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Introduction

The idea of spacetime NC is rather old: goes back to Heisgn
Simplest NC: constant commutators

Moyal-Weyl space: [zF, Y] = 116" (1)

Algebraﬁ of functions on Moyal-Weyl| space: generated by
1, z# fulfilling (1). With 1 = 0, 1, 2, 3 andn,,: deformed
Minkowski spacef*” = 0: A generated by commutingf*.

(1) are translation invariant, not Lorentz-covariant.

Contributions to the construction of QFT on it start in 19%88l-
| would divide them into 3 groups, according to the used
approaches. By no means are they equivalent!
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1. DFR Approach

(Doplicher, Fredenhagen, Roberts 1994-95; Bahns, Pliacié:
field quantization in (rigorous) operator formalism on def.
Minkowski space. (1) motivated by the interplay of QM and C
In what they call thd’rinciple of gravitational stability against
localization of events:

The gravitational field generated by the concentration cdrgy
required by the Heisenberg Uncertainty Principle to losalan
event in spacetime should not be so strong to hide the egeitt
to any distant observer - distant compared to the Planckesca

(Goes back to Wheeler?)
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In the first, simplest versiof*” are not fixed constants, but
central operators (obeying additional conditions) whialeach
Irrep become fixed constanig”, the joint spectrum of*”.

In more recent versiong” I1s no more central, but commutatio
relations remain of Lie-algebra type.

But the wished Lorentz covariance Is sooner or later lost.

Speculations by Doplichef*” should be finally related to v.e.\
of R*”, which in turn should be influenced by the presence o
matter guantum fields in spacetime (through quantum equat
of motions).
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2. (Naive) path-integral quantization onR;

(Filk 1996,...). Main initial motivation: effective thepfrom
string theory in a constant backgrouBdfield (A lot of string
theorists: N. Seiberg, E. Witten, M. R. Douglas, A.S. Sclayar
S. Minwalla, M. Van Raamsdonk, N. Seiberg, J. Gomis, T.
Mehen, L. Alvarez-Gaume, M.A. Vazquez-Mozo, M. R.
Douglas, N. A. Nekrasov, R.J. Szabo,....).

(Wick-rotated) Lorentz covariance is lost, but this is extpé In
effective string theory because of thefield.

Many pathologies: violation of causality, non-unitarifgr(
0% =£ 0), UV-IR mixing of divergences, subsequent
non-renormalizabllity, claimed changes of statistics, et
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UV-IR MIXING:

Planar Feynman diagrams remain as the undeformed, apaut
a phase factor, in particular have the same UV divergences.
Nonplanar Feynman diagrams which were UV divergent bec
finite for generic non-zero external momentum, but diveigje &
the latter go to zero, even with massive fields: IR divergehce
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3. Twisted Poincaré covariant approaches

This is the framework of our work, subject of this talk.

It recovers Poincaré covariance in a deformed version.
Field quantization either in an operator or in a path-irdégr
approach (on the Euclidean).

(1) are twisted Poincar groupcovariant.
How to implement twisted Poincate covariance in QFT?

Different proposals,

b)
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Abstract of our contribution

We note that a proper enforcement of the “twisted Poincaré”
covariance of

requires nontrivial ("braided") commutation relationgvioeen
any pair of coordinates, y generating two different copies of t
Gronewold-Moyal-Weyl space, or equivalently-densor
productf(z) * g(y) (in the parlance of ).

Then all(z — y)* behave like undeformed coordinates.

Consequently, one can formulate QFT in a way physically
equivalent to the undeformed counterpart, as observamles/e
only coordinate differences. (Similarly farparticle QM)

We briefly comment on what we can learn from these results
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Plan

1. Introduction

2. Twisted Poincare Hopf algebra, several spacetime
variables x-products

3. Revisiting Wightman axioms for QFT and their
consequences

4. Free fields
5. Interacting fields

6. (Some) Conclusions?
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2. The Hopf algebra H = UyP

This isUP (P = Poincare Lie algebra) “twistedT
with . UP, H have

1. samex-algebra and counit

2. coproducts\, A related by
Alg) =D g(y®gly — Alg) = FA@QF =) g(i®
I I
Thetwist F is not uniquely determined. The simplest choice |
F=>,FVeF? =exp(i0*P,® P,).

