Introduction to hadronic collisions: theoretical concepts and practical tools for the LHC

Università di Napoli, 29-31 Ottobre 2007

Michelangelo L. Mangano

TH Unit, Physics Dept, CERN michelangelo.mangano@cern.ch

Factorization Theorem

$$\frac{d\sigma}{dX} = \sum_{j,k} \int_{\hat{X}} f_j(x_1,Q_i) f_k(x_2,Q_i) \frac{d\hat{\sigma}_{jk}(Q_i,Q_f)}{d\hat{X}} F(\hat{X} \to X;Q_i,Q_f)$$

 $f_j(x,Q)$ Parton distribution functions (PDF)

 sum over all initial state histories leading, at the scale Q, to:

$$\vec{p}_j = x \vec{P}_{proton}$$

$$F(\hat{X} \rightarrow X; Q_i, Q_f)$$

- transition from partonic final state to the hadronic observable (hadronization, fragm. function, jet definition, etc)
- Sum over all histories with X in them

- The possible histories of initial and final state, and their relative probabilities, are in principle independent of the hard process (they only depend on the flavours of partons involved and on the scales Q)
- Once an algorithm is developed to describe initial (IS) and final (FS) state evolution, it can be applied to partonic IS and FS arising from the calculation of an arbitrary hard process
- Depending on the extent to which different possible FS and IS histories affect the value of the observable X, different realizations of the factorization theorem can be implemented, and 3 different tools developed:
 - I. Cross-section evaluators
 - 2. Parton-level Monte Carlos
 - 3. Shower Monte Carlos

I: Cross-section evaluators

- Only some component of the final state is singled out for the measurement, all the rest being ignored (i.e. integrated over). E.g. pp→e⁺e⁻ + X
- No 'events' are 'generated', only cross-sections are evaluated:

$$\sigma(pp \rightarrow Z^0), \quad \frac{d\sigma}{dM(e^+e^-)\,dy(e^+e^-)}, \quad \dots$$

Experimental selection criteria (e.g. jet definition or acceptance) are applied on parton-level quantities. Provided these are infrared/ collinear finite, it therefore doesn't matter what $\mathbf{F}(\mathbf{X})$ is, as we assume (*fact. theorem*) that: $\sum F(\hat{X}, X) = 1 \quad \forall \hat{X}$

Thanks to the inclusiveness of the result, it is `straightforward' to include higher-order corrections, as well as to resum classes of dominant and subdominant logs

X

State of the art

- NLO available for:
 - jet and heavy quarks production
 - prompt photon production
 - gauge boson pairs
 - most new physics processes (e.g. SUSY)
- NNLO available for:
 - W/Z/DY production $(q\bar{q} \rightarrow W)$
 - Higgs production $(gg \rightarrow H)$

2: Parton-level (aka matrix-element) MC's

- Parton level configurations (i.e. sets of quarks and gluons) are generated, with probability proportional to the respective perturbative M.E.
- Transition function between a final-state parton and the observed object (jet, missing energy, lepton, etc) is unity
- No need to expand f(x) or F(X) in terms of histories, since they all lead to the same observable
- Experimentally, equivalent to assuming
 - perfect jet reconstruction ($\mathbf{P}_{\mu}^{parton} \rightarrow \mathbf{P}_{\mu}^{jet}$)
 - linear detector response

State of the art

- W/Z/gamma + N jets (N≤6)
- W/Z/gamma + Q Qbar + N jets (N≤4)
- Q Qbar + N jets (N≤4)
- Q Qbar Q' Q'bar + N jets (N≤2)
- Q Qbar H + N jets (N≤3)
- nW + mZ + kH + N jets ($n+m+k+N \le 8, N\le 2$)

■ N jets (N≤8)

Example of complexity of the calculations, for gg-> N gluons:

Njets	2	3	4	5	6	7	8
# diag's	4	25	220	2485	34300	5x10⁵	10 ⁷

For each process, flavour state and colour flow (leading I/Nc) are calculated on an eventby-event basis, to allow QCD-coherent shower evolution

ALPGEN: MLM, Moretti, Piccinini, Pittau, Polosa MADGRAPH: Maltoni, Stelzer CompHEP: Boos etal VECBOS: Giele et al NJETS: Giele et al Kleiss, Papadopoulos

.....

