One-Loop Amplitudes from Generalised Unitarity

Pierpaolo Mastrolia

Napoli, 18 Marzo 2008

Outline

- Loop: Cutting Loops ⇔ Sewing Trees
- Unitarity & Cut-Constructibility
- General Algorithm for Multiple-Cuts in *D*-dim
- Quadruple-Cuts
- Double-Cuts
- Triple-Cuts
- Analytic result for generic one-loop amplitudes

Need for Next-to-Leading-Order

Process $(V \in \{Z, W, \gamma\})$	Relevance
$pp \rightarrow t \ \bar{t} \ b \ \bar{b}$ $pp \rightarrow t \ \bar{t} + 2jets$ $pp \rightarrow VV \ b \ \bar{b}$ $pp \rightarrow VV + 2jets$ $pp \rightarrow V + 3jets$ $pp \rightarrow b \ \bar{b} \ b \ \bar{b}$	$t \ \overline{t} \ H$ $t \ \overline{t} \ H$ $VBF \rightarrow H \rightarrow VV, \ t \ \overline{t} \ H$ $VBF \rightarrow H \rightarrow VV$ New Physics Higgs + New Physics

- ▷ Accurate estimates for signal and background new physics processes
- \triangleright Less sensitivity to unphysical input scales (\rightarrow renormalization & factorization scale)
- ▷ More realistic process modelling: initial state radiation, jet clustering, richer virtuality
 - Born level *n*-point
 - Real contribution (n+1)-point
 - Virtual contribution *n*-point
 - IR safety: R + V

▷ NLO Building Blocks

(Virtual contribution: *Tensor Reduction*
$$\rightarrow I^{\mu\nu\rho...} = \int d^D \ell \frac{\ell^{\mu}\ell^{\nu}\ell^{\rho}...}{D_1D_2...}$$

Spinor Formalism

Xu, Zhang, Chang

• on-shell massless (Weyl) spinors

Berends, Kleiss, De Causmaeker

Gastmans, Wu

Gunion, Kunzst

$$|i\rangle \equiv |k_i^+\rangle \equiv u_+(k_i) = v_-(k_i)$$
, $[i| \equiv \langle k_i^+| \equiv \overline{u_+(k_i)} = \overline{v_-(k_i)}$,

•
$$k^2 = 0$$
: $k = |k\rangle[k| + |k]\langle k|$

• Spinor Inner Products

$$\langle i j \rangle \equiv \langle i^- | j^+ \rangle = \sqrt{|s_{ij}|} e^{i \Phi_{ij}}, \qquad [i j] \equiv \langle i^+ | j^- \rangle = -\langle i j \rangle^*,$$

with $s_{ij} = (k_i + k_j)^2 = 2k_i \cdot k_j = \langle i | k_j | i] = \langle j | k_i | j] = \langle i j \rangle [j i]$.

One Loop Amplitudes

$$A^{4-2\varepsilon} = c_4(\varepsilon) I_4 + c_3(\varepsilon) I_3 + c_2(\varepsilon) I_2 + c_1(\varepsilon) (I_1)$$
(1)

$$= c_4 I_4^{\#} + c_3 I_3^{\#} + c_2 I_2^{\#} + c_1 I_1^{\#}$$
(2)

 $\stackrel{\varepsilon \to 0}{=}$ PolyLogarithms + Rational (3)

where $I_i = I_i^{4-2\epsilon}$, while $I_i^{\#} = I_i^{4-2\epsilon+\#}$ are *D*-shifted Master Integrals

- $I_i^{\#}$ and $I_i^{4-2\varepsilon}$ are linked by known recurrence relations;
- the scalar functions associated to boxes $(I_4^{(4m)}, I_4^{(3m)}, I_4^{(2m,e)}, I_4^{(2m,h)}, I_4^{(1m)}, I_4^{(0m)})$, triangles $(I_3^{(3m)}, I_3^{(2m)}, I_3^{(1m)})$, bubbles (I_2) , and tadpoles (I_1) are analytically known in $(4 2\epsilon)$ -dim ;

