
Commutative Warm-up NC Spacetime Finding the Model Properties of the Model Conclusions and Outlook

sine-Gordon theory in noncommutative
spacetime

S. Kürkçüoǧlu
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Outline

1 Commutative Warm-up: sine-Gordon model and a
summary of well-known results.

2 What is meant by “noncommutative” in this talk: Moyal
algebra Aθ(Rd ) and ?-product.

3 Finding the Model: Dimensional reduction from self-dual
Yang-Mills(SDYM) theory.

4 Properties of the Model: Classical and Quantum.
5 Conclusions and Outlook.



Commutative Warm-up NC Spacetime Finding the Model Properties of the Model Conclusions and Outlook

sine-Gordon Model

Consider the following theory for a real scalar field in 1 + 1
dimensions.

S =

∫
dtdy

1
2
∂µφ∂

µφ+ 4α2(cosφ− 1) .

We use the metric ηµν = diag(1 ,−1), and α has the
dimensions of mass.
The equation of motion for φ is

∂µ∂
µφ = −4α2sinφ .

It has kink and anti-kink solutions, which are static and
given by

φ(y) = ±4 arctan e2αy .
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sine-Gordon Model

It is energy density is localized. It is given by

ε =
1
2

(∂yφ)2 + 4α2(1− cosφ) =
16α2

cosh2 2αy

The kink and its energy density have the profiles

Profiles
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Its classical mass is Mkink =
∫

dyε = 16α.
Kink has topological charge Q = 1. It is disconnected from
the vacuum sector with Q = 0.
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sine-Gordon Model

Some well-known properties of the sine-Gordon model are

1 It is super-renormalizable. It is in fact integrable at the
quantum level: Its S-matrix completely factorizes into
two-particle S-matrices and obey Yang-Baxter equation.
No particle production occurs!!!

2 It has an infinite set of conserved currents.
3 It is equivalent to a fermionic theory, namely the massive

Thirring model.

To explore indications of the model at quantum level, a
simple analysis is to compute the corrections to Mkink by
semi-classical means.
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sine-Gordon Model

Super-Renormalizable: It is sufficient to normal order the
interactions to cancel all the divergences.

: 4α2(cosφ− 1) := 4(α2 − δα2)(cosφ− 1)

We can observe this quickly from the Feynman graphs. We
have cosφ− 1 = −1

2φ
2 + 1

4!φ
4 − 1

6!φ
6 + · · · .

All divergent contributions come from the self-contractions
of the vertices.

≈ log
4α2

Λ2

=
( )2

≈
(

log
4α2

Λ2

)2

(n-loop) =
( )n

≈
(

log
4α2

Λ2

)n
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sine-Gordon Model

Quantum Corrections to the Kink Mass

This is done by finding the normal modes of the
fluctuations around the kink solution. If ωn are the
frequencies of these modes, this implies

Ekink−sector = 16α + ~
∑

n

(kn +
1
2

)ωn + νn + O(α2)

kn = 0 for the quantum kink particle, kn 6= 0 for the
scattering states of mesons in the presence of the kink
particle.
To find Mkink at this approximation, one subtracts Evacuum
and regularizes the remaining divergences by
renormalizing α2. This gives

Mkink = 16α− 2
π
α + O(α2)
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Definitions

Noncommutative Spacetime: Moyal Algebra and ?-product

Let A be the algebra of functions over Rd . We multiply
f ,g ∈ A w.r.t. the pointwise multiplication map
µ : A⊗A → A :

µ(f (x)⊗ g(x)) ≡ (f · g)(x).

Flat noncommutative spacetime is the associative algebra
Aθ(Rd )(Moyal Algebra) obtained by replacing µ with µ?:

µ?(f (x)⊗ g(x)) ≡ (f ? g)(x) .

?-product is given by the formula

(f ? g)(x) = f (x)e
i
2 θ
µν←−∂µ

−→
∂νg(x)
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Definitions

The coordinate functions xµ generate Aθ(Rd ) and they fulfil
the commutation relation

xµ ? xν − xν ? xµ =: [xµ , xν ]? = iθµν .

θµν is a real antisymmetric tensor of rank 2, with constant
components.
In Aθ(R1+1) we will sometimes use the light-cone
coordinates:

u =
1
2

(t+y) , v =
1
2

(t−y) , ∂u = (∂t +∂y ) , ∂v = (∂t−∂y ) .

