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simple model of proteins to study the relations
between the experimentally observed unfolding
kinetics and the molecular structure
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Proteins

sequence of aminoacids,

connected by C–N peptide bonds,

with a well–defined low–energy, low–entropy native
state,

whose native structure is thought to be important for
the kinetics
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The Wako-Saitō-Muñoz-Eaton model

WSME model

(Wako and Saitô J. Phys. Soc. Jpn (1978), Muñoz and

Eaton, PNAS (1999))
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Details

A binary variable mi = 0,1 is associated to each
peptide bond i = 1, . . .N.

mi = 1 for a native peptide bond, 0 otherwise

an entropy qi > 0 is associated to each non–native
bond

two aminoacids can interact only if
they are in contact in the native state
all the peptide bond between them are ordered
(native)

Effective free energy (“Hamiltonian”)

H = −
∑

i< j

εi j∆i j

j∏

k=i

mk − T
∑

i

qi(1− mi)

1D model with long–range, many–body interactions
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WSME model vs. experiments

The model predicts quite well the experimental (thermal)
folding rates of a large number of proteins

V. Muñoz and W.A. Eaton, Proc. Natl. Acad. Sci. U.S.A. 96, 11311 (1999).
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WSME model under force

Generalization of the WSME model of proteins (A.I., A. Pelizzola,

M. Zamparo, cond-mat 2006, to appear in PRL)

li j

L

f

H({mk} , {σi j}) =
N−1∑

i=1

N∑

j=i+1

εi j∆i j

∏

k=i, j

mk − f L({mk} , {σi j}).

L({mk} , {σi j}) =
∑

0≤i< j≤N+1

li jσi j(1− mi)(1− m j)
j−1∏

k=i+1

mk.

mk = 0,1, k-th peptide bond in nonnative–native state;

σi j = ±1, stretch li j parallel-antiparallel to the force
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Equilibrium properties

The WSME model can be solved exactly
Bruscolini P., Pelizzola A. (2002) Phys. Rev. Lett. 88:258101.

Pelizzola A. (2005) J. Stat. Mech.-Theory Exp. P11010
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The I27 module of titin, pdb code 1TIT

89 aminoacids, ε/kB = 43 K, T̃ = kBT/ε
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Equilibrium properties (1TIT)
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Force clamp and dynamic loading (1TIT)
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From the fits xu = 3Å, agreement with the experimental
value xu = 2.5Å Carrion-Vazquez M. et al. PNAS (1999).
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Free energy landscape

Hµ(x), x microscopic state (e.g. x = {ri, pi}), µ = µ(t)
manipulation parameter
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Free energy landscape

Hµ(x), x microscopic state (e.g. x = {ri, pi}), µ = µ(t)
manipulation parameter

Collective coordinate: Y(x)
(e.g. length of a polymer L({ri}))

Uµ (Y(x)) −→ Hµ(x) = H0(x) + Uµ(Y(x))

Target: unperturbed free energy as a function of Y

F0(Y) = −β−1 ln
∫

dx δ(Y − Y(x)) e−βH0(x)

β = 1/(kBT )
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Extended Jarzynski equality

Evaluation of F0(Y) from experiments

e−βF0(Y) = const· eβUµ(t)(Y)
〈
δ(Y − Y(xt))e

−βW
〉

t

Crooks 1999, Hummer and Szabo 2001, Imparato and Peliti 2006

Typical value of the work associated to the unfolding of
1TIT ∼ hundreds of kBT .

The JE involves the exponential of the work.

We consider a smaller protein, the PIN1

For an illuminating discussion on the range of applicability
of the JE to microscopic systems see Ritort F., in Seminaire
Poincare 2 (2003) 193–226.
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The PIN1 protein

PIN1 protein (1I6C, Protein Data Bank, http://www.pdb.org/)

39 aminoacids, ε/kB ' 44 K.
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Equilibrium Properties (PIN1)

T̃ = TkB/ε reduced temperature.
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Free energy landscape of the PIN1 protein

f (t) = r · t

T̃ = 6, r̃ = r · (t0/ε)Å
“average trajectory" JE output
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Comparison with exact result
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Reliability of the F(L) estimate

〈L〉 f =
1
Z0

∫
dL exp

[
−β(F(L) − f L)

]
L,

Z0 =

∫
dL exp

[
−β(F(L) − f L)

]
.
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Real Protein

Ig-like octamer from Titin protein

collaboration with F. Sbrana, M. Vassalli, Florence, Italy.
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Real Protein
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Conclusions

Simple model of proteins under force, whose
equilibrium properties can be exactly calculated.

Agreement with the experimental results: our model,
although minimal, captures the basic mechanisms
underlying the unfolding process of proteins.

The JE is effective to reconstruct free-energy
landscapes of manipulated proteins

The equilibrium properties which can be obtained by
such a landscape agree nicely with the expected ones.

Which is the relation between the unfolding pathway
and the energy landscape obtained by the JE ?

RNA under force
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