A(P)=A(P)=P,®1+1® P, = A(P,),

AM,)=M,®1+1 M, + Plw,0] ® P # A(M,,).

Wh ere M w— w/'”/ M ﬁganhz%ﬁ&ﬂa@l@tsl@@@teuﬁ}d@fl@’fm e'dr!ifesta la noncommutativita'? — p.1



Letr>, > be the (left) actions o/’ P, H on A, A (g€ UP acts on
A as the corresponding differential operators, &g~ ¢0,,).
>, > act in the same way on 1st degree polynomialg”ine”

P px’=1dl = PB,>1”, M >xP =2i(xw)?”, M 52P =2i(Tw

and more generally on irreps (irreducible representaljoas
Same classification of elementary particles as unitarps P!

>, &> differ on higher degree polynomials itf, ¥, and more
generally on tensor products of representations, afterulles

g>(ab)=>"; (9ay>a)(g2)> b)
g5(ab) = 3=, (953,5d) (9/5,50) & g8laxb) = 3 (g0;,5a)*
(resp. reducing to usual deformed_eibniz rule ifg=F,,, M,,,).

Summarizing: (1) aréd-covariant, orA is a H-module algebre

Quantizzazione dei campi su spazio-tempo di Moyal-Weydv&) si manifesta la noncommutativita’? — p.1



Several spacetime variables

Let A" be then-fold tensor product algebra of,
f =r'R1®..01, 5 =1R1"R®..Q1,...
A" is UP-covariant, i.e [z}, 2] = 0 are compatible witl.

The NC generalization ofA™ Is the unital«-algebre
A" generated by real variableé fulfilling

&4, 3%] = 1ig™, 2)

7

dictated by the braiding associated to the quasitriangular
structureR = Fo F ! of H.
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*x-Products

Equivalent formulation ofA : Forn > 1 let Ay be the algebra
coinciding with.A™ as a vector space, but with the new produ

axbi=3 (F s a)(FD s b), (3)
with F = F~'. This encodes both theproduct within each
copy of A, and the %¥—tensor product” algebré .
A? hasx-commutation relations isomorphic t8%), = A, A}
are iIsomorphid?-modulex-algebras: choosing®) F as in (27,

Ty *xT; = T, T +i0" /2 = [y ¥ af] = 196",

In general, 2 gives f(z;)*g(x;) =exp[50,,00..] f (z;)g(z;),
afterwhich we must set;, =x; If 1 =3.
In the sequel we express NC only yproducts.
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Alternative generators of A4;
H__ M H _ n 2 . n .
& =Ty —T; X”—ijl a;x; (z<mn, 29:1 tlr=1

1. [ X#* X"] = 1i0", so X* generate &y x, whereasbh c Ay
Gro=b=0x& = [§30=0, (4

¢! generate a-central subalgebral? ™, andAj ~ A7~ ® Ay x.

2. Ag_l, Ay x are actuallyf-module subalgebras, with
gPa=qg>a aGA?_l, geH

©),
g>(a xb)= (g(l) > a)*(g(z)ﬁb) : be Ay,

l.e. on Ag‘l the H-action is undeformedncluding the related
part of the Leibniz rule. [By (10} can be also dropped.] Al
are translation invariant.
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(x—y)H* = (x—y)"-, same spectral decompositiol
on allR (including 0). On each irrep ofly this amounts to
multiplication by either a space-like, or a null, or a tinieel
4-vector, in the usual sense.

Summing up, coordinate differences can be treated as cdhss
variables; any’’ is a combination ok-commutativet;’ and the
*-noncommutativeX#, e.g. If X :=x;

(=l
7=1

X =Global “noncommutative translation”.

1.,2. can be reformulated in terms@tﬁn, etc. X is like the
“guantum shift operator” of
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Thedifferential calculus is not deformedwith 6 # 0, also on
A (or the isomorphic4”), sinceP, » Orr = 0

R L [axg . axg} —0 (6)
In the sequel we shall drop the symbadbeside a derivative.
Also integration over the space is not deformeavith 6 # 0 :

/d4xa*b:/d4afab (7)

Stoke’s theorem still applies.
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Consequences for QFT
Wightman axioms (grouped into subs@M, R, [Strocchi]):

QM1. The states are described by vectors of a (separable)
Hilbert spaceH.