• *A* is known, once the coefficients c_4, c_3, c_2, c_1 appearing in (2) are known: they all are rational functions of spinor products $\langle i j \rangle$, [i j]

Unitarity & Cut-Constructibility

• Discontinuity accross the Cut

Cut Integral in the P_{ij}^2 -channel

$$C_{i...j} = \Delta(A_n^{1-\text{loop}}) = \int d^4 \Phi A^{\text{tree}}(\ell_1, i, ..., j, \ell_2) \times A^{\text{tree}}(-\ell_2, j+1, ..., i-1, -\ell_1)$$

with

$$d^{4}\Phi = d^{4}\ell_{1} d^{4}\ell_{2} \delta^{(4)}(\ell_{1} + \ell_{2} - P_{ij}) \delta^{(+)}(\ell_{1}^{2}) \delta^{(+)}(\ell_{2}^{2})$$

loop-Reconstruction

Bern, Dixon, Dunbar & Kosower Anastasiou & Melnikov Brandhuber, Mc Namara, Spence & Travaglini

- channel-by-channel reconstruction of the loop-intgeral: $\delta^{(+)}(p^2) \leftrightarrow rac{1}{(p^2-i0)}$
- loop-tools integrations: PV-tensor reduction, or integration-by-parts identitities

coefficients show up entangled in a given cut: how do we disentangle them?

The polylogarithmic structure of boxes, triangles, and bubbles is different. Therefore their multiple cuts have specific signature which enable us to distinguish unequivocally among them.

• Cuts in 4-dim carry informations about the *coefficients* of the polylogarithmic structure; but no informations about the *rational* term

• Cuts in *D*-dim detect also rational term

Quadruple Cuts

Britto, Cachazo, Feng (2004)

Boxes

The discontinuity across the leading singularity, *via* quadruple cuts, is **unique**, and corresponds to the **coefficient** of the master **box**

- 4PLE-cut integrand: $I_4(\ell) = A_1^{\text{tree}} \times A_2^{\text{tree}} \times A_3^{\text{tree}} \times A_4^{\text{tree}}$
- Momentum-decomposition ansatz: $\ell^{\mu} = \alpha K_{1}^{\mu} + \beta K_{2}^{\mu} + \gamma K_{3}^{\mu} + \delta \varepsilon_{\nu\rho\sigma}^{\mu} K_{1}^{\nu} K_{2}^{\rho} K_{3}^{\sigma}$
- Cut-conditions: $D_1 = D_2 = D_3 = D_4 = 0 \quad \Leftrightarrow \quad \text{coefficient constraints}$

• Solutions:
$$\ell^{\mu}_{\pm} = \alpha_0 K^{\mu}_1 + \beta_0 K^{\mu}_2 + \gamma_0 K^{\mu}_3 + \delta_{\pm} \epsilon^{\mu}_{\nu\rho\sigma} K^{\nu}_1 K^{\rho}_2 K^{\sigma}_3$$

$$c_4 = rac{I_4(\ell_+) + I_4(\ell_-)}{2}$$

Double-Cut Phase Space Measure

• 4-dim LIPS Cacahazo, Svrček & Witten

$$\int d^4 \Phi = \int d^4 \ell_0 \,\delta^{(+)}(\ell_0^2) \,\delta^{(+)}((\ell_0 - K)^2) = \int \frac{\langle \ell \, d\ell \rangle [\ell \, d\ell]}{\langle \ell | K | \ell]} \,\int t \, dt \,\delta^{(+)} \left(t - \frac{K^2}{\langle \ell | K | \ell]} \right)$$

$$\Leftarrow \quad \ell_0^2 = 0 , \quad \ell_0 = |\ell_0\rangle [\ell_0| \equiv t |\ell\rangle [\ell|$$

• *D*-dim LIPS Anastasiou, Britto, Feng, Kunszt, P.M.

$$\int d^{4-2\varepsilon} \Phi = \chi(\varepsilon) \int d\mu^{-2\varepsilon} \int d^4 \Phi_{\mu} ,$$

$$\int d^{4} \Phi_{\mu} = \int d^{4}L \,\delta^{(+)}(L^{2} - \mu^{2}) \,\delta^{(+)}((L - K)^{2} - \mu^{2})$$

