The flavour puzzle and accidental symmetries

Andrea Romanino SISSA

Outline

* The flavour puzzle in the SM
* Approaches to the flavour puzzle
* A new approach
- Basic idea
- Vus and LR symmetry
- s / b vs $c /+$ and Pati-Salam
- Neutrinos
- A model

The flavour puzzle in the SM

* 3 families, or $U(3)^{5}$ symmetry of the fermion gauge lagrangian

	1	2	3	family number (horizontal) not understood
1	l_{1}	12	13	
e^{c}	$\left(e^{c}\right)_{1}$	$\left(e^{c}\right)_{2}$	$\left(e^{c}\right)_{3}$	
9	q_{1}	92	93	
u^{c}	$\left(u^{c}\right)_{1}$	$\left(u^{c}\right)_{2}$	$\left(u^{c}\right)_{3}$	
d^{c}	$\left(d^{c}\right)_{1}$	$\left(d^{c}\right)_{2}$	$\left(d^{c}\right)_{3}$	
gauge ir				
(vertic				
well under				

The flavour puzzle in the SM

* 3 families, or $U(3)^{5}$ symmetry of the fermion gauge lagrangian
* Pattern of $U(3)^{5}$ breaking from Yukawa sector (most SM pars)

$$
\mathcal{L}_{\mathrm{SM}}^{\text {favor }}=\lambda_{i j}^{E} e_{i}^{c} L_{j} H^{\dagger}+\lambda_{i j}^{D} d_{i}^{c} Q_{j} H^{\dagger}+\lambda_{i j}^{U} u_{i}^{c} Q_{j} H+\text { h.c. }
$$

The flavour puzzle in the SM

* 3 families, or $U(3)^{5}$ symmetry of the fermion gauge lagrangian
* Pattern of $U(3)^{5}$ breaking from Yukawa sector (most SM pars)
- (horizontal) hierarchy of fermion masses: $1<2 \ll 3$
- CKM mixing angles < 1

The flavour puzzle in the SM

* 3 families, or $U(3)^{5}$ symmetry of the fermion gauge lagrangian
* Pattern of $U(3)^{5}$ breaking from Yukawa sector (most SM pars)
- (horizontal) hierarchy of fermion masses: $1<2 \ll 3$
- CKM mixing angles «1
- U vs D vs E
- different hierarchies: $U \gg D, E$
$-m_{b} \approx m_{T}, 3 m_{s} \approx m_{\mu}, m_{d} \approx 3 m_{e}$
@ M_{G}

The flavour puzzle in the SM

* 3 families, or $U(3)^{5}$ symmetry of the fermion gauge lagrangian
* Pattern of $U(3)^{5}$ breaking from Yukawa sector (most SM pars)
- (horizontal) hierarchy of fermion masses: $1<2 \ll 3$
- CKM mixing angles «1
- U vs D vs E
- different hierarchies: $U \gg D, E$
$-m_{b} \approx m_{T}, 3 m_{s} \approx m_{\mu}, m_{d} \approx 3 m_{e} @ M_{G}$

The flavour puzzle in the SM

* 3 families, or $U(3)^{5}$ symmetry of the fermion gauge lagrangian
* Pattern of $U(3)^{5}$ breaking from Yukawa sector (most SM pars)
- (horizontal) hierarchy of fermion masses: $1<2 \ll 3$
- CKM mixing angles «1
- U vs D vs E
- different hierarchies: $U \gg D, E$
$-m_{b} \approx m_{T}, 3 m_{s} \approx m_{\mu}, m_{d} \approx 3 m_{e}$ @ M_{G}
- mass hierarchy vs mixing hierarchy
$-\left|V_{c b}\right| \sim m_{s} / m_{b},\left|V_{u s}\right| \approx\left(m_{d} / m_{s}\right)^{1 / 2}$

