Beyond the Standard Model Strong Interactions: From QCD to LHC

Francesco Sannino

Napoli, Gennaio 2007

In Fiction Books

Forces of Nature

Present situation

- Standard model of Particle Interactions
- Standard Model for an 'Inflationary' Universe.
- Both are incomplete.

Facts

Low Energy Effective Theory

....is not so standard

- Origin of Mass of weak gauge bosons, quarks and leptons is unknown.
- Strong Interactions are not fully understood/explored.
- Unnaturally small Neutron Electric Dipole Moment Strong CP problem:

New Challenges from Cosmology.

• Dark Energy/Matter

Mass: A common Problem!

- Mechanism for providing a mass for all of the known particles.
- Still this would not account for the whole matter (Dark Matter) in the Universe.

Cosmological Constant Problem

• Why is empty space so nearly empty?

 ρ_{vac} <10⁻⁴⁶GeV ⁴ \approx 10⁻²⁹ g cm⁻³

• Standard Model sets the scale to:

 ρ_{sm} >108GeV 4

• Mismatch by 54 order of magnitude!!

Let there be Mass

The Mechanism in SM

$$V = \frac{\lambda}{2} \left[|\phi|^2 - \frac{v^2}{2} \right]^2$$

$$\phi \rightarrow [0, v+H] / \sqrt{2}$$

$$v = 1 / \sqrt{\sqrt{2}G_F} \approx 246 \text{ GeV}$$

$$M_H^2 = \lambda v^2$$

Gauge Boson-Masses

$$D_{\mu}\phi = \left(\partial_{\mu} - igW_{\mu}^{a}\tau^{a} - i\frac{1}{2}g'B_{\mu}\right)\phi$$
$$D^{\mu}\phi^{\dagger}D_{\mu}\phi \longrightarrow M_{W} = gv/2 = M_{z}\cos\theta_{w}$$
$$e = g\sin\theta_{w} \qquad \cos\theta_{w} = g/\sqrt{g^{2} + {g'}^{2}}$$

Quark-Masses

$$-\lambda_d \bar{Q}_L \cdot \phi d_R \quad \longrightarrow \qquad m_d = \lambda_d \, v / \sqrt{2}$$

SM Higgs: Current Status:

hep-ex/0509008

Can we already test new extensions of the Standard Model?

Electroweak Precision Measurements

Kennedy, Lynn, Peskin-Takeuchi, Altarelli-Barbieri, Bertolini-Sirlin, Marciano-Rosner,..:

 $\Pi_{XY}^{\mu\nu}(q^2) = \Pi_{XY}(q^2)g^{\mu\nu} + \cdots$

S - T

S-measures the left - right type current correlator

$$S = -16\pi \frac{\Pi_{3Y}(m_Z^2) - \Pi_{3Y}(0)}{m_Z^2}$$

T-measures deviations from

 $M_W^2 = \sin^2 \theta_w M_Z^2$

$$T = 4\pi \frac{\Pi_{11}(0) - \Pi_{33}(0)}{s_W^2 c_W^2 m_Z^2}$$

Dutta, Hagiwara and Yan ph/0603038.Weaken constraints

The Higgs Mechanism in Nature

Superconductivity

Macroscopic-Screening Non-Relativistic

SM-Screening Relativistic

 $T < T_c$

 $n_s = \text{Density SC electrons}$

$$|\psi|^2 = n_C = \frac{n_s}{2}$$

$$|\phi|^2 = \frac{v^2}{2}$$

Hidden structure

????

The Higgs-Kibble Mechanism

How does it work?

Imagine you are at Hollywood waiting for your favorite Star (say Brad Pitt = quark, weak gauge boson) to appear.

When Brad appears people start gathering around.

People clusters around Brad and he will move slowly.

Imagine a world without the Higgs Mechanism

Profound Changes in Nature

- Proton outweighs neutrons
- No hydrogen atom
- Infinite Bohr Radius
- No chemistry, no stable composite structures like solids, liquids..

Scale of New Physics!

WW scattering

S-wave amplitude:

$$A_0 = \frac{G_F}{8\pi\sqrt{2}} \qquad G_F = \frac{g^2}{4\sqrt{2}M_W^2}$$

 $\simeq 1.14 \times 10^{-5} \mathrm{GeV}^{-2}$

Unitarity:

$$\Re \left[A_0 \right] \le \frac{1}{2} \quad \longrightarrow \quad s \le 4\pi \sqrt{2}/G_F \sim (1.2 \text{ TeV})^2$$

$$A_0' = -\frac{G_F}{8\pi\sqrt{2}} \ s$$

Theorem:

Unitarity requires the existence of a weakly coupled Higgs particle or New Physics around the Terascale!

Elementary Higgs:

Trivial and Non-natural

Trivial theory

Perturbative Higgs Window

Naturality

Small parameters stay small under radiative corrections.

Is the Higgs Natural?

No custodial symmetry protecting a scalar mass.

$$M_{HR}^{2} = R \times M_{HB}^{2} + \Lambda^{2}$$

A mass appears even if *ab initio* is set to zero!

Hierarchy between the EW scale and the Planck Scale.