=
$$\int dz \,\delta(z - z_{0}) \int \frac{\langle \ell \, d\ell \rangle [\ell \, d\ell]}{\langle \ell | K | \ell]} \int t \, dt \,\delta^{(+)} \left(t - \frac{(1 - 2z)K^{2}}{\langle \ell | K | \ell]} \right)$$

$$\leftarrow L = \ell_0 + zK$$
, with $\ell_0^2 = 0$, $\ell_0 \equiv t |\ell\rangle [\ell]$ $z_0 = \frac{1 - \sqrt{1 - \frac{4\mu^2}{K^2}}}{2}$,

 $\bigvee A_R$

Britto, Buchbinder, Cachazo & Feng (2005); Britto, Feng & P.M. (2006)

Anastasiou, Britto, Feng, Kunszt & P.M. (2006)

$$M=\chi({f \epsilon})\int d\mu^{-2{f \epsilon}}\,\Delta\,,\qquad \Delta=\int d^4\Phi_\mu\,A_L^{
m tree}\,{\otimes}\,A_R^{
m tree}$$

 A_L

• *t*-integration \oplus *z*-integration

the 4D-discontinuity reads,

$$\Delta = \int \langle \ell \; d\ell \rangle [\ell \; d\ell] \; G\Big(|\ell
angle \Big) rac{[\eta \, \ell]^n}{\langle \ell | P_1 | \ell]^{n+1} \langle \ell | P_2 | \ell]}$$

• Feynman Parametrization:

$$\Delta = \int \langle \ell \, d\ell \rangle [\ell \, d\ell] \, (n+1) \int dx \, (1-x)^n \, G\Big(|\ell\rangle\Big) \frac{[\eta \, \ell]^n}{\langle \ell | R | \ell]^{n+2}} \,, \qquad \mathbb{R} = x \mathbb{P}_1 + (1-x) \mathbb{P}_2$$

Log-term of 4D-Double Cut

• Integration-by-Parts in $|\ell|$

$$[\ell \, d\ell] \frac{[\eta \, \ell]^n}{\langle \ell | R | \ell]^{n+2}} = \frac{[d\ell \, \partial_{|\ell|}]}{(n+1)} \frac{[\eta \, \ell]^{n+1}}{\langle \ell | R | \ell]^{n+1} \langle \ell | R | \eta]}$$

• Integration in $|\ell\rangle$: Holomorphic δ -function

Cachazo, Svrcek, Witten; Cachazo; Britto, Cachazo, Feng

$$\Delta = \int dx \, (1-x)^n \int \langle \ell \, d\ell \rangle [d\ell \, \partial_{|\ell|}] \frac{G(|\ell\rangle) \, [\eta \, \ell]^{n+1}}{\langle \ell | R | \ell]^{n+1} \langle \ell | R | \eta]}$$

$$= \int dx \ (1-x)^n \left\{ \frac{G(\mathbf{R}|\mathbf{\eta}])}{(\mathbf{R}^2)^{n+1}} + \sum_j \lim_{\ell \to \ell_j} \langle \ell \, \ell_j \rangle \frac{G(|\ell\rangle) \ [\mathbf{\eta} \, \ell]^{n+1}}{\langle \ell | \mathbf{R} | \ell]^{n+1} \langle \ell | \mathbf{R} | \mathbf{\eta}]} \right\} = F^{(1)} + F^{(2)}$$

where $|\ell_j\rangle$ are the simple poles of *G*, and $\mathbb{R}^2 = a(x-x_1)(x-x_2)$