The flavour puzzle in the SM

* 3 families, or $U(3)^{5}$ symmetry of the fermion gauge lagrangian
* Pattern of $U(3)^{5}$ breaking from Yukawa sector (most SM pars)
- (horizontal) hierarchy of fermion masses: $1<2 \ll 3$
- CKM mixing angles «1
- U vs D vs E
- different hierarchies: $U \gg D, E$
$-m_{b} \approx m_{T}, 3 m_{s} \approx m_{\mu}, m_{d} \approx 3 m_{e}$ @ M_{G}
- mass hierarchy vs mixing hierarchy
$-\left|V_{c b}\right| \sim m_{s} / m_{b},\left|V_{u s}\right| \approx\left(m_{d} / m_{s}\right)^{1 / 2}$
- neutrino sector
- 2 PMNS mixing angles $O(\pi / 4), 1$ small
$-\theta_{23}=O(\pi / 4) \&\left|\Delta m^{2}\right|_{12} \ll\left|\Delta m^{2}\right|_{23}, \theta_{12} \neq \pi / 4$

The flavour puzzle in the SM

* 3 families, or $U(3)^{5}$ symmetry of the fermion gauge lagrangian
* Pattern of $U(3)^{5}$ breaking from Yukawa sector (most SM pars)
- (horizontal) hierarchy of fermion masses: $1<2<2$
- CKM mixing angles «1
- U vs D vs E
- different hierarchies: $U \gg D, E$
$-m_{b} \approx m_{T}, 3 m_{s} \approx m_{\mu}, m_{d} \approx 3 m_{e}$ @ M_{G}
- mass hierarchy vs mixing hierarchy

$$
-\left|V_{c b}\right| \sim m_{s} / m_{b},\left|V_{u s}\right| \approx\left(m_{d} / m_{s}\right)^{1 / 2}
$$

- neutrino sector
- 2 PMNS mixing angles $O(\pi / 4), 1$ small
$-\theta_{23}=O(\pi / 4) \&\left|\Delta m^{2}\right|_{12} \ll\left|\Delta m^{2}\right|_{23}, \theta_{12} \neq \pi / 4$

The flavour puzzle in SM extensions

* The peculiar SM flavour structure ($\left.m_{1}, m_{2} \ll\langle H\rangle,\left|V_{+d}\right|,\left|V_{+s}\right| \ll 1\right)$ allows the SM to pass the FCNC test

$$
\begin{gathered}
\mathcal{L}(Q \ll\langle H\rangle) \supset \frac{\bar{s} d \bar{s} d}{\Lambda_{f}^{2}}, \quad \frac{1}{\Lambda_{f}^{2}} \sim \frac{1}{\left(10^{3} \mathrm{TeV}\right)^{2}} \\
\left(\frac{1}{\Lambda_{f}^{2}}\right)_{\mathrm{SM}} \sim \frac{g^{4}}{(4 \pi)^{2}} \times\left(V_{s u_{i}}^{\dagger} V_{u_{i} d}\right)\left(V_{s u_{j}}^{\dagger} V_{u_{j} d}\right) f\left(\frac{m_{u_{i}}^{2}}{M_{W}^{2}}, \frac{m_{u_{j}}^{2}}{M_{W}^{2}}\right) \times \frac{1}{M_{W}^{2}}
\end{gathered}
$$

* The unknown physics at the SM cutoff should not provide new generic flavour structure

$$
\left(\frac{1}{\Lambda_{f}^{2}}\right)_{\mathrm{NP}} \sim ? \times \frac{1}{\Lambda_{\mathrm{NP}}^{2}}
$$

- e.g. in the MSSM $\delta_{12} \ll 1$, or $\left(\tilde{m}^{2} d-\tilde{m}_{s}{ }_{s}\right) / \tilde{m}^{2}$ and $\left|W_{31}\right|,\left|W_{32}\right| \ll 1$
* Is the origin of the peculiar structure in SM and the MSSM/NP the same?

