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rotating bosons

bosonic atoms at
- low temperature

* high density
%8 - in a (rapidly) rotating trap

? what happens ?




atomic (fractional) quantum Hall states

%8 expected: formation of
incompressible quantum liquids
(‘atomic quantum Hall states’)
for bosons (fermions) at ultra-
rapid rotation




why are quantum Hall states expected?
- rotation vs. charged particles in B, in 2D

The hamiltonian for N (neutral) bosons
(mass M) in cylindrical trap with radial
and axial trapping frequencies o, and o, ,
rotation frequency Q...
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... IS equivalent to hamiltonian for N
charged particles in magnetic field
B, =2 M Q2 along the z-direction, in a
weakened radial confinement.



why have quantum Hall states not been seen?
- challenging the collective behavior

In a quantum regime, bosons tend to form a collective state —
the BEC. A rotating BEC accommodates the angular momentum
by forming vortices, which order on a triangular lattice.
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phases of rotating bosons

quantum melting of the

vortex lattice at v, =6 - 10
Cooper-Wilkin-Gunn;
Sinova-Hanna-MacDonald

3/2 1... 3/42/3 1/2

v=N/N,

incompressible quantum Hall liquids at specific v

- Laughlin, MR and RR states at v = k2

- hierarchy (CF) states at v =p/(p+1)
Cooper-Wilkin-Gunn; Regnault-Jolicoeur; ...



experiments in rapid rotation regime

Schweikhard et al (JILA), Bretin et al (ENS)

* reaching the 2D regime -- ok
- reaching the Lowest Landau Level (LLL) -- ok

- reaching critical rotation:
- achieved: up to 300 vortices, Q/w, = 0.99...,
- need to reduce filling factor from v ~ 500
tov,~6-10

* temperature needs to be below the scale g,
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which is of order 1 — 5 nK.



multi-layer set-up for atomic qH states

proposal (Cornell, Dalibard)

- achieve desired rotation rates by slicing up a cigar-
shaped, rotating condensate with the help of an optical
lattice potential

- slicing up into N, layers enhances the filling
with a factor N, . Example

=5000, N,=100, N, =50: v=50 - v =1

[ state of the art (V. Schweikhard) :
v = 100 achieved; problems with spin-down upon

imposing optical lattice ]



detecting atomic gH states




detecting electronic quantum Hall states
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fractional gH state

Y(z,,zy) = H(Z,- _Zj)3

i<j

Magnetic field (T)
integer qH state “hierarchy’ state

Y(z,nzy) = H(Z,- -z;)

i<j




detecting atomic gH states

many ideas :
- density correlations after expansion
- edge modes
- vanishing of condensate fraction
- (fractional) braiding of bulk excitations

we propose to detect atomic quantum Hall states
via characteristic density profiles, in single-layer or
multi-layer geometry

N. R. Cooper, F.J.M. van Lankvelt, J.W. Reijnders, KjS,
cond-mat/0409146; Phys. Rev. A72 (2005) 063622



density profiles for atomic qH states

in the presence of confining potential, there will
be non-uniform density of the quantum liquid;
to minimize the energy, the system will phase
separate into patches with incompressible
quantum Hall liquids

for a single layer, this gives a 2D landscape with
steps; a multi-layer system will have such
landscapes in each individual layer



single layer density profiles

local filling fraction

1 "~ 1 T 1 1 " 1 | density profiles of
single-layer atomic
quantum Hall states
in external quadratic
potential
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single layer density profiles (ll)

local filling factor
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phases of the multi-layer system

H Mott correlated
qhase multi-layer
P states ?
@ ot vtme" - tunneling
| |
weakly coupled vortex
single layer qH lattice
states




melting of the vortex lattice in multi-layer set-up

limit ——

N_L=8,N_V=10 - |
N_L=8,N_ V=100 -

N_L=50,N_V=10
N_L=50,N_V=100 -

for
N = 5000, N =100, N,=50
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multi-layer set-up and detection

.



multi-layer set-up and detection

slicing w/t U
optical lattice
] s

| Laughlin state, v =1/2

| hierarchy state, v =2/3



multi-layer set-up and detection

slicing w/t U
optical lattice
expansion
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| Laughlin state, v =1/2 density profile p(r)

| hierarchy state, v =2/3



cusps in radial density profile after expansion

as remnants of the steps of the density profile in
individual layers, the radial profiles after expansion
shows cusps
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cusps in radial density profile after expansion

cusps become more pronounced
if radial and/or axial confinement
are steeper than quadratic.
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Summary: multi-layer set-up and detection

of atomic quantum Hall states

slicing w/t

optical lattice
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expansion

U]

| Laughlin state, v =1/2

| hierarchy state, v =2/3
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density profile p(r)
with characteristic

features (cusps)