They fulfil
[v ,u]? = iθ .

Now, A First Guess
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We would like to have a NC sine-Gordon theory

Properties
Classically Integrable: There is a linear system of
equations, whose compatibility conditions implies a
noncommutative version of sine-Gordon field equations.
To have the correct commutative limit.
To possess kink, anti-kink solutions.
Causal S-matrix at tree-level.

Further Properties?
Semi-Classical behavior: Spectrum of quadratic
fluctuations around the vacuum and kink solutions.
Quantum corrections to the mass of the kink.
Regularization of divergences.
SUSY extensions and their properties.
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SDYM Theory and Dimensional Reduction

1 A well-known result is that SU(2) self-dual Yang-Mills
(SDYM) theory on R(2,2) can be reduced to sine-Gordon
model on R(1,1). Note that R(2,2) has signature (−+ +−).

2 So consider the self-dual U(2) SDYM on Aθ(R(2,2)). (We
follow Lechtenfeld et. al. Nucl.Phys.B705(2005))

Fµν =
1
2
εµνρσF ρσ , Fµν = ∂µAν − ∂νAµ + [Aµ ,Aν ]?

First we will reduce to a theory in Aθ(R(2,1)).
We take A4 = Λ and demand translational invariance of Aµ
along x4-direction: i.e. ∂4(Aa ,A4) = 0. This gives:

∂aΛ + [Aa ,Λ]? =
1
2
εabcF bc .
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SDYM Theory and Dimensional Reduction

Gauge Fixing

We fix the gauge by

At − Ay = 0 , At + Ay = Φ−1 ? (∂t + ∂y )Φ ,

Ax + Λ = 0 , Ax + Λ = Φ−1 ? ∂x Φ .

Here Φ is a U(2) valued field.

Introducing the light-cone coordinates

u =
1
2

(t+y) , v =
1
2

(t−y) , ∂u = (∂t +∂y ) , ∂v = (∂t−∂y ) .

We find

∂x (Φ−1 ? ∂x Φ)− ∂v (Φ−1 ? ∂uΦ) = 0 .
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A Linear System

Linear System

Consider the system of equations

(ζ∂x − ∂u)Ψ = Φ−1 ? ∂uΦ ?Ψ , (ζ∂v − ∂x )Ψ = Φ−1 ? ∂x Φ ?Ψ

Ψ(x ,u, v , ζ) is valued in U(2) and ζ ∈ CP1

There is the reality condition Ψ(·, ζ) ?Ψ†(·, ζ̄) = 1.

We further have Ψ(· , ζ → 0) = Φ−1.

Compatibility Condition

Compatibility condition for this linear system is

∂x (Φ−1 ? ∂x Φ)− ∂v (Φ−1 ? ∂uΦ) = 0 .

This is in fact the NC version of integrable Ward model.

It is reminiscent to NC version of nonlinear sigma model and it
does have multi-soliton solutions.
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Reduction to 1 + 1-Dimensions

In two steps: First we factorize x-dependence, then restrict the
form of the U(2) matrices.

We take [t , x ]? = 0 , [x , y ]? = 0 , [t , y ]? = iθ .
Take the ansatz

Φ(t , x , y) = V (x) g(t , y) V †(x) ,V (x) = eiαxσ1 ,g(t , y) ∈ U(2) .

Linear system becomes

∂uΨ− iαζ[σ1 ,Ψ] = −V−1g−1 ? ∂ugV ?Ψ ,

ζ∂v Ψ− iα[σ1 ,Ψ] = V−1g−1 ? ∂xgV ?Ψ .

We have some freedom to pick g(t , y) ∈ U(2). We choose

g =

(
g+ 0
0 g−

)
∈ U(1)⊗ U(1) ⊂ U(2)
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Reduction to 1 + 1-Dimensions

Compatibility condition implies the equations

NC sine-Gordon equations

∂v (g−1
+ ? ∂ug+) + α2(g−1

− ? g+ − g−1
+ ? g−) = 0

∂v (g−1
− ? ∂ug−) + α2(g−1

+ ? g− − g−1
− ? g+) = 0

It is possible to parameterize g± by

g+ = e−iφ+
? , g− = eiφ−

?