(Some) approaches to the flavour puzzle

* "Flavour symmetries" acting on family indexes (subgroup of $U(3)^{5}$)
- symmetric limit: only $O(1)$ Yukawas possibly allowed: $\lambda_{+}\left(\lambda_{b} \lambda_{T}\right)$
- e.g. \hbar^{c}, q_{3}, h neutral under $a U(1): Y_{33} t^{c} q_{3} h$ is allowed

(Some) approaches to the flavour puzzle

* "Flavour symmetries" acting on family indexes (subgroup of $U(3)^{5}$)
- symmetric limit: only $O(1)$ Yukawas possibly allowed: $\lambda_{+}\left(\lambda_{b} \lambda_{T}\right)$
- e.g. \dagger^{c}, q_{3}, h neutral under a $U(1): Y_{33} t^{c} q_{3} h$ is allowed
- spontaneous breaking of $U(1)$ by $S M$ singlets ϕ at high scale - e.g. $Q\left(q_{2}\right)=1, Q(\phi)=-1: \frac{\phi}{M} t^{c} q_{2} h$ is allowed $\Rightarrow Y_{32}=\frac{\langle\phi\rangle}{M}$

(Some) approaches to the flavour puzzle

* "Flavour symmetries" acting on family indexes (subgroup of $U(3)^{5}$)
- symmetric limit: only $O(1)$ Yukawas possibly allowed: $\lambda_{+}\left(\lambda_{b} \lambda_{T}\right)$
- e.g. \dagger^{c}, q_{3}, h neutral under a $U(1): Y_{33} t^{c} q_{3} h$ is allowed
- spontaneous breaking of $U(1)$ by $S M$ singlets ϕ at high scale - e.g. $Q\left(q_{2}\right)=1, Q(\phi)=-1: \frac{\phi}{M} t^{c} q_{2} h$ is allowed $\Rightarrow Y_{32}=\frac{\langle\phi\rangle}{M}$
- breaking communicated to $S M$ fermions by heavy messengers (M = mass)
- at E < M

(Some) approaches to the flavour puzzle

* "Flavour symmetries" acting on family indexes (subgroup of $U(3)^{5}$)
- symmetric limit: only $O(1)$ Yukawas possibly allowed: $\lambda_{+}\left(\lambda_{b} \lambda_{T}\right)$
- e.g. \dagger^{c}, q_{3}, h neutral under a $U(1): Y_{33} t^{c} q_{3} h$ is allowed
- spontaneous breaking of $U(1)$ by $S M$ singlets ϕ at high scale - e.g. $Q\left(q_{2}\right)=1, Q(\phi)=-1: \frac{\phi}{M} t^{c} q_{2} h$ is allowed $\Rightarrow Y_{32}=\frac{\langle\phi\rangle}{M}$
- breaking communicated to $S M$ fermions by heavy messengers (M = mass)
- at E < M

- gauge/global, continuous/discrete, abelian/non-abelian
* Extra-dimension mechanisms
- flavour symmetry breaking with boundary conditions
- localized fermions
* Extra-dimension mechanisms
- flavour symmetry breaking with boundary conditions
- localized fermions
- e.g. in RS-type models:

A new (economical) approach

* The knowledge (or existence) of special horizontal dynamics is not required to explain the fermion hierarchical pattern
* The pattern follows from the relative lightness of one set of heavy fields and is associated to the breaking of the gauge group (Pati-Salam)
* Chiral symmetries acting on family indexes "protecting" the mass of the lighter families emerge in this context as accidental symmetries

	1	2	3
L	L_{1}	L_{2}	L_{3}
n^{c}	$\left(n^{c}\right)_{1}$	$\left(n^{c}\right)_{2}$	$\left(n^{c}\right)_{3}$
e^{c}	$\left(e^{c}\right)_{1}$	$\left(e^{c}\right)_{2}$	$\left(e^{c}\right)_{3}$
Q	Q_{1}	Q_{2}	Q_{3}
u^{c}	$\left(u^{c}\right)_{1}$	$\left(u^{c}\right)_{2}$	$\left(u^{c}\right)_{3}$
d^{c}	$\left(d^{c}\right)_{1}$	$\left(d^{c}\right)_{2}$	$\left(d^{c}\right)_{3}$

Large ϑ_{23} (from m_{v}) and normal hierarchy

Focus on " 23 " block:

