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The worldline formalism

Quantum Field Theory provides the language that best
reconciles quantum mechanics and special relativity
(QED, Standard Model, etc..).
II quantized approach: quantization of “wave fields”

�
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The worldline formalism

Quantum Field Theory provides the language that best
reconciles quantum mechanics and special relativity
(QED, Standard Model, etc..).
II quantized approach: quantization of “wave fields”

The worldline formalism is a first quantized approach:
coordinates of each relativistic “particle” are quantized

�
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Worldline formalism is perturbative in nature, but
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The worldline formalism

Worldline formalism is perturbative in nature, but
useful to calculate efficiently various Feynman
diagrams

�
useful to compare with string theory (string inspired
Feynman rules)
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The worldline formalism

In app. A of Feynman paper: “The formulation given here ...
is given only for its own interest as an alternative to the
formulation of second quantization.”

∫ ∞

0
ds

∫ x(s)=x′

x(0)=x

Dx(τ) exp
(

− i

2
m2s

)

exp

[

−i
∫ s

0
dτ

1

2

(dxµ

dτ

)2
− i

∫ s

0
dτ

dxµ

dτ
Aµ(x(τ))

−ie
2

2

∫ s

0
dτ

∫ s

0
dτ ′

dxµ

dτ

dxν

dτ ′
δ
µν
+ (x(τ) − x(τ ′))

]

+ + ...+ +
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The worldline formalism

It has been used (and re-discovered) in many contexts,
some of which are

the Schwinger-DeWitt heat kernel approach to QFT
in gravitational backgrounds

calculation of chiral anomalies by Alvarez-Gaumé
and Witten (see also Friedan and Windey)

string inspired Feynman rules of Bern and Kosower
(rederived by Strassler using only a particle picture)

and surely many more interesting examples ...
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The basic example

The propagator

�=
1

p2 +m2
=

∫ ∞

0
dT exp[−T (p2 +m2)

︸ ︷︷ ︸

H

]

=

∫ ∞

0
dT

∫

I

Dx(τ) e−S[x(τ)]
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The basic example

The propagator

�=
1

p2 +m2
=

∫ ∞

0
dT exp[−T (p2 +m2)

︸ ︷︷ ︸

H

]

=

∫ ∞

0
dT

∫

I

Dx(τ) e−S[x(τ)]

where the worldline action is

S[x(τ)] =

∫ T

0
dτ
(1

4
(ẋµ)2 +m2

)
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The basic example

The one-loop induced action

�= −log Det−
1
2 (p2 +m2) =

1

2
Tr log (p2 +m2)

︸ ︷︷ ︸

H

= −1

2

∫ ∞

0

dT

T
Tr e−TH

= −1

2

∫ ∞

0

dT

T

∫

S1

Dx(τ) e−S[x(τ)]
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The basic example

The one-loop induced action

�= −log Det−
1
2 (p2 +m2) =

1

2
Tr log (p2 +m2)

︸ ︷︷ ︸

H

= −1

2

∫ ∞

0

dT

T
Tr e−TH

= −1

2

∫ ∞

0

dT

T

∫

S1

Dx(τ) e−S[x(τ)]

with same worldline action

S[x(τ)] =

∫ T

0
dτ
(1

4
(ẋµ)2 +m2

)
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Also with background fields

The propagator

� =
1

p2 +m2 + λφ(x)
≡ 1

H

=

∫ ∞

0
dT e−TH

=

∫ ∞

0
dT

∫

I

Dx(τ) e−S[x(τ)]
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Also with background fields

The propagator

� =
1

p2 +m2 + λφ(x)
≡ 1

H

=

∫ ∞

0
dT e−TH

=

∫ ∞

0
dT

∫

I

Dx(τ) e−S[x(τ)]

where

S[x(τ)] =

∫ T

0
dτ
(1

4
(ẋµ)2 +m2 + λφ(x(τ))

)
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Quantization of bosonic particle

Obtain this from the quantization of the bosonic particle

S[x, p, e] =

∫ 1

0
dτ
[

pµẋ
µ − 1

2
e(p2 +m2)

]
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Quantization of bosonic particle

Obtain this from the quantization of the bosonic particle

S[x, p, e] =

∫ 1

0
dτ
[

pµẋ
µ − 1

2
e(p2 +m2)

]