Taking θ → 0 and using ϕ := φ+ + φ− and ρ := φ+ − φ−,
leads to

∂u∂vϕ = −4α2sinϕ , ∂u∂vρ = 0 .

Thus we propose the equations above as the field
equations for the NC sine-Gordon model.
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The Action

If α was 0, we would have had

∂v (g−1
+ ? ∂ug+) = 0 , ∂v (g−1

− ? ∂ug−) = 0 .

These type of equations are typical of WZW models.
The action should be consisting of WZW action for g+ and
g−, plus an interaction term:

Action

S[g+,g−] = SWZW [g+]+SWZW [g−]+α2
∫

dtdy (g†+?g−+g†−?g+−2) .

SWZW [f ] = −1
2

∫
dtdy ∂µf−1 ? ∂µf

− 1
3

∫
dtdy

∫ 1

0
dλεµνσ f̂−1∂µ f̂ ? f̂−1∂ν f̂ ? f̂−1∂σ f̂ .
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The model has the standard static kink, anti-kink solutions.

Kink, Anti-Kink

ϕ0 = ±4 arctan e2αy , ρ0 = 0 , g0 = e−
i
2ϕ0 , .

Multi-soliton configurations can be constructed using the
linear system via the "dressing" method.

We will study the quadratic fluctuations around this
solution. Invoking the semi-classical reasoning, the energy
spectrum for the kink particle should be given by

Ekink−sector = 16α +
1
2

∑
n

(ωn + νn) + O(α2)

where ωn and νn are the frequencies for the normal modes.
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Background Field Method

We split the fields g+ ,g− by setting

g+ = g0e−i(η+ξ) , g− = ei(η−ξ)g−1
0 ,

η , ξ are fluctuations in the static background g0.
We expand S[g+,g−] up to cubic order in η and ξ.

S[g+,g−] = S[g0]−
∫

dtdy (∂µη)2 + (∂µξ)2 + interaction terms

1 First, we find the field equations for η and ξ and expand
them to second order in θ.

2 Next, we expand the fluctuations in modes by assuming

η(t , y) =
∑

n

eiωntψn(y) , ξ(t , y) =
∑

n

eiνntχn(y) .
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Equations for Fluctuations

Eigenmodes fulfill the Schrödinger-type equations:

Equations

[
− ∂2

z + V0(z) + θV1(z) + θ2V2(z)
]
ψ̃n(z) =

ω2
n

4α2 ψ̃n(z) ,

[
− ∂2

z + θW1(z) + θ2W2(z)
]
χ̃n(z) =

ν2
n

4α2 χ̃n(z) .

With z := 2αy , ψ̃n := e
i
4ωnθ∂yϕ0ψn , χ̃n := e

i
4νnθ∂yϕ0χn and,

Potentials

V0 = (2 tanh2 z − 1) ,V1 = −ω2
n

sinh z
cosh2 z

V2 = −ω2
nα

2
( 2

cosh4 z
− sinh2 z

cosh4 z

)

Potentials

W1(z) = −ν2
n

sinh z
cosh2 z

W2(z) = ν2
nα2 sinh2 z

cosh4 z
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Spectrum of Fluctuations

Consider first θ=0

We have the equation

[
− ∂2

z + 2 tanh2 z − 1
]
ψn(z) =

ω2
n

4α2ψn(z) ,

The solution consists of the discrete zero-mode

ψ0(z) = ∂zϕ0 = − 2
cosh z

, ω0 = 0 ,

followed by the continuum states

ψq(z) = eiqz(tanh z − iq) , 0ω
2
q = 4α2(q2 + 1) , q ≥ 0 .

ψq(z) can be normalized, by putting the system in a box of
length L.
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Spectrum of Fluctuations

We consider θ-dependent potentials as perturbations

1 ψ0(z) = − 2
cosh z is static, and remains a zero-mode to all

order in θ.
2 For corrections to the spectrum of ω2

n we can write

ω2
n − 0ω

2
n =: Σkθ

k
(

∆k
n(V1) + ∆k

n(V2)
)

3 At order θ:
We observe that

V1 = −ω2
n

sinh z
cosh2 z

, W1 = −ν2
n

sinh z
cosh2 z

odd under parity. So ∆1
n(V1) and ∆1

n(W1) both vanish.
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Spectrum of Fluctuations

At order θ2:

We find that ∆1
n(V2) ≈ 1

L and ∆1
n(W2) ≈ 1

L , thus they too
vanish as L→∞.
It seems not possible to compute ∆2

n(V1) and ∆2
n(W1)

analytically, but it is unlikely that they change the spectrum
considerably.