- Single $N^{c}: m_{3}>m_{2}=0$ hierarchy ($m_{2} \neq 0$ from subdominant contributions)
- $\lambda_{2} \approx \lambda_{3}: \quad \tan \vartheta_{23} \approx 1$ large ϑ_{23} (barring charged lepton rotation) (for generic $\lambda_{i}^{\prime} s$)

Charged fermions

Exchange of a single family of messengers (no Yukawas at ren. level)

* Single messenger: $m_{+} \geqslant m_{c}=0 \rightarrow$ hierarchy (whatever $\lambda_{i} \& \alpha_{j}!$); $m_{2} \neq 0$ from subdominant contributions
* $\lambda_{i} \& \alpha_{j}=O(1)$: large angles in CKM? No:
* No need of constraints on couplings,
 family symmetry [see also: Barr hep-ph/0106241]
$m_{2} \neq 0$

$m_{2} \neq 0$

* Neglect H and $1^{\text {st }}$ family for now (will turn out not to contribute)

$m_{2} \neq 0$

* Neglect H and $1^{\text {st }}$ family for now (will turn out not to contribute)

$$
\begin{aligned}
& Y_{i j}^{U}=\lambda_{i}^{Q u} \alpha_{j}^{Q} \frac{\langle\phi\rangle}{M_{Q}}+\alpha_{i}^{U} \lambda_{j}^{U q} \frac{\langle\phi\rangle}{M_{U}} \\
& Y_{i j}^{D}=\lambda_{i}^{Q d} \alpha_{j}^{Q} \frac{\langle\phi\rangle}{M_{Q}}+\alpha_{i}^{D} \lambda_{j}^{D q} \frac{\langle\phi\rangle}{M_{D}} .
\end{aligned}
$$

$m_{2} \neq 0$

* Neglect H and $1^{\text {st }}$ family for now (will turn out not to contribute)

$$
\begin{aligned}
& Y_{i j}^{U}=\lambda_{i}^{Q u} \alpha_{j}^{Q} \frac{\langle\phi\rangle}{M_{Q}}+\alpha_{i}^{U} \lambda_{j}^{U q} \frac{\langle\phi\rangle}{M_{U}} \\
& Y_{i j}^{D}=\lambda_{i}^{Q d} \alpha_{j}^{Q} \frac{\langle\phi\rangle}{M_{Q}}+\alpha_{i}^{D} \lambda_{j}^{D q} \frac{\langle\phi\rangle}{M_{D}} .
\end{aligned}
$$

* m_{2} < m_{3} : one term must dominate

$m_{2} \neq 0$

* Neglect H and $1^{\text {st }}$ family for now (will turn out not to contribute)

$$
\begin{aligned}
& Y_{i j}^{U}=\lambda_{i}^{Q u} \alpha_{j}^{Q} \frac{\langle\phi\rangle}{M_{Q}}+\alpha_{i}^{U} \lambda_{j}^{U q} \frac{\langle\phi\rangle}{M_{U}} \\
& Y_{i j}^{D}=\lambda_{i}^{Q d} \alpha_{j}^{Q} \frac{\langle\phi\rangle}{M_{Q}}+\alpha_{i}^{D} \lambda_{j}^{D q} \frac{\langle\phi\rangle}{M_{D}} .
\end{aligned}
$$

* m_{2} « m_{3} : one term must dominate
* $\left|V_{c b}\right|$ « 1: M_{Q} < M_{U}, M_{D} (left-handed dominance)