QM2. The group of space-time translatioR$ is represented o
H by strongly continuous unitary operatdr$a). The spectrum
of the generator®, is contained i/, = {p, : p> > 0, py > 0}.
There is a unique Poincaré invariant stétte thevacuum state

QM3. The fields (in the Heisenberg representatiofi)z) [«
enumerates field species andft (2, C)-tensor components]
are operator (off{) valued tempered distributions on Minkows
space, withl, acyclic vector for the fields, i.e. polynomials of
the (smeared) fields applied 1g, give a setD, dense irH.
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Taking v.e.v.'s we defin&/ightman functiongdistributions):
Wt () = (Yo, 0 (x1) * oo x 9 (2,) W), (8)
or (their combinations{sreen’s functions
G0 (@1, ooy T ) = Vo, Tp™ (1) % ... x*(2)| Vo) 5 (9)

no problem in definingime-orderingl’ as on commutative
Minkowski space, even #" # 0,

T () xp*(y) = ™ pep® () I (a"—y° Heo ¥y o™ (2) I (yy —

asv(xz®—y°) arex-central () =Heavyside function). [The's
preceding alby can be and have been dropped, by (10).]
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Argue as in for ordinary QFT.
QM2 = Wightman and Green’s functions are translation
invariant and therefore magiepend only on thé&!".
YWt O‘”(azl,...,ajn) = Wele an(gl,...,gn_l),
Qo‘l """ an(.fl,...,ﬂjn) = G an(gl,...,gn_l).

From QM3, QM2, QM1 it follows

(10)

Wiek(xy,.. .z, ) = W1ek(E,,. &, ) are tempered distribution

(Spectral condition) The support of the Fourier transforn
W of W is contained in the product of forward cones, i.e.

W{O‘}(ql, ) = 0, it J5: ¢ ¢ V+- (11)

wied fulfill the Hermiticity and Positivity properties

fo I I OWI n g fro m th O§Jaentizzoat.zljor.!:entaleca§p%uas]!§!:tepprc;9 g)&éll-g/gyg-@éi manifesta la noncommutativita’? — p.1



Ordinary relativistic conditions on QFT:

(Lorentz Covariance) SL(2,C) is represented oK by
strongly continuous unitary operatdrg A), and under the
Poincaré transformatiorié(a, A) = U(a) U(A)

Ul(a,A) p*(x) U(a,A)_1 = Sg(A_l) gpﬁ (A(A):IH—CL), (12)

with S a finite dimensional representation®f. (2, C).

(Microcausality or locality ) The fields either commute or
anticommute at spacelike separated points

[0*(2), ¢’ ()]s =0, for (z—y)*<0.  (13)

As a consequence of QM2,R1 in ordinary QFT one finds
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(Lorentz Covariance of Wightman functions)

Wesen(\(A)zy,..,AA)z,) =S5 (A). S5 AW (21,..,2,,).
(14)

R1 needs a “twisted” reformulatiotil, , which we defer.

R1, should imply that?{*+ areSLy(2, C) tensors, anyway.
But, as thé¥/1*} should be built only in terms af* and other
SL(2,C) tensors (liked,, 1,.,, 7", polarization vectors, spinor
etc.), which are all annihilated b¥,>, 7 should act as id and
Wiat should transform undev/*’ as ford = 0. Thereforewve
shall require W4 also if § # 0 as a temporary substitute of R1

Simplest:with ax-commutatoy makes sense, as space-|
separation is well-defined. Alternativelysome reasonable
weakening? In fact, an open guestion also on commutative
space; the same restrictions should apply.
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[0 (z) * %(y) ]z =0,  for (z —y)? <O0.

Argue as to prove QM1-3, W4, R2are
(independent and) compatible: they can be fulfilled by frekel§
(see below)! So in particuldhe noncommutativity structure
of a Moyal-Weyl space is compatible with R2!

