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Summary of the talk

◮ Introduction: black-hole entropy

◮ BPS black-holes in N = 2 supergravity

◮ From black-holes to topological strings: Ooguri-Strominger-Vafa (OSV)

conjecture

◮ Checking the conjecture: instanton counting in N = 4 topological SYM4

and q-deformed YM2

◮ Results in collaborations with N. Caporaso (MIT), M. Cirafici (Heriot-

Watt), M. Marino (CERN), S. Pasquetti (Parma), D. Seminara (Firenze),

R. J. Szabo (Heriot-Watt), A. Tanzini (SISSA)
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Black-hole’s Thermodynamics

Laws Thermodynamics Black-Hole

Zeroth Law
T constant throughout body

in thermal equilibrium

κ constant over horizon of

stationary black hole

First Law dU = TdS+work terms dM =
κdA

4π
+ ΩHdJ

Second Law δS ≥ 0 in any process δA ≥ 0 in any process
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Attempt of a Dictionary

Possible Dictionary:

A (area) 7→ S(entropy) κ

(
surface

gravity

)

7→ kBT (temperature)

Notice that the dimensions are wrong

L2
L9999K adimensional acceleration L9999K energy

There is no classical constant or combination of classical constants to

restore the right dimensions. But if we borrow ~ from Q.M., the following

combinations possess the right dimensions

c3A

G~
︸︷︷︸

S

~κ

c
︸︷︷︸

kBT

We need Q.M. to complete the dictionary
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Hawking Temperature (with a little trick)

Consider the Schwarzschild black-hole

ds2 = −
(

1 − 2GM

c2r

)

c2dt2 +

(

1 − 2GM

c2r

)−1

dr2 + r2dΩ

Let us look at the near-horizon geometry. Setting x = 2
√

(r − rg)rg and

rg = 2GM/c2, we can write for small x

ds2 = −c2x2

4rg
dt2 + dx2

︸ ︷︷ ︸

Rindler space

+ r2
gdΩ

︸ ︷︷ ︸

S2

+sublead.

To investigate a thermal field theory in this background, we exploit the usual

trick to rotate in Euclidean space-time t 7→ iτE

ds2 =
c2x2

4r2
g

dτ2
E + dx2

︸ ︷︷ ︸

cone

+ r2
gdΩ

︸ ︷︷ ︸

S2

+sublead.
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This geometry has generically conical singularity for x = 0. However there is

no reason for a conical singularity at x = 0 because the Minkowskian geometry

is regular there.

We can avoid the apex of the cone requiring that

c

2rg
× τE is periodic of 2π

Namely

τE is periodic of
4πrg

c
=

2πc

κ

But in the path-integral approach a system with a periodic time means a

system at finite temperature. The period of the time is identified with β~,

thus

kBT =
~κ

2πc
⇒ S =

c3A

4G~
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But

In statistical thermodynamics S = log(Nmicrostates)
⇓

What are black-hole’s microstates?
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Extremal black-holes

Consider the Reissner-Nordstrom black-hole

ds2 = −
(

1 − 2M

r
+

Q2

r2

)

dt2 +

(

1 − 2M

r
+

Q2

r2

)−1

dr2 + r2dΩ

This BH possesses an inner and an outer horizon, we shall consider the limit

when these two horizons coincide:

M = |Q| (Electric force = Gravitational force) ⇒ TH = 0

In isotropic coordinates, where the horizon is located at r = 0, the metric

(for M = |Q|) takes the form

ds2 = −
(

1 +
Q

r

)−2

dt2 +

(

1 +
Q

r

)2
(
dr2 + r2dΩ

)
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This BH already displays some of the general properties we are interested in.

