\Gamma\left(K \to \pi^{-1}\right)}{\Gamma\left(K \to \pi^{-1}\right)}$	$\frac{(l+\nu) - \Gamma(l+\nu)}{(l+\nu) + \Gamma(l+\nu)}$	$\frac{X \to \pi^+ l^- \bar{\nu}}{X \to \pi^+ l^- \bar{\nu}}$
	=	$2i\frac{\tau_S}{\tau_L}BR$	$(K_L \cdot$	$\rightarrow \pi l \nu$) [(A	$A_S + A_L)$	$4 - i \mathbf{I}$	$m(x_+)$)]		$\mathbf{I} (\mathbf{I} \rightarrow \mathbf{i})$	$(\mathcal{V}) + \mathbf{I} (\mathbf{I})$	$\mathbf{I} \rightarrow \mathbf{I} + \mathbf{U} = \mathbf{V}$
\mathcal{A}	(K^0)	$\rightarrow \pi^- l^+ \nu)$	=	$\mathcal{A}_{0}\left(1-y ight)$			r .		NO	$\Delta S = \Delta O$.	SI <i>CPT</i>	
\mathcal{A}	(K^0)	$\rightarrow \pi^+ l^- \bar{\nu} \bigr)$	=	$\mathcal{A}_0^* \left(1 + y^* \right)$	$(x_{+} - x_{-})$	*	x_{-}	\longrightarrow	NO	$\Delta S = \Delta Q ;$ $\Delta S = \Delta Q ;$	NO CPT	
\mathcal{A}	(\bar{K}^0)	$\rightarrow \pi^+ l^- \bar{\nu})$ $\rightarrow \pi^- l^+ \nu)$	=	$\mathcal{A}_0^* \left(1 + y^* \right)$ $\mathcal{A}_0 \left(1 - y \right) \right)$	(x + x)		y	\longrightarrow	SI	$\Delta S = \Delta Q \; ; \qquad$	NO CPT	

Marco Napolitano - Napoli, 3 aprile 2008

Re(ε), Im(δ), Δ M

Grandezza	Origine	Risultati $Im\delta (10^{-4}) = 95\% CL$
$ au_{K_S}$	PDG	
$ au_{K_L}$	media KLOE	$\Re e(\varepsilon) = (159, 6 \pm 1, 3) \times 10^{-5}$
$m_L - m_S$	PDG	$\Im m(\delta) = (0.4 \pm 2.1) \times 10^{-5}$
$BR(K_S \to \pi^+\pi^-)$	$media \ \mathbf{KLOE}$	
$BR\left(K_S ightarrow \pi^0 \pi^0 ight)$	media KLOE	
$BR(K_S \to \pi l \nu)$	KLOE	SI ottiene, inoltre, nel lim. $\Gamma_{K^o} = \Gamma_{\bar{K}^0 5}$
$BR\left(K_L \to \pi^+\pi^-\right)$	media KLOE	$5.3.10^{-19} < M < 6.3.10^{-19} CoV$
$BR\left(K_L ightarrow \pi^0 \pi^0 ight)$	media KLOE	
ϕ_{+-}	PDG	$(95\% \text{ CL})$ $\Delta \Gamma (10^{-10} \text{ GeV}) = 95\% \text{ CL}$
ϕ_{00}	PDG	10 - 68% CL
$R_{S,\gamma} \left(E_{\gamma} > 20 MeV \right)$	E731	$\Delta M = m_{K0} - m_{\bar{K}0}$
$R_{S,\gamma}^{th-IB}\left(E_{\gamma} > 20MeV\right)$	KLOE MC	$ = m m K^{\circ} m K^{\circ} $
$\eta_{+-\gamma}$	E773	Migliorano notevolmente i risultati
$\phi_{+-\gamma}$	E773	
$BR\left(K_L \to \pi^+ \pi^- \pi^0\right)$	media KLOE	precedenti di CPLEAR -10 $\Delta M (10^{-18} \text{ GeV})$
η_{+-0}	CPLEAR	-10 0 10
$BR\left(K_L \to \pi^0 \pi^0 \pi^0\right)$	media KLOE	$\mathfrak{Re}(\varepsilon) = (164.9 \pm 2.5) \times 10^{-5}$
$BR\left(K_S \to \pi^0 \pi^0 \pi^0\right)$	KLOE	$\Im \mathfrak{m}(\delta) = (2.4 \pm 5.0) \times 10^{-5}$
$BR(K_L \to \pi l \nu)$	media KLOE	
A_L	PDG	
\overline{A}_S	KLOE	∆M < 12,7 10 ⁻¹⁹ GeV (90% CL)
$\operatorname{Im}(x_{+})$	CPLEAR, NA48, KLOE	