• Double-Cut

$$M=\chi(arepsilon)\int d\mu^{-2arepsilon}\,\left(F^{(1)}+F^{(2)}
ight)$$

•
$$I_2$$

$$\Delta I_2 = K = \int d^4 \ell_0 \, \delta^{(+)}(\ell_0^2) \, \delta^{(+)}((\ell_0 - K)^2) = \int_0^\infty t \, dt \, \int \langle \ell \, d\ell \rangle [\ell \, d\ell] \, \delta^{(+)}((\ell_0 - K)^2)$$

$$\delta^{(+)}((\ell_0 - K)^2) = \delta^{(+)}(K^2 - 2\ell_0 \cdot K) = \delta^{(+)}(K^2 - \langle \ell_0 | K | \ell_0]) = \frac{1}{\langle \ell | K | \ell]} \,\delta^{(+)}\left(t - \frac{K^2}{\langle \ell | K | \ell]}\right)$$

▷ *t*-integration
$$\Rightarrow \qquad \Delta I_2 = \int \langle \ell \, d\ell \rangle [\ell \, d\ell] \frac{K^2}{\langle \ell | K | \ell]^2}$$

 $\triangleright \text{ Integration-by-Parts in } |\ell] \qquad \qquad \frac{[\ell \ d\ell]}{\langle \ell | K | \ell]^2} = [d\ell \ \partial_{|\ell|}] \frac{[\eta \ \ell]}{\langle \ell | K | \eta] \langle \ell | K | \ell]}, \qquad \forall \eta : \eta^2 = 0$ $\Rightarrow \qquad \Delta I_2 = \int \langle \ell \ d\ell \rangle [d\ell \ \partial_{|\ell|}] \frac{K^2 \ [\eta \ \ell]}{\langle \ell | K | \eta] \langle \ell | K | \ell]}$

 \triangleright Cauchy Residue Theorem in $|\ell\rangle$ would imply the contribution at the pole

$$|\ell\rangle = K|\eta] \quad (\Leftrightarrow |\ell] = K|\eta\rangle)$$

With the final result

$$\Rightarrow \qquad \Delta I_2 = \lim_{|\ell\rangle \to K|\eta|} \langle \ell | K | \eta] \left(\frac{K^2[\eta \, \ell]}{\langle \ell | K | \eta] \langle \ell | K | \ell]} \right) = \left(\frac{K^2[\eta | K | \eta \rangle}{[\eta | K K K | \eta \rangle} \right) = 1.$$

$$K = \int d^4 \ell \, \delta^{(+)}(\ell^2) \, \delta^{(+)}((\ell - K)^2) = K^2 \, \int \frac{\langle \ell \, d\ell \rangle [\ell \, d\ell]}{\langle \ell | K | \ell]^2} = 1 ;$$

The discontinuity of a bubble is rational !!!

•
$$I_3^{3m}$$

$$\kappa_{1} \swarrow \int_{K_{3}} \int d^{4}\ell \,\delta^{(+)}(\ell^{2}) \,\frac{\delta^{(+)}((\ell-K_{1})^{2})}{(\ell+K_{2})^{2}} = \int \frac{\langle \ell \, d\ell \rangle [\ell \, d\ell]}{\langle \ell | K_{1} | \ell] \langle \ell | Q | \ell]} = \int_{0}^{1} dx \int \frac{\langle \ell \, d\ell \rangle [\ell \, d\ell]}{\langle \ell | R | \ell]^{2}} = \int_{0}^{1} dx \frac{1}{R^{2}}$$

$$\mathcal{Q} = (K_{2}^{2}/K_{1}^{2}) \mathcal{K}_{1} + \mathcal{K}_{2} , \quad \mathcal{R} = (1-x) \mathcal{K}_{1} + x \mathcal{Q} \Rightarrow R^{2} \text{ quadratic in } x$$

The discontinuity of a 3m-Triangle is a $\ln(irrational argument) \parallel \parallel$

• *I*₄

The double cut detect box-coefficient as well. One can show that the discontinuity of a 1m-,2m-,3m-box is a $\ln(rational argument)$ – but boxes are known from 4-ple cuts.