For large r, the metric is asymptotically flat

ds2 = −dt2 + dr2 + r2dΩ (Minkowski space)

For small r (near horizon metric)

ds2 = −Q2

r2
dt2 +

r2

Q2
dr2

︸ ︷︷ ︸

AdS2

+ Q2dΩ
︸ ︷︷ ︸

S2

(AdS2 ⊗ S2 : Bertotti space)

(Solution of Eins.-Maxw. system with covariantly constant e.m. field strength)

Both the metrics possess two Killing spinors, namely they can be

considered as a vacuum with N = 2 supersymmetry

⇓
Extremal RS BH as a soliton interpolating between 2 SUSY vacua

This BH preserve 1/2 of the supersymmetry. The complete supersymmetry is

restored only at r = 0 (Bertotti) and at r = ∞ (Minkowski).
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Embedding in N = 2 supergravity

In order to investigate this family of supersymmetric BHs, we need to recall

some basics fact on N = 2 supergravities, whose bosonic Lagrangian is

S =

∫ √−gd4x(2R + ImNLMFL
µνFM |µν + ReNLM ǫµνρσFL

µνFM
ρσ +

1

6
gIJ∂µφI∂φJ)

Field Content:

◮ Gravity: gµν (graviton) ψI
µ (2 gravitinos) Aµ graviphoton

◮ nv vector multiplets XL : AI
µ λI φI ;

◮ nH hypermultiplets (Luckily they are spectators, we shall forget about them!).

The nice feature of N = 2 supersymmetry is that the interaction of the vector

multiplets with gravity can be encoded just in one holomorphic function the

prepotential F (XI) (homogeneous function of degree 2). XI can be essentially

identified with the scalars in the vector multiplets. We shall also define the

potential FL = ∂LF (X).

L. Griguolo 10



Napoli, Nov. 2006

In this setting our BPS black-hole solutions are those saturating the bound

|Z|∞ = M

where |Z|∞ is the central charge appearing in the SUSY algebra and M the

mass of the BH. Here

Z∞ = Z|r→∞ with Z = (qLXL − FLpL)eK/2(X,X̄)

(qL, pL) are the electric and the magnetic charges carried by the BH. The

function K is defined as

K = log[i(X̄LFL − XLF̄L)]

K is the Kahler potential.

Notice that Z might depend on the value of the scalars at infinity!
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Computing the entropy for this family of N = 2

black-holes: Attractor Mechanism

Recall the ansatz for the metric

ds2 = −e2U(r)dt2 + e−2U(r)(dr2 + r2dΩ).

The anti-selfdual part of the gauge field strength is

F I− =
1

2
[pI − i[ImN ]IJ(qJ − [ReN ]JLpL)]

[

sin θdθ ∧ dφ − i
e2U

r2
dt ∧ dr

]

The function U(r) and the scalars XI obey to the following equations

r2 dU(r)

dr
= −|Z|eU ⇒ dµ

dr
=

|Z|
r2

r2 dXI

dr
= −2eUgij̄∂j̄ |Z| ⇒ µ

dXI

dµ
= −gIJ̄∂J log |Z|2

where µ = e−U .
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◮ The second equation looks like an equation for the RG. When we approach

the horizon, gtt = eU → 0 and consequently µ = e−U → ∞. This suggests

that XI are attracted to the minima of the potential log |Z|2. In other

words the scalar field on the horizon are fixed by the equation

∂I |Z| = 0 (Attractor Equations)

only in terms of the charges.

◮ The first equation teaches us that e−U(r) has the form

µ = e−U(r) =
|Z0|
r

where Z0 = Z|r=0.

For the whole family of these black-holes, the near horizon metric is

ds2 = −|Z0|2
r2

dt2 +
r2

|Z0|2
dr2 + |Z0|2dΩ
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We are ready to compute the entropy for this family of black-holes

SBH =
A

4
=

1

4
4π lim

r→0
r2e−2U = π|Z0|2

Since the attractor equation determines the value of scalars at the horizon

just in terms of the charges, the entropy will be a function only of the charges

as well: attractor mechanism

This property is fundamental if we want to find a microscopical interpretation

of the entropy for N = 2 BPS black-holes.
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First hint to OSV conjecture

Actually with some manipulations, we can rewrite the Attractor Equations

and the entropy in a form that is more natural for the future developments:

qI = Re[FI ] pI = Re[XI ] (Attractor Equations)

SBH =
iπ

4
(X̄IFI − XI F̄I) (Entropy)