Canonical quantization gives a constraint

[x̂µ, p̂ν ] = i~δµ
ν

(p̂2 +m2)|φ〉 = 0 ⇒ |φ〉 ∈ physical Hilbert space
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Quantization of bosonic particle

Obtain this from the quantization of the bosonic particle

S[x, p, e] =

∫ 1

0
dτ
[

pµẋ
µ − 1

2
e(p2 +m2)

]

Canonical quantization gives a constraint

[x̂µ, p̂ν ] = i~δµ
ν

(p̂2 +m2)|φ〉 = 0 ⇒ |φ〉 ∈ physical Hilbert space

Using wave functions φ(x) = 〈x|φ〉 get Klein-Gordon eq.

(p̂2 +m2)|φ〉 = 0 ⇒ (−∂µ∂
µ +m2)φ(x) = 0
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Path integral quantization

Configuration space action (Wick rotated)

S[x, e] =

∫ 1

0
dτ

1

2

(

e−1(ẋµ)2 + em2
)

with reparametrization invariance (gauge field e)

�
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Path integral quantization

Configuration space action (Wick rotated)

S[x, e] =

∫ 1

0
dτ

1

2

(

e−1(ẋµ)2 + em2
)

with reparametrization invariance (gauge field e)

Propagator

〈φ(x1)φ(x2)〉
QFT

=�x1 x2

=

∫

I

DxDe
Vol(Gauge)

e−S[x,e]

=

∫ ∞

0
dT

∫

I

Dx e−S[x,e=2T ]

︸ ︷︷ ︸

A(x1,x2;T )=〈x2|e−HT |x1〉

=

∫ ∞

0

dT

(4πT )
D
2

e−
(x2−x1)2

4T
−m2T
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Path integral quantization

One-loop effective action

lnZ[g] =�=

∫

S1

DxDe
Vol(Gauge)

e−S[x,e]

= −1

2

∫ ∞

0

dT

T

∫

S1

Dx e−S[x,e=2T ]

︸ ︷︷ ︸

Tr e−TH

= −1

2

∫ ∞

0
dT

e−m2T

T
D
2
+1

∫
dDx

(4π)
D
2

=

∫

dDx

∫
dD−1p

(2π)D−1

1

2

√

~p 2 +m2

︸ ︷︷ ︸

vacuum energy density
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Example: λφ3 theory

Example of Bern-Kosower master formula in λφ3

S[φ] =

∫

dDx
[1

2
(∂µφ)2 +

1

2
m2φ2 +

λ

3!
φ3
]
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Example: λφ3 theory

Example of Bern-Kosower master formula in λφ3

S[φ] =

∫

dDx
[1

2
(∂µφ)2 +

1

2
m2φ2 +

λ

3!
φ3
]

Quantum-background splitting φ→ ϕ+ φ

S2[ϕ] =

∫

dDx
1

2
ϕ
(

− ∂2 +m2 + λφ
)

ϕ
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Example: λφ3 theory

Example of Bern-Kosower master formula in λφ3

S[φ] =

∫

dDx
[1

2
(∂µφ)2 +

1

2
m2φ2 +

λ

3!
φ3
]

Quantum-background splitting φ→ ϕ+ φ

S2[ϕ] =

∫

dDx
1

2
ϕ
(

− ∂2 +m2 + λφ
)

ϕ

1-loop effective action is

e−Γ[φ] =

∫

Dϕ e−S2[ϕ] = Det−
1
2 (−∂2 +m2 + λφ(x))
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Example: λφ3 theory

Thus

Γ[φ] =
1

2
Tr log (−∂2 +m2 + λφ) = −1

2

∫ ∞

0

dT

T
Tr e−(−∂2+m2+λφ)T

= −1

2

∫ ∞

0

dT

T

∫

PBC

Dx e
−

R T

0
dτ

(
1
4
ẋ2+m2+λφ(x))

)

=�
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Example: λφ3 theory

Thus

Γ[φ] =
1

2
Tr log (−∂2 +m2 + λφ) = −1

2

∫ ∞

0

dT

T
Tr e−(−∂2+m2+λφ)T

= −1

2

∫ ∞

0

dT

T

∫

PBC

Dx e
−

R T

0
dτ

(
1
4
ẋ2+m2+λφ(x))

)

=�

Can now use perturbation theory for quantum
mechanical path integrals
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Example: λφ3 theory

