A simple model for protein mechanical unfolding

Alberto Imparato, Alessandro Pelizzola, Marco Zamparo

Dipartimento di Fisica, Politecnico di Torino, Italy.

Motivations

 Mechanical unfolding experiments on biopolymers (Nucleic Acids, Proteins)

Motivations

- Mechanical unfolding experiments on biopolymers (Nucleic Acids, Proteins)
- Information about the internal structure of the molecules

Motivations

- Mechanical unfolding experiments on biopolymers (Nucleic Acids, Proteins)
- Information about the internal structure of the molecules
- simple model of proteins to study the relations between the experimentally observed unfolding kinetics and the molecular structure

sequence of aminoacids,

Proteins

- sequence of aminoacids,
- connected by C–N peptide bonds,

Proteins

- sequence of aminoacids,
- connected by C–N peptide bonds,
- with a well-defined low-energy, low-entropy native state,

Proteins

- sequence of aminoacids,
- connected by C–N peptide bonds,
- with a well-defined low-energy, low-entropy native state,
- whose native structure is thought to be important for the kinetics

The Wako-Saitō-Muñoz-Eaton model

WSME model

FIG. 1. Schematic of peptide backbone showing that fixing the orientation of the CO-NH peptide plane by defining the two dihedral angles (ψ_i, ϕ_{i+1}) also defines the relative orientation of the C_{α} - C_{β} bond vectors of residues R_i and R_{i+1} .

(Wako and Saitô J. Phys. Soc. Jpn (1978), Muñoz and Eaton, PNAS (1999))

Details

- A binary variable $m_i = 0, 1$ is associated to each peptide bond i = 1, ..., N.
- $m_i = 1$ for a native peptide bond, 0 otherwise
- an entropy $q_i > 0$ is associated to each non-native bond
- two aminoacids can interact only if
 - they are in contact in the native state
 - all the peptide bond between them are ordered (native)
- Effective free energy ("Hamiltonian")

$$H = -\sum_{i < j} \epsilon_{ij} \Delta_{ij} \prod_{k=i}^{j} m_k - T \sum_i q_i (1 - m_i)$$

WSME model vs. experiments

The model predicts quite well the experimental (thermal) folding rates of a large number of proteins

V. Muñoz and W.A. Eaton, Proc. Natl. Acad. Sci. U.S.A. 96, 11311 (1999).

WSME model under force

Generalization of the WSME model of proteins (A.I., A. Pelizzola,

 $m_k = 0, 1, k$ -th peptide bond in nonnative–native state;

 $\sigma_{ij} = \pm 1$, stretch l_{ij} parallel-antiparallel to the force

Equilibrium properties

The WSME model can be solved exactly

Bruscolini P., Pelizzola A. (2002) Phys. Rev. Lett. 88:258101.

Pelizzola A. (2005) J. Stat. Mech.-Theory Exp. P11010

The I27 module of titin, pdb code 1TIT

89 aminoacids, $\epsilon/k_B = 43$ K, $\tilde{T} = k_B T/\epsilon$

Equilibrium properties (1TIT)

 $\widetilde{T} = k_B T / \epsilon, \ m = \frac{1}{N} \sum_{i=1}^{N} m_i$

Force clamp and dynamic loading (1TIT)

From the fits $x_u = 3$ Å, agreement with the experimental value $x_u = 2.5$ Å Carrion-Vazquez M. *et al.* PNAS (1999).

 $\mathcal{H}_{\mu}(x), x \text{ microscopic state (e.g. } x = \{r_i, p_i\}), \mu = \mu(t)$ manipulation parameter

- $\mathcal{H}_{\mu}(x)$, *x* microscopic state (e.g. $x = \{r_i, p_i\}$), $\mu = \mu(t)$ manipulation parameter
- Collective coordinate: Y(x)
 (e.g. length of a polymer L({r_i}))

- $\mathcal{H}_{\mu}(x)$, *x* microscopic state (e.g. $x = \{r_i, p_i\}$), $\mu = \mu(t)$ manipulation parameter
- Collective coordinate: Y(x)
 (e.g. length of a polymer L({r_i}))

- $\mathcal{H}_{\mu}(x)$, *x* microscopic state (e.g. $x = \{r_i, p_i\}$), $\mu = \mu(t)$ manipulation parameter
- Collective coordinate: Y(x)
 (e.g. length of a polymer L({r_i}))
- $U_{\mu}(Y(x)) \longrightarrow \mathcal{H}_{\mu}(x) = \mathcal{H}_{0}(x) + U_{\mu}(Y(x))$
- Target: unperturbed free energy as a function of Y

$$\mathcal{F}_0(Y) = -\beta^{-1} \ln \int \mathrm{d}x \,\,\delta(Y - Y(x)) \,\mathrm{e}^{-\beta \mathcal{H}_0(x)}$$

