A simple model for protein mechanical unfolding

Alberto Imparato, Alessandro Pelizzola, Marco Zamparo

Dipartimento di Fisica, Politecnico di Torino, Italy.
Motivations

- Mechanical unfolding experiments on biopolymers (Nucleic Acids, Proteins)
Motivations

- Mechanical unfolding experiments on biopolymers (Nucleic Acids, Proteins)
- Information about the internal structure of the molecules
Motivations

- Mechanical unfolding experiments on biopolymers (Nucleic Acids, Proteins)
- Information about the internal structure of the molecules
- Simple model of proteins to study the relations between the experimentally observed unfolding kinetics and the molecular structure
Proteins

sequence of aminoacids,
Proteins

- sequence of aminoacids,
- connected by C–N peptide bonds,
Proteins

- sequence of amino acids,
- connected by C–N peptide bonds,
- with a well-defined low-energy, low-entropy native state,
Proteins

- sequence of **aminoacids**,
- connected by C–N **peptide bonds**,
- with a well–defined low–energy, low–entropy **native state**, and
- whose **native structure** is thought to be important for the **kinetics**.
The Wako-Saitô-Muñoz-Eaton model

WSME model

Fig. 1. Schematic of peptide backbone showing that fixing the orientation of the CO-NH peptide plane by defining the two dihedral angles (ψ_i, ϕ_{i+1}) also defines the relative orientation of the $C_\alpha-C_\beta$ bond vectors of residues R_i and R_{i+1}.

A binary variable $m_i = 0, 1$ is associated to each peptide bond $i = 1, \ldots N$.

$m_i = 1$ for a native peptide bond, 0 otherwise

An entropy $q_i > 0$ is associated to each non-native bond

Two amino acids can interact only if
 - they are in contact in the native state
 - all the peptide bond between them are ordered (native)

Effective free energy ("Hamiltonian")

$$H = - \sum_{i<j} \epsilon_{ij} \Delta_{ij} \prod_{k=i}^{j} m_k - T \sum_{i} q_i (1 - m_i)$$
WSME model vs. experiments

The model predicts quite well the experimental (thermal) folding rates of a large number of proteins

WSME model under force

Generalization of the WSME model of proteins (A.I., A. Pelizzola, M. Zamparo, cond-mat 2006, to appear in PRL)

\[
\mathcal{H}([m_k], [\sigma_{ij}]) = \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \epsilon_{ij} \Delta_{ij} \prod_{k=i,j} m_k - f L([m_k], [\sigma_{ij}]).
\]

\[
L([m_k], [\sigma_{ij}]) = \sum_{0 \leq i < j \leq N+1} l_{ij} \sigma_{ij} (1 - m_i)(1 - m_j) \prod_{k=i+1}^{j-1} m_k.
\]

\[m_k = 0, 1, \ k\text{-th peptide bond in nonnative–native state;}
\]

\[\sigma_{ij} = \pm 1, \ \text{stretch } l_{ij} \text{ parallel-antiparallel to the force}
\]
Equilibrium properties

The WSME model can be solved exactly
The I27 module of titin, pdb code 1TIT

89 aminoacids, $\epsilon/k_B = 43$ K, $\tilde{T} = k_B T / \epsilon$
Equilibrium properties (1TIT)

$\tilde{T} = 4$
$\tilde{T} = 6$
$\tilde{T} = 8$
$\tilde{T} = 10$

$\tilde{T} = k_B T / \epsilon, \ m = \frac{1}{N} \sum_{i=1}^{N} m_i$

$\sqrt{\langle L^2 \rangle}$ (Å)
\[\langle \tau_u \rangle = \omega_0^{-1} \exp[\beta (\Delta E_u - f x_u)] \]

\[f^* = \frac{k_B T}{x_u} \ln[\beta r x_u \tau_0] \]

From the fits \(x_u = 3\text{Å} \), agreement with the experimental value \(x_u = 2.5\text{Å} \) Carrion-Vazquez M. et al. PNAS (1999).
Free energy landscape

- $H_\mu(x)$, x microscopic state (e.g. $x = \{r_i, p_i\}$), $\mu = \mu(t)$
- manipulation parameter
Free energy landscape

- $H_\mu(x)$, x microscopic state (e.g. $x = \{r_i, p_i\}$), $\mu = \mu(t)$
 manipulation parameter

- Collective coordinate: $Y(x)$
 (e.g. length of a polymer $L(\{r_i\})$)
Free energy landscape

- $\mathcal{H}_\mu(x)$, x microscopic state (e.g. $x = \{r_i, p_i\}$), $\mu = \mu(t)$ manipulation parameter

- Collective coordinate: $Y(x)$ (e.g. length of a polymer $L(\{r_i\})$)