Thus

Γ[φ] =
1

2
Tr log (−∂2 +m2 + λφ) = −1

2

∫ ∞

0

dT

T
Tr e−(−∂2+m2+λφ)T

= −1

2

∫ ∞

0

dT

T

∫

PBC

Dx e
−

R T

0
dτ

(
1
4
ẋ2+m2+λφ(x))

)

=�

Can now use perturbation theory for quantum
mechanical path integrals

Get effective action in the derivative expansion
(standard calculation in the heat kernel approach)
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Example: λφ3 theory

Alternatively, expand in powers of φ taken as sum of N plane waves, and get averages

of vertex operators

φ(x) =
N∑

i=1

eipi·x →
〈

eip1·x(τ1) eip2·x(τ2) · · · eipN ·x(τN )
〉

�
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Example: λφ3 theory

Alternatively, expand in powers of φ taken as sum of N plane waves, and get averages

of vertex operators

φ(x) =
N∑

i=1

eipi·x →
〈

eip1·x(τ1) eip2·x(τ2) · · · eipN ·x(τN )
〉

obtain Bern-Kosower type of master formula

Γ[p1, . . . , pN ] =� p1

p2

p3

...

...

...

pN−1

pN

= −(−λ)N

2
(2π)DδD

(
N∑

i=1

pi

)

∫ ∞

0

dT

T

e−m2T

(4πT )
D
2

( N∏

i=1

∫ T

0
dτi

)

exp
N∑

i,j=1

[1

2
∆ij pi · pj

]
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Example: λφ3 theory

Note that ∆ij = ∆(τi, τj) is the worldline propagator with
PBC (zero mode excluded)

〈xµ(τ)xν(σ)〉 = −ηµν∆(τ, σ)

with

∆(τ, σ) = |τ − σ| − 1

T
(τ − σ)2 − T

6

and satisfies

∂τ∆(τ, σ) = •∆(τ, σ) = ǫ(τ − σ) − 2

T
(τ − σ)

∂2
τ∆(τ, σ) = ••∆(τ, σ) = 2δ(τ − σ) − 2

T
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Coupling to spin 1

Scalar contribution to scalar QED at 1-loop

S[φ, φ∗, A] =

∫

dDx ( |(∂µ + ieAµ)φ|2 +m2|φ|2 )

e−Γ[A] =

∫

DφDφ∗ e−S[φ,φ∗,A] = Det−1(−∇2
A +m2)

Γ[A] = Tr log (−∇2
A +m2) = −

∫ ∞

0

dT

T
Tr e−(−∇2

A+m2)T

= −
∫ ∞

0

dT

T

∫

PBC

Dx e
−

R T

0
dτ

(
1
4
ẋ2+ieAµ(x)ẋµ+m2

)

=�
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Coupling to spin 1

Take Aµ as sum of plane waves

Aµ(x) =
N∑

i=1

ε
(i)
µ eipi·x

and get averages of “N photon vertex operators”
〈

ε
(1)
µ1 ẋ

µ1(τ1)e
ip1·x(τ1) · · · ε(N)

µN ẋµN (τN )eipN ·x(τN )

〉
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Coupling to spin 1

Take Aµ as sum of plane waves

Aµ(x) =
N∑

i=1

ε
(i)
µ eipi·x

and get averages of “N photon vertex operators”
〈

ε
(1)
µ1 ẋ

µ1(τ1)e
ip1·x(τ1) · · · ε(N)

µN ẋµN (τN )eipN ·x(τN )

〉

can compute by Wick contractions (or by Gaussian
integration after exponentiation of the ǫµẋµ’s)
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Coupling to spin 1

get the Bern-Kosower master formula

Γ[pi, εi] = � ε1, p1

ε2, p2

ε3, p3

...

...

...