Early comments

$$
Y^{U} \propto\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \epsilon_{U} & \epsilon_{U} \\
0 & \epsilon_{U} & 1
\end{array}\right), \quad Y^{D} \propto\left(\begin{array}{ccc}
0 & 0 & 0 \\
\epsilon_{D} & \epsilon_{D} & \epsilon_{D} \\
\epsilon_{D} & \epsilon_{D} & 1
\end{array}\right)
$$

with a proper basis choice up to $O(1)$ coefficients

$$
\epsilon_{U}=M_{Q} / M_{U}
$$

$$
\epsilon_{D}=M_{Q} / M_{D}
$$

* $m_{1}=0$: first family "protected" by accidental flavour symmetry $U(1)_{1}$
* m_{2} 《 m_{3} in terms of M_{Q} « Mu,D (horizontal from vertical)
- in the effective theory below Mu,d, the second family mass is protected by an accidental symmetry $U(1)_{2}$
* $m_{s} / m_{b} \sim\left|V_{c b}\right| \downarrow$
$U(1)^{\prime}$'s and RS-type: $Y \propto\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & \epsilon_{1} \epsilon_{2} & \epsilon_{2} \\ 0 & \epsilon_{1} & 1\end{array}\right)$ up to $O(1)$ coefficients
$\Rightarrow m_{s} / m_{b} \sim \epsilon_{2}\left|V_{c b}\right|$

$V_{u s}$ and $S U(2)_{R}$

$\left|V_{\text {us }}\right| \sim 1$ unless $\left(\lambda^{\cup q}\right)_{i} \approx\left(\lambda^{D q}\right)_{i} \rightarrow S U(2)_{R}$ (or mild fine-tuning)

$V_{\text {us }}$ and $S U(2)_{R}$

$\left|V_{\text {us }}\right| \sim 1$ unless $\left(\lambda^{\cup q}\right)_{i} \approx\left(\lambda^{D q}\right)_{i} \rightarrow S U(2)_{R}$ (or mild fine-tuning)

- $G_{L R}=S U(2) \times S U(2)_{R} \times S U(3)_{c} \times U(1)_{B-L}$
- $q_{i}^{c}=\binom{u_{i}^{c}}{d_{i}^{c}} \quad Q^{c}=\binom{U^{c}}{D^{c}} \quad I_{i}^{c}=\binom{n_{i}^{c}}{e_{i}^{c}} \quad L^{c}=\binom{N^{c}}{E^{c}} \quad h=\binom{h_{u}}{h_{d}}$
- $\lambda_{i} q_{i} Q^{c} h \Rightarrow\left(\lambda^{\cup q}\right)_{i}=\left(\lambda^{D q}\right)_{i}=\lambda_{i}$

m_{c} / m_{+}vs m_{s} / m_{b} and $S U(4)_{c}$

$$
Y^{U} \propto\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \epsilon_{U} & \epsilon_{U} \\
0 & \epsilon_{U} & 1
\end{array}\right) \quad Y^{D} \propto\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \epsilon_{D} & \epsilon_{D} \\
0 & \epsilon_{D} & 1
\end{array}\right)
$$

* $m_{c} / m_{+} \sim m_{s} / m_{b}$ unless $M_{U} \gg M_{D}$
* Unbroken $\operatorname{SU}(2)_{R}: M_{c} \bar{Q}^{c} Q^{c} \Rightarrow M_{U}=M_{D}=M_{c} \Rightarrow m_{c} / m_{+}=m_{s} / m_{b}$
* $S U(3)_{c} \rightarrow S U(4)_{c}: S U(4)_{c}$ adjoint couples $S U(2)_{R}$ breaking to Q^{c} (SU(2) R breaking by $\tilde{L}^{c}, \tilde{\bar{L}}^{c}$ scalars with vevs along $\tilde{N}^{c}, \tilde{\bar{N}}^{c}$ (standard))
* Then $m_{c} / m_{+} \ll m_{s} / m_{b}$ does not require a new ad hoc scale

Neutrinos

* Prediction: $N^{c}\left(\lambda_{3}^{c} l_{3}+\lambda_{2}^{c} l_{2}\right) h_{u}$ (with charged leptons (almost) diagonal)
* Takes care of $\vartheta_{23}+$ normal hierarchy if N^{c} dominates the seesaw:

$$
\tan \theta_{23} \sim \frac{\lambda_{2}^{c}}{\lambda_{3}^{c}} \quad\left|\Delta m_{12}^{2}\right| \ll\left|\Delta m_{23}^{2}\right|
$$