•
$$I_2$$

• I_3^{1m}
• I_4^{0m}
• I_4^{0m}
= $\frac{2}{\sqrt{1 - \frac{4\mu^2}{K^2}}} \ln\left(\frac{1 - \sqrt{1 - \frac{4\mu^2}{K^2}}}{1 + \sqrt{1 - \frac{4\mu^2}{K^2}}}\right)$

•
$$I_4^{0m}$$
 = $\frac{2}{st\sqrt{1-\frac{4\mu^2(s+t)}{s}}} \ln\left(\frac{1-\sqrt{1-\frac{4\mu^2(s+t)}{s}}}{1+\sqrt{1-\frac{4\mu^2(s+t)}{s}}}\right)$

• μ -integration \equiv Dimension-Shift

$$\int \frac{d^{-2\varepsilon}\mu}{(2\pi)^{-2\varepsilon}} (\mu^2)^r f(\mu^2) = \int d\Omega_{-1-2\varepsilon} \int \frac{d\mu^2}{2(2\pi)^{-2\varepsilon}} (\mu^2)^{-1-\varepsilon+r} f(\mu^2) = \frac{(2\pi)^{2r} \int d\Omega_{-1-2\varepsilon}}{\int d\Omega_{2r-1-2\varepsilon}} \int \frac{d^{2r-2\varepsilon}\mu}{(2\pi)^{2r-2\varepsilon}} f(\mu^2)$$

$$= -\varepsilon (1-\varepsilon)(2-\varepsilon) \cdots (r-1-\varepsilon)(4\pi)^r \int \frac{d^{2r-2\varepsilon}\mu}{(2\pi)^{2r-2\varepsilon}} f(\mu^2)$$

P.M., Phys. Lett. B644 (2007) 272

The integration over the Feynman parameter is frozen.

▷ Cuts in Feynman Parameters

$$\frac{1}{(ax+b)+i0} \to K_1(x) = \frac{1}{a}\delta(x-x_0)$$
$$\frac{1}{(ax^2+bx+c)+i0} \to K_2(x) = \frac{1}{a|x_1-x_2|} \Big(\delta(x-x_1)+\delta(x-x_2)\Big)$$

where $x_{0,1,2}$ are the zeroes of the corresponding denominators.

•
$$I_3^{3m}$$

$$-\frac{1}{(2\pi i)}\int dx \left\{\frac{1}{R^2 + i0} - \frac{1}{R^2 - i0}\right\} = \int dx \,\delta(R^2) = \int dx \,K_2(x) = \frac{(-2)}{\sqrt{\Lambda}}$$

with

$$R^2 = ax^2 + 2bx + c$$
, $x_{1,2} = \frac{-b \pm \sqrt{\Lambda}}{a}$, $\Lambda =$ Källen func'n

• massive-
$$I_4^{0m}$$

$$= \frac{(-2)}{st\sqrt{1-4\frac{(s+t)}{s}\mu^2}}$$

Cut-Construction of One-Loop Amplitudes

$$A^{4-2\varepsilon} = c_4 I_4^{\#} + c_3 I_3^{\#} + c_2 I_2^{\#} + c_1 I_1^{\#}$$

On-Shell Complex Momenta enable the *fulfillment* **of the cut-constraints!**

Master Formulae

Schouten identity to reduce $|\ell|$

$$\frac{\left[\ell a\right]}{\left[\ell b\right]\left[\ell c\right]} = \frac{\left[b a\right]}{\left[b c\right]} \frac{1}{\left[\ell b\right]} + \frac{\left[c b\right]}{\left[c b\right]} \frac{1}{\left[\ell c\right]}$$
(4)

Integration-by-Parts in $|\ell|$

$$[\ell \ d\ell] \frac{[\eta \ell]^n}{\langle \ell | P|\ell]^{n+2}} = \frac{[d\ell \ \partial_{|\ell|}]}{(n+1)} \frac{[\eta \ell]^{n+1}}{\langle \ell | P|\ell]^{n+1} \langle \ell | P|\eta]} .$$
(5)

Cauchy's Residue Theorem in $|\ell\rangle$,

$$[d\ell \ \partial_{|\ell|}]\frac{1}{\langle \ell x \rangle} = 2\pi \delta\Big(\langle \ell x \rangle\Big) , \qquad \int \langle \ell \ d\ell \rangle \ \delta\Big(\langle \ell x \rangle\Big) \ f(|\ell\rangle, |\ell|) = f(|x\rangle, |x]) \tag{6}$$

Residues in Feynman parameters, at the zeroes of the Standard Quadratic Function.