- $U_\mu(Y(x)) \rightarrow \mathcal{H}_\mu(x) = \mathcal{H}_0(x) + U_\mu(Y(x))$
Free energy landscape

- $\mathcal{H}_\mu(x)$, x microscopic state (e.g. $x = \{r_i, p_i\}$), $\mu = \mu(t)$ manipulation parameter

- Collective coordinate: $Y(x)$ (e.g. length of a polymer $L(\{r_i\})$)

- $U_\mu(Y(x)) \longrightarrow \mathcal{H}_\mu(x) = \mathcal{H}_0(x) + U_\mu(Y(x))$

- Target: unperturbed free energy as a function of Y

$$\mathcal{F}_0(Y) = -\beta^{-1} \ln \int dx \, \delta(Y - Y(x)) \, e^{-\beta \mathcal{H}_0(x)}$$

$$\beta = 1/(k_B T)$$
Extended Jarzynski equality

Evaluation of $F_0(Y)$ from experiments

$$e^{-\beta F_0(Y)} = \text{const} \cdot e^{\beta U_{\mu(t)}(Y)} \left\langle \delta(Y - Y(x_t))e^{-\beta W} \right\rangle_t$$

- Typical value of the work associated to the unfolding of 1TIT \sim hundreds of $k_B T$.
- The JE involves the exponential of the work.
- We consider a smaller protein, the PIN1

For an illuminating discussion on the range of applicability of the JE to microscopic systems see Ritort F., in *Seminaire Poincare* 2 (2003) 193–226.
The PIN1 protein

PIN1 protein (1I6C, Protein Data Bank, http://www.pdb.org/)

39 aminoacids, $\epsilon/k_B \approx 44$ K.
Equilibrium Properties (PIN1)

\[\tilde{T} = \frac{T k_B}{\epsilon} \] reduced temperature.

\[\tilde{T} = 4 \]
\[\tilde{T} = 6 \]
\[\tilde{T} = 8 \]
Free energy landscape of the PIN1 protein

\[f(t) = r \cdot t \]

\[\tilde{T} = 6, \tilde{r} = r \cdot (t_0/\epsilon) \text{Å} \]

"average trajectory"

As the pulling rate \(r \) decreases the estimated curves collapse onto a single one.
Free energy vs. L for PIN1. $\tilde{T} = 6$; Pulling rates r. Dots: equilibrium values. Inset: Tilted free energy $F(L) - fL$ at $f = 12$ pN.
Reliability of the $F(L)$ estimate

$$
\langle L \rangle_f = \frac{1}{Z_0} \int dL \exp \left[-\beta (F(L) - fL) \right] L,
$$

$$
Z_0 = \int dL \exp \left[-\beta (F(L) - fL) \right].
$$
Real Protein

Ig-like octamer from Titin protein
collaboration with F. Sbrana, M. Vassalli, Florence, Italy.
Real Protein

still in progress...
Conclusions

- Simple model of proteins under force, whose equilibrium properties can be exactly calculated.
Conclusions

- Simple model of proteins under force, whose equilibrium properties can be exactly calculated.
- Agreement with the experimental results: our model, although minimal, captures the basic mechanisms underlying the unfolding process of proteins.
Conclusions

- Simple model of proteins under force, whose equilibrium properties can be exactly calculated.
- Agreement with the experimental results: our model, although minimal, captures the basic mechanisms underlying the unfolding process of proteins.
- The JE is effective to reconstruct free-energy landscapes of manipulated proteins.
Conclusions

- Simple model of proteins under force, whose equilibrium properties can be exactly calculated.
- Agreement with the experimental results: our model, although minimal, captures the basic mechanisms underlying the unfolding process of proteins.
- The JE is effective to reconstruct free-energy landscapes of manipulated proteins.
- The equilibrium properties which can be obtained by such a landscape agree nicely with the expected ones.
Conclusions

- Simple model of proteins under force, whose equilibrium properties can be exactly calculated.
- Agreement with the experimental results: our model, although minimal, captures the basic mechanisms underlying the unfolding process of proteins.
- The JE is effective to reconstruct free-energy landscapes of manipulated proteins.
- The equilibrium properties which can be obtained by such a landscape agree nicely with the expected ones.
- Which is the relation between the unfolding pathway and the energy landscape obtained by the JE?
Conclusions

- Simple model of proteins under force, whose equilibrium properties can be exactly calculated.
- Agreement with the experimental results: our model, although minimal, captures the basic mechanisms underlying the unfolding process of proteins.
- The JE is effective to reconstruct free-energy landscapes of manipulated proteins.
- The equilibrium properties which can be obtained by such a landscape agree nicely with the expected ones.
- Which is the relation between the unfolding pathway and the energy landscape obtained by the JE?
- RNA under force
References