No!

Natural Scalars

Exact Super Symmetry:

Fermions \leftrightarrow Bosons

Fermion's custodial symmetry protects the Bosons

Observe: susy partners

Composite Scalar:

Recall Superconductivity

Substructure resolved at scale Λ_s

$$M_{HR}^{2} = R \times M_{HB}^{2} + \Lambda_{S}^{2}$$

Observe: New Bound States

Quasi Goldstone Boson:

Protected by spontaneously broken global symmetries.

Near Continuous Quantum Phase Transition

$$M_H^2 = \Lambda^2 (t_c - t)^{\nu}$$

Zero-temperature Bose – Einstein Condensation Lorentz symmetry is broken.

Chiral Phase Transition at zero temperature. Lorentz symmetry is intact.

Electroweak Symmetry Breaking

@

LHC

Progress in Strong Interactions

New Limits for Strongly Interacting Theories

We have provided a link between Confinement and Chiral Symmetry.

We have unveiled the Phase Diagram of Higher Dimensional Representations

Novel Limit

Ryttov and F.S. th/0509130

Phase diagram for theories with fermions in the Fundamental (Black-gray), 2A (Blue-light blue), 2S (Red-pink), Adjoint (Green - light green).

For N=4, 6 and 8 also the 3-index antisymmetric has a nontrivial phase diagram.

Technicolor

New Strong Interactions at ~ 250 GeV [Weinberg, Susskind]

Natural to use QCD-like dynamics.

 $SU(N)_{TC} \times SU(3)_C \times SU_L(2) \times U_Y(1)$

$$\langle Q^f \tilde{Q}_{f'} \rangle = \Lambda_{TC}^3 \qquad \Lambda_{TC} \simeq 250 \ GeV$$

Minimal-Walking/Working-Theory

$$T_L^a = \begin{pmatrix} U^a \\ D^a \end{pmatrix}_L, \quad U_R^a, \quad D_R^a \qquad a = 1, 2, 3$$

$$\mathcal{L}_L = \left(\begin{array}{c} N\\ E\end{array}\right)_L \qquad N_R \qquad E_R$$

Universal critical number of flavors in the adjoint: Nfc=2.075 Within 68% Confidence Level of EWPD Sannino-Tuominen $\mathcal{N} = 4$ super Yang-Mills

 $M_H = 115 \text{ GeV}$ (solid line), 150 GeV (dashed line) and 200 GeV (dotted line)

Dark Side of the 5th Force

Nussinov Barr, Chivukula and Farhi Gudnason, Kouvaris and F.S.

$$\frac{\Omega_{TB}}{\Omega_B} = \frac{TB}{B} \, \frac{m_{TB}}{m_p} \; ,$$

 m_{TB} is the mass of the LTB

Technibaryon, DD (specific choice of the hypercharge)

Universe Charge Neutrality. Chemical Equilibrium Taking care of the Sphaleron Processes

1st Order

$$-\frac{TB}{B} = \sigma_{DD} \frac{22 + \sigma_{\nu'}}{9(22 + 2\sigma_{DD} + \sigma_{\nu'})} \left[3 + \frac{L}{B} + \frac{1}{\sigma_{\nu'}} \frac{L'}{B}\right]$$

$$\sigma_i = \begin{cases} 6\mathscr{F}\left(\frac{m_i}{T^*}\right) & \text{for fermions }, \\ 6\mathscr{G}\left(\frac{m_i}{T^*}\right) & \text{for bosons }, \end{cases}$$

$$\mathscr{F}(z) = \frac{1}{4\pi^2} \int_0^\infty dx \, x^2 \cosh^{-2}\left(\frac{1}{2}\sqrt{x^2 + z^2}\right)$$
$$\mathscr{G}(z) = \frac{1}{4\pi^2} \int_0^\infty dx \, x^2 \sinh^{-2}\left(\frac{1}{2}\sqrt{x^2 + z^2}\right)$$

2nd Order

$$-\frac{TB}{B} = \frac{\sigma_{DD}}{3(18 + \sigma_{\nu'})} \left[(17 + \sigma_{\nu'}) + \frac{(21 + \sigma_{\nu'})}{3} \frac{L}{B} + \frac{2}{3} \frac{(9 + 5\sigma_{\nu'})}{\sigma_{\nu'}} \frac{L'}{B} \right]$$

Dark Side of the 5th Force

Amount of LTB dark matter as function of LTB mass with L' = 0, L = B

Technibaryon, DD

Gudnason, Kouvaris and F.S. ph/0608055

Unification

Technicolor assisted Unification

Gudnason, Ryttov, F.S.

Perfecting Unification

Just add a gluino and a wino!

Gudnason, Ryttov, F.S. ph/0612230

Predictions and Outlook

- $M_H \sim light$
- Fourth Family of Leptons around the Z mass
- 6 light scalars will be observed.
- Electroweak baryongenesis. Possible Strongly First order phase transition.
- Lattice Simulations are running!
- DM candidate-component
- Perfect Unification! MWT + adjoint fermions

Technicolor is the renaissance of Strong Interactions

The School of Athens - fresco by Raffaello Sanzio