As conseguences of R2 one again finds

(Locality) if (z; —x;.1)* <0
W(il?l, ceelijy Lj41, CEn) = Zl:W(ZIZ’l, ceeljy1, Ly, len) (15)
. (Cluster property) For any spacelike and forA — oo

W(xy,..x;, zj01+Aa, ..., oo+ a) — W(xy, ..., z;) W(Zj41, ..., @

(16)
(convergence as distributions); true also with permuitési
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Summarizing: QFT framework witM1-3, W4, R2, or
alternatively with constrainté/1-6 on Wi} exactly as in QFT
on Minkowski space.

We stress that these results should hold foé/dl] and not only
if 0% = 0, as in other approaches.
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Free flelds

Free field e.o.m. remain undeformed (&sg, etc), hence also
their constraints o1} Gio} and on the field comm:. relation
For simplicity Hermitean scalar field,(z) of massn. One finds

1, 2o = 0, =
(La +m%)0 | (17)
wo(z) = g (z)+¢g (z) = [ du(p) zp-a:a/p_l_alz];ezp-a:]’
wheredu(p) := 6(p* —m? )ﬁ(p )d*p, and
W(z—y) = [ ?5752)9) —i (o) = _jFt(z — y)
(18)

4 e—ip-(:L’ )
G(Qj_y) — f (d p4 p) —y.

2m)4 p2—m2+ie”’

(22), (23),are independent dk2, or any other assumption abo
field commutation relationsvhich are not used in the proof.
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Adding R2, and reasoning as in the proof of the Jost-Schroe
Thm. (4-15In ) one proves (up to a facter0) the
free field commutation relation

o(@) T po(y)]|=iF(z—y),  F(&):=F"=§)—-F"&) (19)

(F undeformed!). Applying,0 and then setting® = «° [this is
compatible with (7)] one even findke c.c.r.

[po(2?, %) * @o(2°,y)] = i6°(x — y). )

As a consequence of (24), also tirgpoint Wightman functions
coincide with the undeformed ones, i.e. vanish 1§ odd and
are sum of products of two point functionsifis even
(factorization). This agrees with the cluster propertyegsected

A ¢ fulfilling (24) can be obtained from (22) plugging, a;;
satisfying the commutation relations
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t At — ow0'q o141 Paqd — op8'q ,q P
Aty = € gy, alal = e ala?,

aPal = e P gl aP + 2w, 6% (p—q), =60 (21)

a?, f(z)] = la], f(z)] =0,

(pfq := p,0""q,), as adopted In first,
then | The choice)’ = 0 gives the CCR,
assumed in most of the literature, explicitly|in

, apparently Ir ) 0r

implicitly in path-integral approach to quantization.
Correspondingly, one finds non-locacommutation relations

0o(x) * po(y) = €Oy (2) % 0o (y) +i F(z —y), (22)

unless?’ = 6. [But takingt’ = 6 and usingpy(z)po(y) instead
of wo(x) * o(y) one also finds non-local relations.]
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W(xq, w9, x3,24) = W(xri—22)W (23—24)
+eia“"2(9_9’)8“"3W(x1—xg)W(xg—x4) 4o

The first term at the rhs comes from the v.e.v.'so9fx ) * o (x2)
andpg(x3)*po(x4); itis Lorentz invariant and factorized. The
second, nonlocal term comes from the v.e.v.&@fr;)*po(x3)
andpg (o) *xwo(xy), after commutingog(zz), @o(zs). Only if

¢’ =0 is Lorentz invariant and factorizes W(r, — z3) Wiz, —x4).
As it depends only on; — 3, x5 — x4, It IS Invariant under
(21, T2, x3,x4) — (21, T2+ Aa, x3, x4+ Aa). By takinga
space-like and. — oo, we conclude that if" # 6 YV violates
W4 and W6, as expected.
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There Is also an “exotic” way to realize the free com. rel.)(22
AssumeP, > al = p,al, P, >a? = —p,a? and extend the
x-product law also ta”, a!. It amounts t&@’ = — (insertingx’s)

and nontrivial com. rel. between theé, a,;; and functions:

Toql = =9 4T T Pyqd — p— w09 144 4P
a,xa, = e a;*a,,, a’?*xa? = e alxa?,
__ _ipf 3
aPxal = e’ alxaP 4+ 2wpd% (p—q), (24)
aPxe'® = e~V 14Ty P a;f?*ezq“ — P04 ezq"”’”*a;f?.