εN−1, pN−1

εN , pN

=

−(−ie)N (2π)DδD

(
N∑

i=1

pi

)
∫ ∞

0

dT

T

e−m2T

(4πT )
D
2

N∏

i=1

∫ T

0
dτi

exp
N∑

i,j=1

[1

2
∆ij pi · pj − i •∆ij εi · pj +

1

2
••∆ij εi · εj

]
∣
∣
∣
∣
∣
lin εi
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Worldline formalism in flat space

This exemplifies the worldline formalism in flat space
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Worldline formalism in flat space

This exemplifies the worldline formalism in flat space

Various applications to abelian and nonabelian gauge
theories (see C. Schubert, Phys Rep. 355 (2001) 73,
[hep-th/0101036])
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Worldline formalism in flat space

This exemplifies the worldline formalism in flat space

Various applications to abelian and nonabelian gauge
theories (see C. Schubert, Phys Rep. 355 (2001) 73,
[hep-th/0101036])

also in conjunction with other methods (string inspired,
unitarity methods, spinor helicity, twistor space...)
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Worldline formalism in flat space

This exemplifies the worldline formalism in flat space

Various applications to abelian and nonabelian gauge
theories (see C. Schubert, Phys Rep. 355 (2001) 73,
[hep-th/0101036])

also in conjunction with other methods (string inspired,
unitarity methods, spinor helicity, twistor space...)

Attempts to study QFT with boundaries
(FB, O. Corradini, P. Pisani, JHEP 0702 (2007),
[hep-th/0612236])
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Worldline formalism in curved space
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Worldline formalism in curved space

The heat-kernel line of development initiated by
Schwinger has been applied to curved space by De Witt
and by many other using QM operatorial methods.
It can be done also with worldline path integrals.
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Worldline formalism in curved space

The heat-kernel line of development initiated by
Schwinger has been applied to curved space by De Witt
and by many other using QM operatorial methods.
It can be done also with worldline path integrals.

One beautiful application of worldline path integral in
curved space is the calculation of anomalies by AGW
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Worldline formalism in curved space

The heat-kernel line of development initiated by
Schwinger has been applied to curved space by De Witt
and by many other using QM operatorial methods.
It can be done also with worldline path integrals.

One beautiful application of worldline path integral in
curved space is the calculation of anomalies by AGW

Extension to trace anomalies + eff. act. in curved space
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Worldline formalism in curved space

The heat-kernel line of development initiated by
Schwinger has been applied to curved space by De Witt
and by many other using QM operatorial methods.
It can be done also with worldline path integrals.

One beautiful application of worldline path integral in
curved space is the calculation of anomalies by AGW

Extension to trace anomalies + eff. act. in curved space

Path integrals for QM in curved space and
regularizations
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Worldline formalism in curved space

The heat-kernel line of development initiated by
Schwinger has been applied to curved space by De Witt
and by many other using QM operatorial methods.
It can be done also with worldline path integrals.

One beautiful application of worldline path integral in
curved space is the calculation of anomalies by AGW

Extension to trace anomalies + eff. act. in curved space

Path integrals for QM in curved space and
regularizations

Extension of worldline formalism to spin 1, differential
forms and higher spins in curved spaces
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Chiral anomalies

Chiral anomalies (seen à la Fujikawa) are then
computed with a worldline path integral.
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Chiral anomalies

Chiral anomalies (seen à la Fujikawa) are then
computed with a worldline path integral.

Consider the chiral current Jµ
5 = Ψ̄γµγ5Ψ

∇µ

〈

J
µ
5

〉

∼ Tr
[

γ5e−β Ĥ
]

=

∫

PBC

DxDψ e−SSQM = Â(R)ch(E)

Ĥ = −1

2
/∇ /∇ = −1

2
∇2 +

1

8
R = Q̂2

Q̂ =
i√
2

/∇

SSQM =

∫ β

0
dτ

1

2
gµν(x)

(

ẋµẋν + ψµ(ψ̇ν + ẋλΓν
λρ(x)ψ

ρ)
)
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Chiral anomalies

The path integral calculation with the worldline
supersymmetric nonlinear sigma model is exact at
one loop: no β dependence!
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Chiral anomalies

The path integral calculation with the worldline
supersymmetric nonlinear sigma model is exact at
one loop: no β dependence!

For this specific calculation the details of how to define
the path integral (regularizations) are not important
(they will be important at two loops)
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Chiral anomalies

The path integral calculation with the worldline
supersymmetric nonlinear sigma model is exact at
one loop: no β dependence!