3: Shower Monte Carlos

Goal: complete description of the event, at the level of individual hadrons

I: Generate the parton-level hard event

II: Develop the parton shower

II: Develop the parton shower

I. Final state

II: Develop the parton shower

I. Final state

2. Initial state

I. Split gluons into q-qbar pairs

- I. Split gluons into q-qbar pairs
- 2. Connect colour-singlet pairs

Sequential probabilistic evolution (Markov chain)

Sequential probabilistic evolution (Markov chain)

Sequential probabilistic evolution (Markov chain)

Sequential probabilistic evolution (Markov chain)

The probability of each emission only depends on the state of the splitting parton, and of the daughters. The QCD dynamics is encoded in these splitting probabilities.

Sequential probabilistic evolution (Markov chain)

The probability of each emission only depends on the state of the splitting parton, and of the daughters. The QCD dynamics is encoded in these splitting probabilities.

The total probability of all possible evolutions is **I** (unitary evolution).

- The shower evolution does not change the event rate inherited from the parton level, matrix element computation.
- No K-factors from the shower, even though the shower describes higher-order corrections to the leading-order process

Single emission

While at leading-logarithmic order (LL) all choices of evolution variables and of scale for α s are equivalent, specific choices can lead to improved description of NLL effects and allow a more accurate and easy-to-implement inclusion of angular-ordering constraints and mass effects, as well as to a better merging of multijet ME's with the shower

Multiple emission

$$2\pi JQ_1 q$$

$$Prob(Q_0 \to Q_1 \to Q_2) = P_0 \frac{\alpha_s}{2\pi} \int_{Q_1}^{Q_0} \frac{dq^2}{q^2} dz P(z) d\phi \frac{\alpha_s}{2\pi} \int_{Q_2}^{Q_1} \frac{dq^2}{q^2} dz P(z) d\phi \\ \sim P_0 \frac{1}{2!} [\frac{\alpha_s}{2\pi} \int_{Q_2}^{Q_0} \frac{dq^2}{q^2} dz P(z) d\phi]^2$$

$$\operatorname{Prob}(Q_0 \to X) = P_0 \times \sum \frac{1}{n!} \left[\frac{\alpha_s}{2\pi} \int_{\Lambda}^{Q_0} \frac{dq^2}{q^2} dz P(z) d\phi\right]^n = 1 \qquad \Lambda = \text{infrared cutoff}$$

$$P_0 = \exp\{-\frac{\alpha_s}{2\pi}\int_{\Lambda}^{Q_0}\frac{dq^2}{q^2}dzP(z)d\phi\}$$

 P_0 = Sudakov form factor ~ probability of no emission between the scale Q_0 and Λ

Generation of splittings

$$P(Q,\Lambda) = exp\left[-\int_{\Lambda}^{Q} \frac{dq^2}{q^2} \frac{\alpha_s(q)}{2\pi} P(z)dz\right]$$

prob. of no radiation between Q and Λ

I.Generate $0 < \xi_1 < 1$

2.If $\xi_{I} < P(Q, \Lambda) \Rightarrow$ no radiation, q' goes directly on-shell at scale **A≈GeV**

3.Else

I.calculate Q₁ such that $P(Q_1, \Lambda) = \xi_1$

2.emission at scale Q_{12}

4.Select z according to P(z)

- 5.Reconstruct the full kinematics of the splitting
- 6.Go back to 1) and reiterate, until shower stops in 2). At each step the probability of emission gets smaller and smaller

The existence of high-mass clusters, however rare, is unavoidable, due to IR cutoff which leads to a non-zero probability that no emission takes place. This is particularly true for evolution of massive quarks (as in, e.g. $Z \rightarrow bb$ or cc). Prescriptions have to be defined to deal with the "evolution" of these clusters. This has an impact on the $z \rightarrow i$ behaviour of fragmentation functions.

Phenomenologically, this leads to uncertainties, for example, in the background rates for $H \rightarrow \gamma \gamma$ (jet $\rightarrow \gamma$). 16