These zeroes are the signature of the Master Integrals: they correspond to branch points, therefore determining the polylogarithmic structure.

NLO 6-gluon Amplitude

- Numerical Result: Ellis, Giele, Zanderighi (2006)
- Analytical Result:

Amplitude	N = 4	N = 1	$N=0ert_{ m CC}$	$N{=}0ert_{ m rat}$
(++++)	BDDK'94	BDDK'94	BDDK'94	BDK'05, KF'05
(-+-+++)	BDDK'94	BDDK'94	BBST'04	BBDFK'06, XYZ'06
(-++-++)	BDDK'94	BDDK'94	BBST'04	BBDFK'06, XYZ'06
(+++)	BDDK'94	BBDD'04	BBDI'05, BFM'06	BBDFK'06
(+-++)	BDDK'94	BBCF'05, BBDP'05	BFM'06	XYZ'06
(-+-+)	BDDK'94	BBCF'05, BBDP'05	BFM'06	XYZ'06

Bidder, Bjerrum-Bohr, Dunbar & Perkins (2005)

Britto, Feng & P.M. (2006)

6-photon Amplitude

Mahlon (1996)

Nagy & Soper (2006)

Binoth, Guillet & Heinrich (2006)

Binoth, Gehrmann, Heinrich & P.M. [hep-ph/0703311]

Ossola, Papadopoulous & Pittau (2007); Forde (2007)

•
$$(1^-, 2^+, 3^-, 4^+, 5^-, 6^+)$$

NLO *n*-gluon Higgs Amplitudes

• Heavy-top limit

- H + 4 partons Ellis, Giele, Zanderighi (2005); Campbell, Ellis, Zanderighi (2006)
- H + n-gluons

$$\begin{split} \varphi &= \frac{1}{2} (H + iA) \\ G_{SD}^{\mu\nu} &= \frac{1}{2} (G^{\mu\nu} + \tilde{G}^{\mu\nu}) , \quad G_{ASD}^{\mu\nu} &= \frac{1}{2} (G^{\mu\nu} - \tilde{G}^{\mu\nu}) , \quad \tilde{G}^{\mu\nu} &= \frac{i}{2} \varepsilon_{\mu\nu\rho\sigma} G^{\rho\sigma} \\ L_{\text{int}} &\propto H \operatorname{tr} G_{\mu\nu} G^{\mu\nu} + iA \operatorname{tr} \tilde{G}_{\mu\nu} \tilde{G}^{\mu\nu} &= \operatorname{\phi} \operatorname{tr} G_{SD,\mu\nu} G_{SD}^{\mu\nu} + \operatorname{\phi}^{\dagger} \operatorname{tr} \tilde{G}_{ASD,\mu\nu} \tilde{G}_{ASD}^{\mu\nu} , \end{split}$$

- A(ϕ + *n*-gluons) \rightarrow A(*n*-gluons) w/out momentum conservation Dixon, Glover & Kohze
- φ-nite Berger, Del Duca, Dixon (2006)
- φ-MHV amplitudes (nearest neighbour minuses) Badger, Glover, Risager (2007)
- φ-MHV amplitudes (generic configuration) Glover, Williams, P.M. (wip)

Coefficients in Closed Form

Britto, Feng (2007) Britto, Feng & P.M., arXiv: 0803.1989 [hep-ph]