For this specific calculation the details of how to define
the path integral (regularizations) are not important
(they will be important at two loops)

Susy Quantum Mechanics corresponds to I quantization
of the spin 1/2 particle –> N=1 spinning particle
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N = 1 spinning particle

In fact, consider the N = 1 susy model

S[x, p, ψ] =

∫

dτ
[

pµẋ
µ +

i

2
ηµνψ

µψ̇ν − 1

2
ηµνp

µpν
]

ψµ real Grassmann variables (1D Majorana fermions)
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N = 1 spinning particle

In fact, consider the N = 1 susy model

S[x, p, ψ] =

∫

dτ
[

pµẋ
µ +

i

2
ηµνψ

µψ̇ν − 1

2
ηµνp

µpν
]

Hamiltonian and susy charge are conserved:

H =
1

2
pµp

µ, Q = ψµpµ → {Q,Q}
PB

= −2iH
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N = 1 spinning particle

In fact, consider the N = 1 susy model

S[x, p, ψ] =

∫

dτ
[

pµẋ
µ +

i

2
ηµνψ

µψ̇ν − 1

2
ηµνp

µpν
]

Hamiltonian and susy charge are conserved:

H =
1

2
pµp

µ, Q = ψµpµ → {Q,Q}
PB

= −2iH

Gauging N = 1 susy gives the N = 1 spinning particle

S[x, p, ψ, e, χ] =

∫

dτ
[

pµẋ
µ +

i

2
ηµνψ

νψ̇µ − eH − iχQ
]
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N = 1 spinning particle

Canonical quantization

[x̂µ, p̂ν ] = i~δµ
ν , {ψµ, ψν} = ~ηµν

Ĥ|Ψ〉 = 0 , Q̂|Ψ〉 = 0 , |Ψ〉 ∈ physical Hilbert space
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N = 1 spinning particle

Canonical quantization

[x̂µ, p̂ν ] = i~δµ
ν , {ψµ, ψν} = ~ηµν

Ĥ|Ψ〉 = 0 , Q̂|Ψ〉 = 0 , |Ψ〉 ∈ physical Hilbert space

ψµ are realized by the gamma matrices γµ ∼
√

2
~
ψµ
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N = 1 spinning particle

Canonical quantization

[x̂µ, p̂ν ] = i~δµ
ν , {ψµ, ψν} = ~ηµν

Ĥ|Ψ〉 = 0 , Q̂|Ψ〉 = 0 , |Ψ〉 ∈ physical Hilbert space

ψµ are realized by the gamma matrices γµ ∼
√

2
~
ψµ

Using wave functions Ψα(x) = 〈x, α|Ψ〉

Q̂|Ψ〉 = ψ̂µp̂µ|Ψ〉 = 0 ⇒ (γµ)α
β ∂µ Ψβ(x) = 0

i.e. massless Dirac equation γµ∂µΨ = 0
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Chiral and trace anomalies

Chiral anomalies computed with worldline path integral.

∇µ

〈

J
µ
5

〉

∼ Tr
[

γ5e−β Ĥ
]

=

∫

PBC

DxDψ e−SSQM = Â(R)ch(E)
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Chiral and trace anomalies

Chiral anomalies computed with worldline path integral.

∇µ

〈

J
µ
5

〉

∼ Tr
[

γ5e−β Ĥ
]

=

∫

PBC

DxDψ e−SSQM = Â(R)ch(E)

Generalization to trace anomalies? Example of spin 0

〈Tµ
µ(x)〉 ∼ lim

β→0
Tr[Ie−βĤ ] = lim

β→0

∫

PBC

Dx e−S[x]
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Chiral and trace anomalies

Chiral anomalies computed with worldline path integral.

∇µ

〈

J
µ
5

〉

∼ Tr
[

γ5e−β Ĥ
]

=

∫

PBC

DxDψ e−SSQM = Â(R)ch(E)

Generalization to trace anomalies? Example of spin 0

〈Tµ
µ(x)〉 ∼ lim

β→0
Tr[Ie−βĤ ] = lim

β→0

∫

PBC

Dx e−S[x]

H = −1

2
∇2 +

ξ

2
R

S[x] =
1

β

∫ 1

0
dτ
(1

2
gµν(x)ẋµẋν + β2 ξ

2
R
)
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Trace anomalies

A simple power counting shows that to get the one-loop
trace anomalies in D dimensions need worldline
calculations at D

2 + 1 loops on the worldline

1

(4πT )
D
2

=
1

(2πβ)
D
2

⇔
�

D2 + 121
1
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Trace anomalies

A simple power counting shows that to get the one-loop
trace anomalies in D dimensions need worldline
calculations at D