The second equation states that XI = pI + i
π φI , while the first one states

that qI = (FI + F̄I)/2. Then using the homogeneity property XIFI = 2F

SBH =
πi

4
(XIFI − X̄I F̄I) +

1

2
φI(FI + F̄I) = F + φIqI

with qI = − ∂F
∂φI

and F =
πi

2
[F (X) − F̄ (X̄)]

The entropy is the Legendre Transform of the F with respect to φI .
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This observation opens an interesting connection between the BH entropy

and the imaginary part of the prepotential F . In fact F has a natural and

simple interpretation at level of compactification of type II superstrings on

Calabi-Yau.

F is the genus zero partition function F0 of the topological string theory on

the Calabi-Yau manifold on which we compactify the superstrings to get the

N = 2 theory in 4 dimensions (to be precise F = −iF0/π).

At the microscopic level F0 counts the leading contribution to the number of

bound states of branes that we need to build the black-hole.

Notice that the topological string is not directly related to the partition

function of a black-hole with fixed magnetic and electric charges. It is rather

related to an ensamble of BHs with fixed magnetic charges, but free electric

charges. What is fixed is the chemical potential associated to the electric

charges.

L. Griguolo 16



Napoli, Nov. 2006

Higher derivative contributions

Actually the above analysis can be improved to include string corrections to

the entropy.

At the level of supergravity, this means that we can include higher derivative

terms in the action and try to compute the new BH solutions and their

entropy.

String loops corrections are not obviously easy to compute. There is however

a nice class of amplitudes that generates at supergravity level a peculiar set

of terms: the F-terms
∫

d4xd4θF (X, W 2) =
∞∑

g=0

∫

d4xd4θ(WabW
ab)gFg(X),

where Wab is the Weyl superfield. This gives origin to terms such R2T 2g−2

where T is the graviphoton field strength.

L. Griguolo 17



Napoli, Nov. 2006

These terms originate, at the level of type II superstring compactified on CY,

from amplitudes of the type two gravitons into graviphotons. The index g

here denotes the genus expansion.

These amplitudes are special. They are “topological” and depend only on the

moduli space of the CY we have compactified on. They can be computed in a

simpler string theory called “Topological String Theory”: N = (2, 2) twisted

sigma models coupled to topological gravity with CY3 target space.

Here

F (X, W 2) =

∞∑

g=0

(WabW
ab)gFg(X)

is a generalization of the prepotential, which is the first term of its expansion.

Each coefficient Fg has an interpretation at the level of topological strings!

Fg is the genus g free energy of the topological string theory whose target space

is the CY under consideration
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On the other hand we expect the entropy of a BPS black-hole to be of

topological nature and thus to receive contributions only from terms that

respect this property.

Using the new lagrangian with the insertion of the F -terms, we can repeat the

analysis for the BPS black-holes step by step. However we miss an ingredient

How do we compute the entropy for a theory of gravity whose lagrangian is

an arbitrary polynomial of the Riemann?

The answer was provided by Wald who has reinterpreted the Hawking entropy

as a generalized Noether charge. In this formulation, the entropy can be

computed for any gravity theory admitting BH solutions.
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We can write a corrected set of attractor equations

C2W 2 = 256

pL = Re[CXL] qL = Re[C∂LF
(
XL, 256/C2

)
]

Here C is a scaling field, that in principle can be gauged away with a Kahler

transformation. Using the Wald’s formula the corrected entropy is

SBH =
πi

2
(qLC̄X̄L − pLC̄FL)

︸ ︷︷ ︸

OLD ENTROPY

+
π

2
Im[C3 ∂CF ]

︸ ︷︷ ︸

CORRECTION

If we define, as before, the function

F(φ, p) = −πIm[C2F (XL, 256/C2)]

the entropy is given by

SBH = F(φ, p) − φL ∂

∂φL
F(φ, p) with qL = − ∂

∂φL
F(φ, p)
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In other words, F(φ, p) is the Legendre-Transform of SBH with respect to the

chemical electric potential φL. Posing

ZBH = exp(F(φ, p)),

the partition function defined in this way can be interpreted as follows

ZBH =
∑

qL

Ω(pL, qL)
︸ ︷︷ ︸

BH′s with (pL,qL)

e−φLqL .