Potential Profiles
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Spectrum of Fluctuations

In the vacuum sector we have

g0 = e−
i
2ϕ0 = 1 , ϕ0 = 0 , ρ0 = 0 ,

Fluctuation equations are

−∂µ∂µη − 4α2η = 0 , −∂µ∂µξ = 0 .

Thus η and ξ are plane waves:

η(t , y) = e±iky+iωt , ξ(t , y) = e±iry+iνt ,

The dispersion relations

ω2 = k2 + 4α2 , ν2 = r2.

These are in agreement with the ordinary sine-Gordon
theory results.
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Spectrum of Fluctuations

Our perturbative treatment of noncommutativity for the
spectrum of fluctuations around the kink implies no
changes in the spectrum of fluctuations.
Thus Ekink − Evacuum is in agreement with the results of the
ordinary sine-Gordon model.
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Feynman Rules and Two-point functions

We move on to discuss the properties of the two-point functions of
the model.

The propagators are

≡ 〈ϕϕ〉 =
2

k2 + 4α2 , ≡ 〈ρρ〉 =
2
k2

For our purposes we only need the interactions to
quadratic order in the fields ψ and ρ. The vertices are then
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Feynman Rules and Two-point functions

Feynman rules for these vertices read

= − 1
22 (k1 ∧ k2) sin

(
θ

k1 ∧ k2

2
)
e−

i
2 θ(k1∧k2+k2∧k3)

=
1

12
α2e(− i

2 θ
∑n

i<j ki∧kj ) − i
22 · 4!

k1 · (k3 − k2)

× sin
(
θ

k2 ∧ k3

2
)
e−

i
2 θ(k1∧k2+k1∧k3+k1∧k4+k2∧k4+k3∧k4)

a ∧ b = atby − aybt
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Feynman Rules and Two-point functions

Feynman rules for these vertices read

= − 1
22 (k1 ∧ k2) sin

(
θ

k1 ∧ k2

2
)
e−

i
2 θ(k1∧k2+k2∧k3)

=
1

12
α2e(− i

2 θ
∑n

i<j ki∧kj ) − i
22 · 4!

k1 · (k3 − k2)

× sin
(
θ

k2 ∧ k3

2
)
e−

i
2 θ(k1∧k2+k1∧k3+k1∧k4+k2∧k4+k3∧k4)

a ∧ b = atby − aybt
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Feynman Rules and Two-point functions

Scattering Amplitudes

It was shown by Lechtenfeld et. al.Nucl.Phys.B705(2005)) that
this model do not exhibit any acausal behaviour at tree level.

Aϕϕ→ϕϕ = + + + = 2iα2

All other amplitudes, Aρρ→ρρ, Aϕρ→ϕρ, Aϕϕ→ρρ and Aρρ→ϕϕ
vanish.
Thus the model has no acausal effects.
Amplitudes for ϕϕ→ ϕϕϕϕ and ϕϕϕ→ ϕϕϕ also vanish.
This is in agreement with the commutative sine-Gordon
model.
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One-Loop Behavior

One-loop two-point functions in vacuum sector...

Two-point function for ϕ is Iϕ(P2)

Iϕ(P2) = + +
I
3

Non-planar diagram I2 leads to UV/IR mixing. We observe
this from

I2 =
−α2

6π
log
[
α2θ2P2 +

4α2

Λ2

]
+ subleading terms ,

I3 and I4 vanish as θ → 0. There is no UV/IR mixing due to
I1, I3 and I4.
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One-Loop Behavior

Renormalization; mass and field strength counter terms

1 For P 6= 0, θ 6= 0, the leading terms for Iϕ(P2) reads

Iϕ(P) ≈
[
−α2

3π
+

P2

26π

]
log

4α2

Λ2 +finite terms+subleading terms

2 For P = 0, Iϕ(P2) is the same as that of the ordinary
sine-Gordon model, thus only mass renormalization is
sufficient to render the theory finite.
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One-Loop Behavior

Renormalization in the Euclidean Signature.