* n_{i} also contribute to the seesaw: $\lambda_{3} n_{3}^{c} L h_{u}$
* Must give mass to 2 massless linear combinations: $\eta_{k i} s_{k} f_{i}^{c} \bar{F}_{c}^{\prime}, s_{k}=(111++)$
* Note: no new mass scale (n^{c} and N^{c} at the same scale, but N^{c} dominates)
* $\begin{aligned} m_{3} & =\rho_{\nu} \frac{v_{\mathrm{EW}}^{2}}{2 s_{23}^{2} M_{c}}, \quad m_{1,2} \approx 0 \\ M_{c} & \approx 0.6 \cdot 10^{15} \mathrm{GeV} \rho_{\nu}, \quad \rho_{\nu}=\mathcal{O}(1)\end{aligned}$

The model

Below the cutoff \wedge (will turn out to be $>10^{16-17} \mathrm{GeV}$):

* $G=G_{p S}=S U(2)_{L} \times S U(2)_{R} \times S U(4)_{c}+Z_{2}$ and SUSY (with R_{p})
* Field content:

	f_{i}	f_{i}^{c}	h	ϕ	F	F	F^{c}	F^{c}	H	F^{\prime}	F^{\prime}	F_{c}^{\prime}	F_{c}^{\prime}	Σ	X_{c}
$\mathrm{SU}(2)_{L}$	2	1	2	1	2	2	1	1	2	2	2	1	1	1	1
$\mathrm{SU}(2)_{R}$	1	2	2	1	1	1	2	2	2	1	1	2	2	1	3
$\mathrm{SU}(4)_{c}$	4	$\overline{4}$	1	15	4	$\overline{4}$	$\overline{4}$	4	1	4	$\overline{4}$	$\overline{4}$	4	15	1
\mathbf{Z}_{2}	-	-	-	-	+	+	+	+	+	+	+	+	+	+	+
R_{P}	-	-	+	+	-	-	-	-	+	+	+	+	+	-	+

$F=\left(L Q_{1} Q_{2} Q_{3}\right), F^{c}=\left(L^{c} Q^{c}{ }_{1} Q^{c}{ }_{2} Q^{c}{ }_{3}\right), \Sigma=(A T \bar{T} G)$

* Assumptions:
- Heavy masses through $\left\langle X_{c}\right\rangle,\left\langle F^{\prime}{ }_{c}\right\rangle$ (PS breaking)
- Z_{2} breaking (along $\left.B-L\right)$ at $v \ll M_{c}\left(T_{3 R}, N_{c}^{\prime}\right)$

$$
\begin{aligned}
& \left\{\begin{array}{l}
M_{c} \sim V_{c} \equiv\left\langle\widetilde{N}_{c}^{\prime}\right\rangle \\
v \equiv\langle\phi\rangle \\
\epsilon \equiv v / M_{c} \ll 1
\end{array}\right.
\end{aligned}
$$

* The most general ren. superpotential

$$
\begin{aligned}
& W_{\mathrm{ren}}=\lambda_{i} f_{i}^{c} F h+\lambda_{i}^{c} f_{i} F^{c} h+\lambda_{i j}^{H} f_{i}^{c} f_{j} H+\alpha_{i} \phi f_{i} \bar{F}+\alpha_{i}^{c} \phi f_{i}^{c} \bar{F}^{c} \\
+ & M \bar{F} F+M_{c} \bar{F}^{c} F^{c}+\gamma M \Sigma^{2}+\bar{\sigma}_{c} \bar{F}_{c}^{\prime} \Sigma F^{c}+\sigma_{c} \bar{F}^{c} \Sigma F_{c}^{\prime}+\eta^{\prime} F_{c}^{\prime} F^{\prime} H+\bar{\eta}^{\prime} \bar{F}_{c}^{\prime} \bar{F}^{\prime} H+\ldots
\end{aligned}
$$

gives rise to the full pattern of II and III family charged fermion masses and mixing