Evoluzione di K_S e K_L - Interferometria

39

$$|i\rangle = \frac{1}{\sqrt{2}} \left[K_S \left(\mathbf{p} \right) K_L \left(-\mathbf{p} \right) - K_S \left(-\mathbf{p} \right) K_L \left(\mathbf{p} \right) \right]$$

$$|f_1\rangle \rightarrow t_1 \quad t_0 \quad t_2 \quad |f_2\rangle$$

Evoluzione temporale del sistema data da

$$\begin{split} \langle f_1, t_1; f_2, t_2 | i \rangle &= \frac{1}{\sqrt{2}} \left[\langle f_1, t_1 | K_S(\mathbf{p}) \rangle \langle f_2, t_2 | K_L(-\mathbf{p}) \rangle - \langle f_2, t_2 | K_S(-\mathbf{p}) \rangle \langle f_1, t_1 | K_L(\mathbf{p}) \rangle \right] \\ &= \frac{\langle f_1 | K_S \rangle \langle f_2 | K_S \rangle}{\sqrt{2}} [\eta_2 e^{-(\Gamma_S t_1 + \Gamma_L t_2)/2} e^{-i(m_S t_1 + m_L t_2} - \eta_1 e^{-(\Gamma_S t_2 + \Gamma_L t_1)/2} e^{-i(m_S t_2 + m_L t_1)/2} e^{-i(m_S t_1 + m_L t_2)/2} e^{-i(m_S t_1 + m_L t_2$$

Numero dei decadimenti allo stato $f_1 a t_1 e f_2 a t_2$

$$I(f_{1}, t_{1}; f_{2}, t_{2}) = \frac{\left|\langle f_{1} | K_{S} \rangle \langle f_{2} | K_{S} \rangle\right|^{2}}{2} [\left|\eta_{1}\right|^{2} e^{-(\Gamma_{L} t_{1} + \Gamma_{S} t_{2})} + \left|\eta_{2}\right|^{2} e^{-(\Gamma_{S} t_{1} + \Gamma_{L} t_{2})} -2 \left|\eta_{1}\right| \left|\eta_{2}\right| e^{-(\Gamma_{S} + \Gamma_{L})(t_{1} + t_{2})/2} \cos\left(\Delta m \left(t_{2} - t_{1}\right) + \phi_{1} - \phi_{2}\right)$$

e integrando su t_1 e t_2 per $\Delta t = |t_2 - t_1|$ fissato

$$I(f_{1}, f_{2}, \Delta t) = \frac{\left|\langle f_{1} | K_{S} \rangle \langle f_{2} | K_{S} \rangle\right|^{2}}{2(\Gamma_{S} + \Gamma_{L})} [\left|\eta_{2}\right|^{2} e^{-\Gamma_{S}\Delta t} + \left|\eta_{1}\right|^{2} e^{-\Gamma_{L}\Delta t}$$
$$-2\left|\eta_{1}\right| \left|\eta_{2}\right| e^{-(\Gamma_{S} + \Gamma_{L})\Delta t/2} \cos\left(\Delta m\Delta t + \phi_{2} - \phi_{1}\right)\right]$$
Marco Napolitano - Napoli, 3 aprile 2008

 $\phi \rightarrow K_{S}K_{I} \rightarrow \pi^{+}\pi^{-}\pi^{+}\pi^{-}$

Diverse figure d'interferenza per i diversi modi di decadimento

 $f_1 = f_2 = \pi^+ \pi^ I\left(\pi^{+}\pi^{-},\Delta t\right) = \frac{\left|\left\langle\pi^{+}\pi^{-}\right|K_{S}\right\rangle\right|^{4}}{2\left(\Gamma_{S}+\Gamma_{L}\right)}\left|\eta_{+-}\right|^{2}\left[e^{-\Gamma_{L}\Delta t} + e^{-\Gamma_{S}\Delta t} - 2e^{-\left(\Gamma_{S}+\Gamma_{L}\right)\Delta t/2}\cos\left(\Delta m\Delta t\right)\right]$ data $\Delta m = m_l - m_s$ **MonteCarlo** $N(\Delta t)$ × 10⁻⁵ 10 0.12 D.1 posizione e altezza 0.08 picco sensibile a Δm 0.06 $I = 0 \text{ per } \Delta t = 0 !$ paradosso EPR τ_{decay} / τ_S 0.04 0.02 Fit con esponenziale $\sigma_{t} = (1, 15\pm0, 2)\tau_{S}$ $\Delta t / \tau_{\rm S}$ convoluto con gaussiana -15 -10 -5 0 5 10 15 20 τ_S=(0,9030±0,0056) 10⁻¹⁰ s Necessaria σ_t ordine τ_s PDG (0,8935±0,0008) 10⁻¹⁰ s Marco Napolitano - Napoli, 3 aprile 2008 40

Test della coerenza quantistica e di CPT 📢

Prima volta

380 pb⁻¹ – 7366 eventi

Rigenerazione $K_L \rightarrow K_S$ sulla beam pipe

Fondo non risonante e⁺e⁻ $\rightarrow \pi^+\pi^-\pi^+\pi^-$

Test coerenza quant. fittando un param. di decoerenza ζ

 $I(\Delta t) \propto e^{-\Gamma_S \Delta t} + e^{-\Gamma_L \Delta t} - 2(1-\zeta) e^{-(\Gamma_S + \Gamma_L) \Delta t/2} \cos(\Delta m \Delta t)$