We can write renormalized self-energy as:

ΣR(P2) = (1 + δZϕ)−1Iϕ(P2) + δm2
ϕ + δZϕP2 ,

and assume the renormalization conditions

ΣR(P2)
∣∣∣
P2=P2

0

= 0 ,
d

dP2 ΣR(P2)
∣∣∣
P2=P2

0

= 0

From these considerations we find for δm2
ϕ and δZϕ:

δm2
ϕ =

1
1 + δZϕ

[
α2

3π
log

4α2

Λ2

]
, δZϕ =

−1 +
√

1− 1
24π

log 4α2

Λ2

2
.
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One-Loop Behavior

For ρ, the one-loop two-point function is

Iρ(P2) =

(
1
2

I3 + I4

) ∣∣∣
4α2→µ2

µ is a small mass for ρ introduced to regularize the IR limit.
Iρ(P2) is present purely due to the noncommutativity:
Iρ(P2)→ 0 as θ → 0. However, it does not lead to any
UV/IR mixing.
There is no mass renormalization and the field-strength
renormalization is given by

δZρ =
−1 +

√
1− 3

25π
log µ2

Λ2

2
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One-Loop Behavior

Remarks

Remark1: We stress that, these results are valid for θ 6= 0.
When θ → 0, in Iϕ(P2) and Iρ(P2), the divergent terms in Λ
cancel with those in θ. In this case, the standard answer for
the commutative sine-Gordon model is recovered, and a
mass counter term for the field ϕ is sufficient to
renormalize the theory.
Remark2: When I(P2) are analytically continued to the
Minkowski space, the logarithms develop branch cuts. This
leads to imaginary parts in the total one-loop amplitudes,
and for space-like external momenta to the violation of
unitarity, as the optical theorem is no longer satisfied.
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1 We have studied the quantum aspects of sine-Gordon
model in noncommutative spacetime. Our aim has been to
infer to what extent the classical integrability is useful in
this respect.

We have presented a perturbative treatment of
noncommutativity to study the spectrum of fluctuations
around the kink. This implied the latter is in good
agreement with the ordinary sine-Gordon model.

2 We have found that two-point functions at one-loop level
show some interesting features.

There is UV/IR mixing due to interactions coupled with α2,
but it appears that there are non-planar diagrams which do
not lead to UV/IR mixing effects.
We have exhibited the mass and field strength
renormalizations in Euclidean signature. However, in
Minkowski signature time-space noncommutatvity still
causes unitarity violation.
Although, the usual vacuum subtraction can be performed it
is not clear, how to regularize the divergences of the theory
in Minkowski space.



Commutative Warm-up NC Spacetime Finding the Model Properties of the Model Conclusions and Outlook

3 It maybe be helpful to study the quantum effects in the
2 + 1-dimensional Ward-model to gain more insights to the
structure of the present class of models.

4 It will certainly be useful to study the SUSY generalizations
of this model and see if it helps in regularizing the
divergences of the bosonic theory. Investigations in this
direction are already underway.



Appendix

A First Guess.
A NC sine-Gordon action and why it is not useful.

Consider the action obtained by deforming all products to
?-products in the commutative theory.

S =

∫
dtdy

1
2
∂µφ ? ∂

µφ+ 2α2(cos? φ− 1)

cos? φ = 1− 1
2φ ? φ + · · · . The field equation becomes

∂µ∂
µφ = −4α2sin?φ .

This action is no good, for
The associated currents are deformed in the same way,
but they are no longer conserved!.



Appendix

Normal ordering of the interaction is not sufficient to cancel
the divergences any more.
Consider, for example, the two-point functions. They come
in three different kinds: planar, non-planar and mixed.

planar : ≈ log
4α2

Λ2

non-planar : ≈ log
[
α2θ2P2 +

4α2

Λ2

]
But a mixed diagram has sub-diagram(s) which are planar

≈ log
[

4α2

Λ2

]
log
[
α2θ2P2 +

4α2

Λ2

]
Thus, some diagrams get coefficients depending on the
external momenta P, and it is not possible to sum the
counter terms to get a cos? φ interaction.
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