Whencepq(z) * f(y)] = 0. The first three relations define an
example of a general deformed Heisenberg alg&bré

9% aqP = R 05 x " Txal = RS al % af
a?xa? = R a® x a a, *a, = R, a. xal
Py al =P P ol % q
a? x al = of + RiL al xa

covariant under adrengutar-Hopialgeliastd ere-thver-matx--



|nteraCting QFT (T-ordered perturb. th.)

Def. Normal ordering.4;-bilinear map of field algebra into
itself such thatW,,: M : ¥y) = 0, in particular:1: = 0.
Applying it to (26) we find that it is consistent to define

cata? = apaq, : a;r)aq = a;gaq’ : a;rja;r] e a;rjajp apa — aqa 6_’5299/(.

Note the phase. More generally, in any monomial reorderg’a
to the right of alla! introducing ae~?” for each flipa” < aj.
Assuming (26) or (30), (i.e. free field com. rel.) one finds

‘po(z): = o)

100(Z) * o(y): = wo(x) * o(y) — (Yo, vo(T) * vo(y)Po)

100 (@) * o) *Po(2) : = o @) * o) * o (&) — (Wo,0 @) *x o) Wo) ¢
—(Wo, o @) *p02) Po) pot) — o) (Yo, Loly)*polx) Yo
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Well-defined operators also if coinciding coordinates.(e.g
y — x). Moreoverthe same Wick theorem will hold

T [i00(x) * 20(y)] = :00(x) * o(y): +(Wo, T [120(x) * 00(y)] ¥
T dappolyroodz] = polapespdpepol2): +Wo, Tlioo) * poly]Wo) :

+ (o, Tlpole)* 0o ¥0) o) + (@0, Tliod) ol o) <o

Interacting theory. Wish to apply the Gell-Mann-Low foraul

(Wo, T { polws) k... % ofen)* exp, [—iA [ dy® Hily)] }
(\1107 1" exp, [—i J dy° Hf(yo)} ‘Ifo)

G(Q?l,. . .,Q?n) =

(26)
Herep, =free "in" field, andH;(z") is the interaction
Hamiltonian in the interaction representation.

The derivation 0f,{2.2)dANQIVES . RItaLYWENOIHQN.. QR ELaHT:



Choose

H) =) [ @ i@ @) = pola) 5 r e

N

m times

This is a well-defined, Hermitean operator, with zero v.e.v.
Expanding thexp,’s we evaluate the gener@(\") term in the
numerator or denominator as in the undeformed case: agply
Wick Thm to the field monomial and,: M : ¥y =0 we find
exactly thesameintegrals overy-variables of products of free
propagators having coordinate differences as argumeath E
term Is represented by a Feynman diagram. S@sieen’s
functions coincide with the undeformed onesind can be
computed by Feynman diagrams with the undef. Feynman r
So, at least perturbativelihis QFT is completely equivalent to
the undeformed one(no more pathologies like UV-IR mixing!’
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Conclusions. What do we learn?

Glass: half full or half empty?

Various approaches to QFT on NC spaces. Operator or
(as by )
on (deformed) Minkowski spaces look safer starting pol
but still no completely satisfactory guiding principle.

Twisting or not Poincare group, and doing it properly,
makes radical differences.

A sensible theory with twisted Poincaré seems possible
equivalent to the undeformed one. Avoids all complicati
(IV-UR, causality/unitarity violation, statistics vidian,
cluster property violation,...).

Obtained by matching operatar, ') and spacetime
noncommutativitiessemehow.io-compensate.eachathe



* No new physics, nor a more satisfactory formulation of «
one (e.g. by an inthrinsic UV regularization)...

* ... but might be used as a Lab to look for and test equivs
formulations of QFT: Wick rotation into EQFT, path
Integral quantization, etc.

Before one should also investigate: how to formulate,R:
analyticity properties, asymptotic states, spin-stasst
CPT, etc
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