Modelli di gravità quantistica prevedono la possibilità di decoerenza e violazione di CPT. Fluttuazioni spaziotemporali alla scala di Plank farebbeo traf. stato puro in misto dando luogo a violazioni di MQ e CPT. In tale contesto lo stato iniziale C=-1 può acquistare una componente C=+1

$$\left|i\right\rangle = \frac{1}{\sqrt{2}} \left[\left(\left|K^{0}, \bar{K}^{0}\right\rangle - \left|\bar{K}^{0}, K^{0}\right\rangle \right) + \omega \left(\left|K^{0}, \bar{K}^{0}\right\rangle + \left|\bar{K}^{0}, K^{0}\right\rangle \right) \right]$$

ζ_{SL} < 0,098 al 95 % CL ζ₀₀ < 0,50 x 10⁻³ al 95% CL

Migliorato CPLEAR

 $\Delta m = (5,34 \pm 0,34) \times 10^9 \text{ s}^{-1}$

 Δ m fissato al valore del PDG (5,290 ± 0,016)x10⁹ s⁻¹

 $|\omega| < 2,1 \times 10^{-3}$ al 95% CL prima volta Marco Napolitano - Napoli, 3 aprile 2008

Fisica dei K Decadimenti rari

Decadimenti rari del K_S - K_S $\rightarrow \pi^0 \pi^0 \pi^0$

VIOLA CP

$$\eta_{000} = \frac{\left\langle \pi^{0} \pi^{0} \pi^{0} \left| K_{S} \right\rangle}{\left\langle \pi^{0} \pi^{0} \pi^{0} \left| K_{L} \right\rangle} = \epsilon + \epsilon'_{000} \text{ con } |\epsilon'_{000}| \ll |\epsilon|$$
$$BR\left(K_{S} \to \pi^{0} \pi^{0} \pi^{0}\right) \simeq |\eta_{000}|^{2} BR\left(K_{L} \to \pi^{0} \pi^{0} \pi^{0}\right) \frac{\tau_{S}}{\tau_{L}} \simeq 1,9 \times 10^{-9}$$

Miglior limite prima di KLOE BR(K_S $\rightarrow \pi^0 \pi^0 \pi^0$)<7,4 10⁻⁷ 90%CL (NA48) (fittando interferenza KS/KL a piccoli t)

KLOE ha fatto la misura diretta migliorando di un fattore 6 questo limite e di due ordini di grandezza il limite diretto di SND

- Sei cluster "neutri" pronti
- Nessuna traccia dalla regione di interazione
- Rimangono ~40.000 ev, prevalentemente ${\rm K}_{\rm S} \rightarrow \pi^0 \, \pi^0$ + 2 cluster

Stratategia di eliminazione del fondo a partire da un fit a 11 vincoli (p, E, m_{K} , velocità dei 6 fotoni) Restano 2 ev con circa 3±1 di fondo

BR(K_S $\rightarrow \pi^0 \pi^0 \pi^0) < 1.2 \ 10^{-7}$ (90% CL)

|η₀₀₀| < 0,018 (90% CL)

Marco Napolitano - Napoli, 3 aprile 2008

Decadimenti rari del K_S: K_S $\rightarrow \gamma\gamma$ – Test di χ PT

Test di χ PT che prevede BR(K_S $\rightarrow \gamma\gamma$)=2,1 10⁻⁶ Migliore misura BR(K_S $\rightarrow \gamma\gamma$)=2,1 10⁻⁶ differisce per 30% da χ PT

Dati 1,9 fb⁻¹ - ~ 700 10⁶ K_S da cui 1900 da cui ~ 1900 K_S $\rightarrow \gamma\gamma$ aspettati

- 2 e solo 2 cluster
- $|t_{\gamma}-r/c| < min(5\sigma_{t\gamma}, 2ns)$
- $\dot{E_{\gamma}} > 7 \text{ MeV}$, $|\dot{\cos}\theta\gamma| < 0.93$ grande accet. per aumentare reiezione $K_S \rightarrow \pi^0 \pi^0$

Decadimento "FCNC" con amp. dominata da 🔍

$$\frac{\Gamma(K_S \to e^+ e^-)}{\Gamma(K_S \to \gamma \gamma)} = 8 \times 10^{-9} \quad (\pm 10\%)$$
$$\chi PT (\mathcal{O}(p4))$$

$$\Rightarrow BR(K_S \rightarrow e^+e^-) \simeq 1, 7 \times 10^{-14}$$

CPLEAR $\longrightarrow BR(K_S \to e^+e^-) < 1, 4 \times 10^{-7} \quad (90\% CL)$

 \Box

KLOE 1,9 fb⁻¹ BR(K_S \rightarrow e+e-(γ) < 1,65 x 10⁻⁸