* D, E sector: $Y^{D}=\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & \alpha_{2}^{c} \lambda_{2}^{c} \epsilon / 3 & \alpha_{2}^{c} \lambda_{3}^{c} c \epsilon / 3 \\ 0 & \alpha_{3}^{c} \lambda_{2}^{c} \epsilon / 3 & -s \lambda_{3}\end{array}\right) \quad Y^{E}=-\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & \alpha_{2}^{c} \lambda_{2}^{c} \epsilon & \alpha_{2}^{c} \lambda_{3}^{c} c \epsilon \\ 0 & \alpha_{3}^{c} \lambda_{2}^{c} \epsilon & s \lambda_{3}\end{array}\right)$
- $m_{b}=m_{\text {tau }}$
- $3 m_{s}=m_{m u}$
- $\left|V_{c b}\right| \sim m_{s} / m_{b}$

$$
\begin{aligned}
& \epsilon \equiv v / M_{c} \ll 1 \\
& \tan \theta \equiv \alpha_{3} v / M=O(1) \\
& s=\sin \theta
\end{aligned}
$$

- $\epsilon=0.06 \times 0(1)$
* U sector: $Y^{U}=-\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & (4 / 9) \alpha_{2}^{c} \lambda_{2}^{c} \rho_{u} \epsilon^{2} & (4 / 9) \alpha_{2}^{c} \lambda_{3}^{c} c \rho_{u} \epsilon^{2} \\ 0 & (4 / 9) \alpha_{3}^{c} \lambda_{2}^{c} \rho_{u} \epsilon^{2} & s \lambda_{3}\end{array}\right) \begin{aligned} & \text { Notation: } \rho \text { denotes } \\ & \text { a combination of } \\ & \text { O(1) parameters }\end{aligned}$
$\epsilon^{2}: Y_{c}$ from $\lambda^{c} U^{c} U^{c} q_{i} h_{u}$ with $U^{c} \rightarrow\left(U^{c}\right)_{\text {light }}$
where the $\left(U^{c}\right)_{\text {light }}$ component of U^{c} is suppressed by
- $v / M_{c}=\epsilon$
- $M / V_{c} \sim \epsilon$

$$
\bar{U}^{c}\left[M_{c} U^{c}+\frac{\sigma_{c}}{\sqrt{2}} V_{c} \bar{T}_{\Sigma}+\frac{v}{3}\left(\alpha_{3}^{c} u_{3}^{c}+\alpha_{2}^{c} u_{2}^{c}\right)\right]+T_{\Sigma}\left[M_{\Sigma} \bar{T}_{\Sigma}+\frac{\bar{\sigma}_{c}}{\sqrt{2}} V_{c} U^{c}\right]
$$

* 2 hierarchies in terms of 1

To summarize (charged fermions)

* Assumptions:
- Field content below Λ
- Messenger masses along $T_{3 R}, \tilde{N}^{c}$
- Z_{2} breaking at lower scale (ϕ) along B-L
* Results:
- $m_{s} \ll m_{b}, m_{m u} \ll m_{\text {tau }}$
- $\left|V_{c b}\right| \sim m_{s} / m_{b}$
- $\left(m_{\text {tau }} / m_{b}\right)_{M} \approx 1,\left(m_{m u} / m_{s}\right)_{M} \approx 3$
- $m_{c} / m_{+} \ll m_{s} / m_{b}$
- $m_{u, d, e}$ further suppressed (no Hhф)
- $\vartheta_{23}+$ normal hierarchy in neutrino sector: easy
- $M_{c} \approx 0.6 \cdot 10^{15} \mathrm{GeV} \rho_{\nu}, \quad \rho_{\nu}=\mathcal{O}(1) \quad\left(\mathrm{N}^{c}=\mathrm{FN}\right)$