 $\beta = 1/(k_B T)$

Extended Jarzynski equality

Evaluation of $\mathcal{F}_0(Y)$ from experiments

$$e^{-\beta \mathcal{F}_0(Y)} = \operatorname{const} \cdot e^{\beta U_{\mu(t)}(Y)} \left\langle \delta(Y - Y(x_t)) e^{-\beta W} \right\rangle_t$$

Crooks 1999, Hummer and Szabo 2001, Imparato and Peliti 2006

- Typical value of the work associated to the unfolding of $1\text{TIT} \sim \text{hundreds of } k_B T$.
- The JE involves the exponential of the work.
- We consider a smaller protein, the PIN1

For an illuminating discussion on the range of applicability of the JE to microscopic systems see Ritort F., in *Seminaire Poincare* **2** (2003) 193–226.

The PIN1 protein

PIN1 protein (1I6C, Protein Data Bank, http://www.pdb.org/)

39 aminoacids, $\epsilon/k_B \simeq 44$ K.

Equilibrium Properties (PIN1)

Free energy landscape of the PIN1 protein

$$f(t) = r \cdot t$$

As the pulling rate r decreases the estimated curves collapse onto a single one.

Comparison with exact result

Free energy vs. *L* for PIN1. $\tilde{T} = 6$; Pulling rates *r*. Dots: equilibrium values. Inset: Tilted free

energy F(L) - fL at f = 12 pN

Reliability of the F(L) **estimate**

$$\langle L \rangle_f = \frac{1}{Z_0} \int dL \exp\left[-\beta(F(L) - fL)\right] L,$$
$$Z_0 = \int dL \exp\left[-\beta(F(L) - fL)\right].$$

DSF, 2007 - p.18/22

Real Protein

Ig-like octamer from Titin protein

collaboration with F. Sbrana, M. Vassalli, Florence, Italy.

Real Protein

still in progress...

Simple model of proteins under force, whose equilibrium properties can be exactly calculated.

- Simple model of proteins under force, whose equilibrium properties can be exactly calculated.
- Agreement with the experimental results: our model, although minimal, captures the basic mechanisms underlying the unfolding process of proteins.

- Simple model of proteins under force, whose equilibrium properties can be exactly calculated.
- Agreement with the experimental results: our model, although minimal, captures the basic mechanisms underlying the unfolding process of proteins.
- The JE is effective to reconstruct free-energy landscapes of manipulated proteins

- Simple model of proteins under force, whose equilibrium properties can be exactly calculated.
- Agreement with the experimental results: our model, although minimal, captures the basic mechanisms underlying the unfolding process of proteins.
- The JE is effective to reconstruct free-energy landscapes of manipulated proteins
- The equilibrium properties which can be obtained by such a landscape agree nicely with the expected ones.

- Simple model of proteins under force, whose equilibrium properties can be exactly calculated.
- Agreement with the experimental results: our model, although minimal, captures the basic mechanisms underlying the unfolding process of proteins.
- The JE is effective to reconstruct free-energy landscapes of manipulated proteins
- The equilibrium properties which can be obtained by such a landscape agree nicely with the expected ones.
- Which is the relation between the unfolding pathway and the energy landscape obtained by the JE ?

- Simple model of proteins under force, whose equilibrium properties can be exactly calculated.
- Agreement with the experimental results: our model, although minimal, captures the basic mechanisms underlying the unfolding process of proteins.
- The JE is effective to reconstruct free-energy landscapes of manipulated proteins
- The equilibrium properties which can be obtained by such a landscape agree nicely with the expected ones.
- Which is the relation between the unfolding pathway and the energy landscape obtained by the JE ?
- RNA under force

References

- V. Muñoz et al., Proc. Natl. Acad. Sci. U.S.A. 95, 5872 (1998).
- V. Muñoz and W.A. Eaton, Proc. Natl. Acad. Sci. U.S.A. 96, 11311 (1999).
- P. Bruscolini, A. Pelizzola, Phys. Rev. Lett, **88**, 258101 (2002).
- A. Pelizzola, J. Stat. Mech., P11010 (2005).
- A. Imparato, L. Peliti, J. Stat. Mech. P03005 (2006).
- M. Zamparo, A. Pelizzola, Phys. Rev. Lett., 97, 068106 (2007)

A. Imparato, M. Zamparo, A. Pelizzola, cond-mat 2006, to appear in Phys. Rev. Lett.