• Generic Massive Double-cut in the K^2 -channel:

$$\int d^{4}L \,\delta^{(+)} \Big(L^{2} - M_{1}^{2} - \mu^{2} \Big) \,\delta^{(+)} \Big((L - K)^{2} - M_{2}^{2} - \mu^{2} \Big) \,\frac{\prod_{j} \langle a_{j} | L | b_{j}]}{\prod_{i} \Big((L - K_{i})^{2} - m_{i}^{2} - \mu^{2} \Big)} \\ = \int \langle \ell \, d\ell \rangle [\ell \, d\ell] \,\Big((1 - 2z) + \frac{M_{1}^{2} - M_{2}^{2}}{K^{2}} \Big) \,\frac{(K^{2})^{n+1}}{\langle \ell | K | \ell]^{n+2}} \frac{\prod_{j=1}^{n+k} \langle \ell | R_{j} | \ell]}{\prod_{i=1}^{k} \langle \ell | Q_{i} | \ell]}$$
(7)

where

$$P_{j} = |a_{j}\rangle[b_{j}|$$

$$R_{j} = -\left((1-2z) + \frac{M_{1}^{2} - M_{2}^{2}}{K^{2}}\right)P_{j} + \frac{-z(2P_{j} \cdot K)}{K^{2}}K,$$

$$Q_{j} = -\left((1-2z) + \frac{M_{1}^{2} - M_{2}^{2}}{K^{2}}\right)K_{i} + \frac{K_{i}^{2} + M_{1}^{2} - m_{i}^{2} - 2zK \cdot K_{i}}{K^{2}}K$$

• *I*₄-coefficient

$$C[Q_{r},Q_{s},K] = \frac{(K^{2})^{2+n}}{2} \left(\frac{\prod_{j=1}^{k+n} \langle P_{sr,1} | R_{j} | P_{sr,2}]}{\langle P_{sr,1} | K | P_{sr,2}]^{n+2} \prod_{t=1, t \neq i, j}^{k} \langle P_{sr,1} | Q_{t} | P_{sr,2}]} + \{P_{sr,1} \leftrightarrow P_{sr,2}\} \right).$$

$$\Delta_{sr} = (2Q_s \cdot Q_r)^2 - 4Q_s^2 Q_r^2$$

$$P_{sr,1} = Q_s + \left(\frac{-2Q_s \cdot Q_r + \sqrt{\Delta_{sr}}}{2Q_r^2}\right) Q_r$$

$$P_{sr,2} = Q_s + \left(\frac{-2Q_s \cdot Q_r - \sqrt{\Delta_{sr}}}{2Q_r^2}\right) Q_r$$

• *I*₃-coefficient

$$C[Q_{s},K] = \frac{(K^{2})^{1+n}}{2} \frac{1}{(\sqrt{\Delta_{s}})^{n+1}} \frac{1}{(n+1)! \langle P_{s,1}P_{s,2} \rangle^{n+1}} \frac{d^{n+1}}{d\tau^{n+1}} \left(\frac{\prod_{j=1}^{k+n} \langle \gamma_{s,1} | R_{j} Q_{s} | \gamma_{s,1} \rangle}{\prod_{t=1, t \neq s}^{k} \langle \gamma_{s,1} | Q_{t} Q_{s} | \gamma_{s,1} \rangle} + \{P_{s,1} \leftrightarrow P_{s,2}\} \right) \Big|_{\tau=0}$$

$$egin{aligned} &\gamma_{s,1}
angle &= &|P_{s,1}
angle - au|P_{s,2}
angle \ &\Delta_s &= &(2Q_s\cdot K)^2 - 4Q_s^2K^2 \ &P_{s,1} &= &Q_s + \left(rac{-2Q_s\cdot K + \sqrt{\Delta_s}}{2K^2}\right)K \ &P_{s,2} &= &Q_s + \left(rac{-2Q_s\cdot K - \sqrt{\Delta_s}}{2K^2}\right)K \end{aligned}$$