The first family

* Masses and mixings of the first family originate above the cutoff Λ (not specified) and can be parameterized by NR operators
* There exists a choice of NR operators accounting for $1^{\text {st }}$ family masses and mixings (some should be forbidden, e.g. $\mathrm{F}_{\mathrm{i}} \mathrm{f}_{\mathrm{j}} \Phi \mathrm{h}, \mathrm{F}^{\prime}{ }_{c} F^{\prime} \Phi h \rightarrow m_{u}$ too large)):
- $\bar{F}^{\prime}{ }_{c} \bar{F}^{\prime} \Phi h$ induces h-H mixing in the down (but not up) sector, thus communicating the $U(1)_{1}$ breaking from $f^{c} f_{j} H$ to the light D, E sectors (but not to the U sector)
- The up quark mass is consistent with an effect from MpI
- $M_{c} / \Lambda \sim m_{2} / m_{3}$ (determines \wedge up to $\left.O(1)\right)$

$$
\begin{aligned}
& \theta_{13}=\frac{m_{2}}{m_{3}} \frac{\tan \theta_{12}}{1+\tan ^{2} \theta_{12}} \frac{a+b}{a-b}+\ldots \\
& \left|V_{\text {us }}\right| \sim M_{c} / \Lambda \sim m_{2} / m_{3}
\end{aligned}
$$

A problem

* $Y^{D}=\left(\begin{array}{ccc}\rho_{h} \lambda_{11}^{H} \epsilon^{\prime} & \rho_{h} \lambda_{12}^{H} \epsilon^{\prime} & \rho_{h} \lambda_{13}^{H} c \epsilon^{\prime} \\ \rho_{h} \lambda_{21}^{H} \epsilon^{\prime} & \alpha_{2}^{c} \lambda_{2} \epsilon / 3 & \alpha_{2}^{c} \lambda_{\lambda}^{c} c \epsilon / 3 \\ \rho_{h} \lambda_{31}^{H} \epsilon^{\prime} & \alpha_{3}^{c} \lambda_{2}^{\prime} \epsilon / 3 & -s \lambda_{3}\end{array}\right)$

$$
Y^{E}=\left(\begin{array}{ccc}
\rho_{h} \lambda_{1}^{H} \epsilon^{\prime} & \rho_{h} \lambda_{12}^{H} \epsilon^{\prime} & \rho_{h} \lambda_{3}^{H} c c^{\prime} \\
\rho_{h} \lambda_{21}^{H} \epsilon^{\prime} & -\alpha_{2}^{c} \lambda_{2} \epsilon & -\alpha_{2}^{c} \lambda_{2}^{c} c \epsilon \\
\rho_{h} \lambda_{31}^{H} \epsilon^{\prime} & -\alpha_{3}^{c} \lambda_{2}^{\epsilon} \epsilon & -s \lambda_{3}
\end{array}\right)
$$

gives $m_{e} \approx m_{d},\left|V_{u s}\right| \approx m_{d} / m_{s}$ unless
$\lambda_{11}^{H} / \lambda_{12,21}^{H}<\sqrt{m_{d} / m_{s}} / 3 \sim 0.08$

* Then: $3 m_{e} \approx m_{d},\left|V_{\text {us }}\right| \approx\left(m_{d} / m_{s}\right)^{1 / 2}$ (at the price of a fine-tuning $>O(10)$)

Supersymmetry breaking

* The sfermion mass spectrum depends on whether $E<M_{c}$ or $E>M_{c}$
* In the absence of flavour symmetries, a GMSB-like mechanism is the natural option
* If $E \geq M_{c}$: large RGE-induced FCNCs in the " 23 " sector of right-handed fermions
* Flavour messengers = SUSY-breaking messengers?
* Z_{2}-breaking $=$ SUSY-breaking (through Gps adjoint or fundamental)?
* Peculiar sfermion spectrum?

Summary

* Neutrinos might suggest that the peculiar hierarchical pattern of charged fermion masses and mixings (up to O(1) factors) does not require special horizontal structure
* In the context of an economical PS model we obtained
- the full pattern of II and III family masses and mixings with mild assumptions on the content of the effective theory below a cutoff
- the full pattern of I family masses and mixings in terms of a selection of NR operators + FT >O(10)
* Other features:
- extended see-saw with dominance from extra singlet neutrinos
- see-saw fields = FN fields
- new supersymmetry breaking options?

