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Factorization Theorem
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Universality of parton densities and
factorization, an intuitive view

quarks inside the proton is ‘ ¢ T o 02
suppressed by powers of (mp/Q)?

1) Exchange of hard gluons among ] g g q 2 [° d*q 1

Assuming
asymptotic
freedom!
T~I/m
2) Typical time-scale of interactions

binding the proton is therefore of

O(1/mp) (in a frame in which the proton

has energy E, T=y/m, = E/m,?) % ‘%

3) If a hard probe (Q>>my,) hits the proton, on a time scale =1/Q, there is no
time for quarks to negotiate a coherent response.The struck quark

receives no feedback from its pals, and acts as a free particle
4
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As a result, to study inclusive processes at large Q it is sufficient to consider
the interactions between the external probe and a single parton:

|) calculable in perturbative QCD (pQCD)

2) do not affect f(x): S R

q>Q Q
4
&@%%Yf}%&
_ g AR

\eﬁq This gluon cannot be
2998998
reabsorbed because
the quark is gone
<
q<Q 1) X atore # Xafrer =affect f(x)!

2) for g=| GeV not calculable in pQCD

However, since T(q=1GeV)>>1/Q, the emission of low-virtuality gluons will take
place long before the hard collision, and therefore cannot depend on the detailed
nature of the hard probe.While it is not calculable in pQCD, f(q<<Q) can be
measured using a reference probe, and used elsewhere

= Universality of f(x)
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The larger is Q, the more gluons will not have time to be reabsorbed

1 0 1
f(x,0) = fO,p) + | dxinf(xin,p) | dq® | dyP(y,q>)8(x —yxin)
X U 0
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| 0 |
f(x,0) = flo,u) + | dxinf(xinp) | dg” | dyP(y,q%)d(x —yxin)
X U 0

f(x,Q) should be independent of the intermediate scale Y considered:

df(x,0 df(x, Ld
g;ﬂ o = 55;2”) :/x 7yf(y,mP(X/y,ﬂ2)

One can prove that:
calculable in pQCD

and therefore (Altarelli-Parisi equation):

df(x,u) as/l dy
dlogiu?  2mJ;

7]‘ (v, 1) P(x/y)



More in general, one should consider additional processes which lead to the

evolution of partons at high Q (t=|ogQ2):

gl [ afs = [ [0 - FD]gl)ds
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Note: origin of logs
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Soft emission cannot lead to a physical
divergence, however, since it is not observable

Xin Xout

G

\P\QQ__Q

ko —'0 = XQut —_ Xin

The soft-emission divergence must cancel
against the IR divergence of the virtual diagram

Xin Xout

& 3
\P{Q N o

The cancellation cannot take place in the case of
collinear divergence, since Xout # Xin , SO Virtual
and real configurations are not equivalent



Things are different if p® = 0. In this case, again, Xout # Xin , NO
virtual-real cancellation takes place, and an extra singularity due
to the 1/p?® pole appears

These are called small-x logarithms. They give rise to the double-log
growth of the number of gluons at small X and large Q
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Example: charm in the proton

E%é de(x,0) _ ﬁ/l %g(y, Q)qu(g)

dt 27 Jx

Assuming a typical behaviour of the gluon density: gx,0) ~A/x

1

and using IBiE) = 5 [x2+ (1 —x)z] we get:
de(x,Q) 1 dy O A
70 = e orat) = 32 [CaTp e 0w =
Q2
and therefore: c(x,Q) ~ a log(m ) g(x,0)

C

Corrections to this simple formula will arise due to the Q dependence of g(x) and of s
12



Numerical example

101 T T IHIw T T T T TTTT T T T TTTT

I T T ITTTT
&

10~ 1 — Solid: x*charm(x) —
- O ag/6m xxg(x) log(Q/mc) .
-2 | Q=1000 GeV N
- Q=100 GeV E
- Q=10 GeV )

1073 Il IIIIIH| Il Il IIIHI| Il Il IIHIJ L 11
1074 1073 107° 1071 109

101

10~ 1 — Solid: x*bottom(x) =
- O ag/6m xxg(x) log(Q/mb) .
-2 | =1000 GeV |
- Q=100 GeV E
- Q=20 GeV )
I 8 ]

1073 Il L1 IHIJ Il Il IIIHI| Il Il IIIIH| | I |
1074 1073 107° 10~ 1 100

Excellent agreement, given the simplicity of the approximation!

Can be improved by tuning the argument of the log (threshold

onset), including a better parameterization of g(x), etc....



Examples of PDFs and their evolution
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Note:
sea =10% glue

Note:
charm=up at

high Q
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Example: q
Drell-Yan W — Ly
processes 7 — 00
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Properties/Goals of the measurement:

® (Clean final state (no hadrons from the hard process)

® Tests of QCD: o(W,Z) known up to NNLO (2-loops)
® Measure m(W) ( => constrain m(H))

e constrain PDFs (e.g. fup(x)/f dOWn(x))

® search for new gauge bosons: qq — W/, 7'

® Probe contact interactions: qéf"‘f_



Some useful relations and definitions

1 Ey+ps 0
Rapidity: y = 5 log EX — i?/ Pseudorapidity: 1M = —log(tan 5)
W

where:

tan0 = p—: and pr = P;%JFP%
p

Exercise: prove that for a massless particle rapidity=pseudorapidity:

Exercise: using T = g = Xx1x» and
Ew = (x1 +x2) Eveam 1 x
= vy=—log—
{p%/v — (xl _XZ) Ebeam Y 2 g.Xz

prove the following relations:

X192 = \/%eiy d)C] dX2 — dydt

d 1
s dtd(§—miy,) =

d _
Y X1 S



LO Cross-section calculation
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Exercise: Study the function TL(T)

Assume, for example, that f(x) ~ s 0< 0 <1
X
bdx 1 x5 1 1
Then: L(T) = g 7F(;) 1:1_'_6 lOg( )

)
S S
and: cw — oY |
" W<m%v) Og(m%v>

Therefore the W cross-section grows at least logarithmically with the hadronic
CM energy. This is a typical behavior of cross-sections for production of fixed-
mass objects in hadronic collisions, contrary to the case of ete- collisions, where
cross-sections tend to decrease with CM energy.

Note also the following relation, which allows the measurement of the total
width of the W boson from the determination of the leptonic rates of W and Z

bosons, _— N(e+e)) <0Wi> ( v ) .

N(eiv Oz FZ

ete™

LHC data LEP/SLC
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