2 + 1 loops on the worldline

1

(4πT )
D
2

=
1

(2πβ)
D
2

⇔
�

D2 + 121
1

Need to construct the QM path integral in curved space
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Path integral in curved space

The 1D nonlinear sigma model has derivative
interactions and is super-renormalizable

S[x] =
1

β

∫ 1

0
dτ

1

2
gµν(x)ẋµẋν ∼ ẋ2

︸︷︷︸

prop

+ g3xẋ
2 + g4x

2ẋ2 + . . .
︸ ︷︷ ︸

vertices
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Path integral in curved space

The 1D nonlinear sigma model has derivative
interactions and is super-renormalizable

S[x] =
1

β

∫ 1

0
dτ

1

2
gµν(x)ẋµẋν ∼ ẋ2

︸︷︷︸

prop

+ g3xẋ
2 + g4x

2ẋ2 + . . .
︸ ︷︷ ︸

vertices

Need a regularization scheme to handle intermediate
divergences and ambiguities
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Path integral in curved space

The 1D nonlinear sigma model has derivative
interactions and is super-renormalizable

S[x] =
1

β

∫ 1

0
dτ

1

2
gµν(x)ẋµẋν ∼ ẋ2

︸︷︷︸

prop

+ g3xẋ
2 + g4x

2ẋ2 + . . .
︸ ︷︷ ︸

vertices

Need a regularization scheme to handle intermediate
divergences and ambiguities

To reproduce the quantum hamiltonian H = −1
2∇2

must in general add a local counterterm VCT

∆S[x] =

∫ 1

0
dτ β2 VCT
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Path integral in curved space

Three established regularization schemes

Mode regularization (MR)

VMR = −1
8R− 1

24 g
µνgαβgγδ Γγ

µα Γδ
νβ

Time slicing (TS)

VTS = −1
8R + 1

8 g
µν Γβ

µα Γα
νβ

Dimensional regularization (DR)

VDR = −1
8R

MR and TS schemes break manifestly general covariance
and noncovariant counterterms restore it.

DR does not need noncovariant counterterms.
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Path integral in curved space

Example of superficially logarithmic divergent graph I.
Use propagator ∆ with Dirichlet boundary conditions:

I =�

1
=

∫ 1

0
dτ

∫ 1

0
dσ •∆ •∆• ∆• ∼

∫
dk

k

I(MR) = − 1

12
I(TS) = −1

6
I(DR) = − 1

24

The Worldline Formalism in Flat and Curved Space – p.35/42



Path integral in curved space

Example of superficially logarithmic divergent graph I.
Use propagator ∆ with Dirichlet boundary conditions:

I =�

1
=

∫ 1

0
dτ

∫ 1

0
dσ •∆ •∆• ∆• ∼

∫
dk

k

I(MR) = − 1

12
I(TS) = −1

6
I(DR) = − 1

24

For details: F.B. and P. van Nieuwenhuizen,
“Path Integrals and Anomalies in Curved Space”
(Cambridge University Press, 2006)
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Applications

Having learnt how to compute path integrals one can
study various processes with external gravity

�
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Applications

Having learnt how to compute path integrals one can
study various processes with external gravity

Contribution to graviton self-energy due to spin 0, 1
2 , 1

and differential forms

hµν� hαβ

(with A. Zirotti, O. Corradini, P. Benincasa and S.
Giombi)
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Applications

Having learnt how to compute path integrals one can
study various processes with external gravity

Contribution to graviton self-energy due to spin 0, 1
2 , 1

and differential forms

hµν� hαβ

Not easy to derive a Bern-Kosower type of formula:
consider the various vertex operators

eipx , ǫẋ eipx ∼ eipx+ǫẋ ⇔ ẋẋ eipx
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Applications

Graviton-photon conversion in a constant em
background

hµν� Aα

(with C. Schubert, U. Nuncamendi, V. Villanueva)

�
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Applications

Graviton-photon conversion in a constant em
background

hµν� Aα

One-loop effective action (first few Seeley DeWitt coeff.)
for arbitrary differential form (massless or massive)
using the N=2 spinning particle

�
(with P. Benincasa and S. Giombi)
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Applications

Higher spin fields from the N = 2s spinning particle
(with O. Corradini and E. Latini, JHEP 0702 (2007) 072,
[hep-th/0701055])
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Applications