This approach is extremely successful in describin properties of hadronic

Ex: Particle multiplic

This approach is extremely	Particle	Experiment	Measured	Old Model	Herwig++	Fortran
successful in describing the	All Charged	M,A,D,L,O	20.924 ± 0.117	20.22^{*}	20.814	20.532^{*}
successiui in describing the	γ	A,O	21.27 ± 0.6	23.03	22.67	20.74
properties of hadronic final states	π^0	A,D,L,O	9.59 ± 0.33	10.27	10.08	9.88
	$\rho(770)^{0}$	A,D	1.295 ± 0.125	1.235	1.316	1.07
	π^{\pm}	A,O	17.04 ± 0.25	16.30	16.95	16.74
Ex: Particle multiplicities:	$\rho(770)^{\pm}$	0	2.4 ± 0.43	1.99	2.14	2.06
	η	A,L,O	0.956 ± 0.049	0.886	0.893	0.669^{*}
	$\omega(782)$	A,L,O	1.083 ± 0.088	0.859	0.916	1.044
	$\eta'(958)$	A,L,O	0.152 ± 0.03	0.13	0.136	0.106
	K^0	S,A,D,L,O	2.027 ± 0.025	2.121^{*}	2.062	2.026
	$K^{*}(892)^{0}$	A,D,O	0.761 ± 0.032	0.667	0.681	0.583^{*}
	$K^{*}(1430)^{0}$	D,O	0.106 ± 0.06	0.065	0.079	0.072
	K^{\pm}	A,D,O	2.319 ± 0.079	2.335	2.286	2.250
	$K^{*}(892)^{\pm}$	A,D,O	0.731 ± 0.058	0.637	0.657	0.578
	$\phi(1020)$	A,D,O	0.097 ± 0.007	0.107	0.114	0.134^{*}
	p	A,D,O	0.991 ± 0.054	0.981	0.947	1.027
	Δ^{++}	D,O	0.088 ± 0.034	0.185	0.092	0.209^{*}
	Σ^{-}	0	0.083 ± 0.011	0.063	0.071	0.071
Table 2: Multiplicities per event at 91.2 GeV. We show results from Herwig++ with	the o	A,D,L,O	0.373 ± 0.008	0.325*	0.384	0.347*
implementation of the old cluster hadronization model (Old Model) and the new mo	del .+	A,D,O	0.074 ± 0.009	0.078	0.091	0.063
(Herwig++), and from HERWIG 6.5 shower and hadronization (Fortran). Parame	ter Viacont	0	0.099 ± 0.015	0.067	0.077	0.088
values used are given in table 1. Experiments are Aleph(A), Delphi(D), L3(L), Opal($0), = (1385)^{+}$	A,D,O	0.0471 ± 0.0046 0.0262 ± 0.001	0.057	0.0312*	0.061
Mk2(M) and SLD(S). The * indicates a prediction that differs from the measured value	by viración	A,D,O	0.0262 ± 0.001 0.0058 ± 0.001	0.024	0.0280	0.029
more than three standard deviations.	(1530)*	A,D,O	0.0038 ± 0.001 0.00125 ± 0.00024	0.026	0.0288	0.009
	£ (1070)	A,D,O	0.00125 ± 0.00024	0.001	0.00144	0.0009
	$f_2(1270) = f_1^2(1525)$	D,L,O	0.108 ± 0.021 0.02 ± 0.008	0.003	0.130	0.175
	D^{\pm}	A.D.O	0.02 ± 0.000 0.184 ± 0.018	0.322*	0.319*	0.283*
	$D^{*}(2010)^{\pm}$	A.D.O	0.184 ± 0.009 0.182 ± 0.009	0.168	0.180	0.151*
	D ⁰	A.D.O	0.473 ± 0.026	0.625*	0.570*	0.501
	D^{\pm}	A.0	0.129 ± 0.013	0.218^{*}	0.195^{*}	0.127
	$D^{*\pm}$	0	0.096 ± 0.046	0.082	0.066	0.043
	J/Ψ	A.D.L.O	0.00544 ± 0.00029	0.006	0.00361*	0.002^{*}
	Λ^+	D.0	0.077 ± 0.016	0.006^{*}	0.023^{*}	0.001*
	$\Psi'(3685)^{7}$	D,L,O	0.00229 ± 0.00041	0.001^{*}	0.00178	0.0008^{*}

Ex: Energy distributions

(Winter, Krauss, Soff, hep-ph/0311085)

Ex: Transverse momenta w.r.t. thrust axis:

Main limitation of shower approach:

Because of angular ordering

no emission outside $C_1 \oplus C_2$:

lack of hard, large-angle emission
poor description of multijet events

incoherent emission inside $C_1 \oplus C_2$:

loss of accuracy for intrajet radiation

COMPLEMENTARITY OF THE 3 TOOLS

	ME MC's	X-sect evaluators	Shower MC's	
Final state description	Hard partons → jets. Describes geometry, correlations, etc	Limited access to final state structure	Full information available at the hadron level	
Higher order effects: loop corrections	Hard to implement, require introduction of negative probabilities	Straighforward to implement, when available	Included as vertex corrections (Sudakov FF's)	
Higher order effects: hard emissions	Included, up to high orders (multijets)	Straighforward to implement, when available 21	Approximate, incomplete phase space at large angle	1 1 2

Recent progress:

MC@NLO for full I-loop corrections

New algorithms to merge hard ME with showers