It is a mixed partition function: microcanonical for the magnetic charge and

grand canonical for the electric charges.

By expanding F(φ, p) we can find the following relation with perturbative

topological string free energy

F(φ, p) = Ftop + F̄top = 2ReFtop,

namely

ZBH = exp(Ftop + F̄top) = |Ztop|2 OSV Conjecture
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Topological string free energy on a Calabi-Yau threefold X has the following

structure (in IIA case): it depends on the Kahler parameters tL, describing

the Kahler moduli of X, and on the string coupling gs

FX =

∞∑

g=0

g2g−2
s Fg(t)

with

Fg(t) = FClass.
g (t) +

∑

n∈H2(X,Z)+

e−n·t Ng
n ,

Ng
n ∈ Q are the infamous Gromov-Witten invariants of X, at genus g.

On the other hand ZBH depends on the charges pL and the chemical potential

φL: the dictionary is

tL = 2πi
pL + iφΛπ

p0 + iφ0/π
, gs = ± 4πi

p0 + iφ0/π
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Just a formulation a bit more precise

Consider Type IIA superstring theory on X × R3,1, X is a Calabi-Yau

threefold.

N=2

BPS Black-Hole

Charges

of the B.H.

⇔

⇔

D6, D4, D2, D0 branes

wrapping over the cycles of X

D6,D4 magnetic charges

D2, D0 electric charges

One can define a partition function for a mixed ensemble of N = 2 BPS black

hole states by fixing the magnetic charges Q6 and Q4 and summing over the

D2 and D0 charges with fixed chemical potentials φ2 and φ0 to get

ZBH(Q6, Q4, φ2, φ0) =
∑

Q2,Q0

Ω(Q6, Q4, Q2, Q0) e−Q2φ2−Q0φ0
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Ω(Q6, Q4, Q2, Q0) is the contribution from BPS states with fixed D-brane

charges. The conjecture states that

ZBH(Q6, Q4, φ2, φ0) =
∑

Q2,Q0

Ω(Q6, Q4, Q2, Q0) e−Q2φ2−Q0φ0 =
∣
∣Ztop(gs, ts)

∣
∣
2

,

or conversely

Ω(Q6, Q4, Q2, Q0) =

∫

dφIe
QIφI |Ztop|2

gs =
4π i

i
π φ0 + Q6

, ts = 1
2 gs

(
− i

π φ2 + Q4

)

Ztop(gs, ts) is the (A-model) topological string partition function.

◮ Although magnetic and electric charges are treated differently, the

formulae must be invariant under electromagnetic dualities!

◮ Actually the sum defining the partition function of the BH is divergent

(instability of the mixed ensemble). Integration contour!

◮ ZBH is formally periodic in iφI due to charge quantization. Ztop is not!
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Instanton Counting N=4 (twisted) Y M4

Checking the OSV conjecture requires to find situation where

◮ ZBH is computable from the microscopic theory of branes

◮ Ztop is known at any order in the genus expansion.

For BPS black-holes, the first step is sometimes equivalent to evaluating an

observable in the twisted SYM theory leaving on a brane. Here, following

Aganagic, Ooguri, Saulina and Vafa (AOSV), we shall consider the simplified

situation where D6 branes are absent, but we have D4, D2 and D0-branes.

We shall take a non-compact Calabi-Yau containing a 4-cyle of the type

C4 = O(−p) −→ Σg

where D4 branes wrap. D2-branes wrap the Riemann surface Σg.
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The number of D4-branes is fixed to be N and one should count the ensemble

of bound states on it. The complete CY threefold is then taken

X = O(2g − 2 + p) ⊕O(−p) −→ Σg

The relevant gauge theory on the N D4-branes is the N = 4 topologically

twisted U(N) Yang-Mills theory on C4 in the presence of chemical potentials

for D2 and D0-branes. This is simulated by turning on the observables

Sc =
1

2gs

∫

C4

Tr
(
F ∧ F

)
+

θ

gs

∫

C4

Tr
(
F ∧ K

)

where F is the Yang-Mills field strength and K is the unit volume form of Σg.