Higher spin fields from the N = 2s spinning particle
(with O. Corradini and E. Latini, JHEP 0702 (2007) 072,
[hep-th/0701055])

SO(N) spinning particle (X = (x, ψ), G = (e, χ, a))

S[x,G] =

∫

dτ
1

2

(

e−1(ẋµ − χiψ
µ
i )2 + ψ

µ
i (δij∂τ − aij)ψ

µ
j

)
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Applications

Higher spin fields from the N = 2s spinning particle
(with O. Corradini and E. Latini, JHEP 0702 (2007) 072,
[hep-th/0701055])

SO(N) spinning particle (X = (x, ψ), G = (e, χ, a))

S[x,G] =

∫

dτ
1

2

(

e−1(ẋµ − χiψ
µ
i )2 + ψ

µ
i (δij∂τ − aij)ψ

µ
j

)

gauge fixing on the circle S1 → modular parameters

e → β (proper time)

χi → 0

aij → âij(θk) k = 1, .., s; s = rank SO(N)
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Applications

One-loop partition function (PBC for bosons, ABC for fermions)

Z =

∫

S1

DX DG
Vol (Gauge)

e−S[X,G] =�
= −1

2

∫ ∞

0

dβ

β

∫
dDx

(2πβ)
D
2

2

2ss!

s∏

k=1

∫ 2π

0

dθk

2π

(

Det
ABC

(∂τ − âvec)
)D

2
−1

Det′
PBC

(∂τ − âadj)

︸ ︷︷ ︸

Dof(D,N)=Dof(2n,2s)=2s−1 (2n−2)!

[(n−1)!]2

Qs−1
k=1

k (2k−1)! (2k+2n−3)!
(2k+n−2)! (2k+n−1)!
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Applications

Can extend coupling to AdS or dS spaces

Z =

∫

S1

DX DG
Vol (Gauge)

e−S[X,G] =�
(work in progress)
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Applications

Can extend coupling to AdS or dS spaces

Z =

∫

S1

DX DG
Vol (Gauge)

e−S[X,G] =�
(work in progress)

It does not seem possible to couple to a general curved
background (higher spin coupling problem!)
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Other recent applications

Use of worldline methods to investigate the AdS/CFT
correspondence (R. Gopakumar et al.)

The Worldline Formalism in Flat and Curved Space – p.41/42



Other recent applications

Use of worldline methods to investigate the AdS/CFT
correspondence (R. Gopakumar et al.)

Use of worldline instantons for semiclassical
nonperturbative computations (C. Schubert and G.
Dunne)
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Other recent applications

Use of worldline methods to investigate the AdS/CFT
correspondence (R. Gopakumar et al.)

Use of worldline instantons for semiclassical
nonperturbative computations (C. Schubert and G.
Dunne)

Montecarlo simulations for Casimir energies based on
worldline representation (H. Gies et al.)
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Use of worldline methods to investigate the AdS/CFT
correspondence (R. Gopakumar et al.)

Use of worldline instantons for semiclassical
nonperturbative computations (C. Schubert and G.
Dunne)

Montecarlo simulations for Casimir energies based on
worldline representation (H. Gies et al.)

Propagation of light in curved space (T. Hollowood and
G. Shore)
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Other recent applications

Use of worldline methods to investigate the AdS/CFT
correspondence (R. Gopakumar et al.)

Use of worldline instantons for semiclassical
nonperturbative computations (C. Schubert and G.
Dunne)

Montecarlo simulations for Casimir energies based on
worldline representation (H. Gies et al.)

Propagation of light in curved space (T. Hollowood and
G. Shore)

....

The Worldline Formalism in Flat and Curved Space – p.41/42



Conclusions

Worldline formalism is quite efficient and useful both in
flat and curved space

The Worldline Formalism in Flat and Curved Space – p.42/42



Conclusions

Worldline formalism is quite efficient and useful both in
flat and curved space

presumably there are still many applications for it

The Worldline Formalism in Flat and Curved Space – p.42/42



Conclusions

Worldline formalism is quite efficient and useful both in
flat and curved space

presumably there are still many applications for it

and hopefully new extensions (e.g. in susy theories?)
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Conclusions

Worldline formalism is quite efficient and useful both in
flat and curved space

presumably there are still many applications for it

and hopefully new extensions (e.g. in susy theories?)

THE END
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