• *I*₂-coefficient

$$C[K] = (K^2)^{1+n} \sum_{q=0}^n \frac{1}{q!} \frac{d^q}{ds^q} \left(B_{n,n-q}^{(0)}(s) + \sum_{r=1}^k \sum_{a=q}^n \left(B_{n,n-a}^{(r;a-q;1)}(s) - B_{n,n-a}^{(r;a-q;2)}(s) \right) \right) \bigg|_{s=0},$$

$$\begin{split} B_{n,t}^{(0)}(s) &\equiv \frac{d^{n}}{d\tau^{n}} \left(\frac{1}{n! [\eta |\phi K|\eta]^{n}} \frac{(2\eta \cdot K)^{t+1}}{(t+1)(K^{2})^{t+1}} \frac{\prod_{j=1}^{n+k} \langle \gamma_{0} | R_{j} (K-s\eta) | \gamma_{0} \rangle}{\langle \gamma_{0} \eta \rangle^{n+1} \prod_{p=1}^{k} \langle \gamma_{0} | Q_{p} (K-s\eta) | \gamma_{0} \rangle} \right) \bigg|_{\tau=0}, \\ B_{n,t}^{(r;b;1)}(s) &\equiv \frac{(-1)^{b+1}}{b! \sqrt{\Delta_{r}}^{b+1} \langle P_{r,1} P_{r,2} \rangle^{b}} \frac{d^{b}}{d\tau^{b}} \left(\frac{1}{(t+1)} \frac{\langle \gamma_{r,1} | \eta | P_{r,1}]^{t+1}}{\langle \gamma_{r,1} | K | P_{r,1}]^{t+1}} \frac{\langle \gamma_{r,1} | Q_{r} \eta | \gamma_{r,1} \rangle^{b} \prod_{j=1}^{n+k} \langle \gamma_{r,1} | R_{j} (K-s\eta) | \gamma_{r,1} \rangle}{\langle \gamma_{r,1} | \eta | K | \gamma_{r,1} \rangle^{n+1} \prod_{p=1, p \neq r}^{k} \langle \gamma_{r,1} | Q_{p} (K-s\eta) | \gamma_{r,1} \rangle} \right) \bigg|_{\tau=0}, \\ B_{n,t}^{(r;b;2)}(s) &\equiv (-1)^{2b+1} B_{n,t}^{(r;b;1)}(s) \bigg|_{P_{r,1} \leftrightarrow P_{r,2}} \end{split}$$

 η and $\phi,$ massless reference momenta

$$|\gamma_0\rangle = (\mathbf{K} - \tau \phi)|\eta], \qquad |\gamma_{r,1}\rangle = |P_{r,1}\rangle - \tau |P_{r,2}\rangle, \qquad |\gamma_{r,2}\rangle = |P_{r,2}\rangle - \tau |P_{r,1}\rangle,$$

Integrals' Reduction by Pattern-matching

Successfull Tests

Rozowsky (1997)

Bern-Morgan (1994)

• Implemented in S@M (Spinors @ MATHEMATICA) Mâitre & P.M. (2007)

Summary & Outlook

• Dramatic progress in evaluating on-shell scattering amplitudes: the exploitation of *factorization* and *unitarity*, turned into tools for computing them.

- On-shell methods restrict the propagating states to the physical ones and the *spinor-helicity* formalism suitable for avoiding the (intermediate) treatment of unphysical degrees of freedom.
- The singularity information can be extracted by defining amplitudes for suitable complex, yet on-shell momenta
- Generalised Unitarity realized through on-shell complex momenta parametrized by complex spinors
- Phase-Space Integration over spinorial variables
- Result: closed analytic expression for the coefficients of the reduction of *any* one-loop amplitude in terms of Master Integrals Britto, Feng & P.M.
- :: LHC-phenomenology
- :: UV-behavoiur of SuGra N = 8
- :: Numerical implementation of Generalised Unitarity

• on-shell 3-point amplitude: $k_i^2 = 0$

$$\sum_{k=1}^{2} 3 \qquad 0 = k_{1}^{2} = (k_{2} + k_{3})^{2} = 2k_{2} \cdot k_{3} = \langle 23 \rangle [32] \begin{cases} \langle 23 \rangle \neq 0 \\ \\ |3] / |2] \end{cases} \quad (k_{3} \text{ on - shell \& complex})$$

The imaginary number is a fine and wonderful recourse of the divine spirit, almost an amphibian between being and non-being. [...] there is something fishy about [...] imaginaries, but one can calculate with them because their form is correct. Leibniz