The chemical potentials φ0, φ2 and gauge parameters gs, θ are related by

φ0 =
4π2

gs
, φ2 =

2π θ

gs
.
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This means that the charges q0, q2 of the D0 and D2 branes are

q0 =
1

8π2

∫

C4

Tr
(
F ∧ F

)
, q2 =

1

2π

∫

C4

Tr
(
F ∧ K

)
.

Obtaining ZBH is therefore equivalent to computing

ZBH =
〈

exp
[

− 1

2gs

∫

C4

Tr
(
F ∧ F

)
− θ

gs

∫

C4

Tr
(
F ∧ K

)]〉

= ZN=4 .

The partition function ZN=4 has an expansion of the form

ZN=4 =
∑

q0,q2

Ω(q0, q2; N) exp
(

−4π2

gs
q0 −

2π θ

gs
q2

)

where Ω(q0, q2; N) is under suitable assumptions the Euler characteristic of

the moduli space of U(N) instantons on C4 in the topological sector labelled

by the Chern numbers q0 and q2.

Counting of BH microstates is equivalent to an instanton counting in the

N = 4 topological gauge theory!
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q-Deformed Y M2

A fundamental observation due to Vafa is that the N = 4 instanton counting

can be effectively reduced in this case to the partition function of a two-

dimensional field theory, under suitable assumptions.

This is achieved by introducing certain massive perturbations that localize the

theory to U(1)-invariant modes and reduce the model to an effective gauge

theory on Σg. The topological nature of the theory makes the result actually

independent of the massive deformations

W = mUV + ωT 2

and one can send the masses to infinity obtaining the localization.

Remark: this is a clever trick! But recently new results from brute force

instanton counting on C4 have been derived...
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The localization is not simply a dimensional reduction because the non trivial

nature of the line-bundle O(−p) generates an extra term in the 2D effective

action

Sp = − p

2gs

∫

Σg

Tr Φ2 K ,

where

Φ(z) =

∮

S1
z,|u|=∞

A

is the holonomy of the gauge field A around a circle at infinity in the fiber

over the point z ∈ Σg. The relevant two-dimensional action becomes

SYM2
=

1

gs

∫

Σg

Tr
(
Φ F

)
+

θ

gs

∫

Σg

TrΦ K − p

2gs

∫

Σg

Tr Φ2K.

This is just Y M2 theory on the Riemann surface Σg..but not exactly!
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The new ingredient is that the scalar field Φ is periodic

It parameterizes the holonomy of the gauge field at infinity. The periodicity

affects the path integral measure and consequently the quantum theory has

an interpretation as a q-deformation of two-dimensional Yang-Mills theory.

The partition function is

ZN=4 = Zq
YM =

∑

R

dimq(R)2−2g q
p
2

C2(R) e i θ C1(R)

Let us compare it with the usual Y M2

ZYM =
∑

R

dim(R)2−2g e
g2A
2

C2(R) e i θ C1(R).

In both cases, R runs through the unitary irreducible representations of the

gauge group U(N), C1(R) and C2(R) are respectively its first and second

Casimir invariants.
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The difference is in the dimensions: in the usual Y M2 we have the standard

dimension

dim(R) =
∏

1≤i<j≤N

Ri − Rj + j − i

j − i

while in the other case we have quantum dimension

dimq(R) =
∏

1≤i<j≤N

[
Ri − Rj + j − i

]

q
[
j − i

]

q

=

=
∏

1≤i<j≤N

[
q(Ri−Rj+j−i)/2 − q−(Ri−Rj+j−i)/2

]

[
q(j−i)/2 − q−(j−i)/2

]

where q = e−gs . Clearly as gs → 0 the quantum dimension goes smoothly

into the classical one.

We have therefore:

ZBH = ZN=4 = Zq
YM

Topological strings should emerge at large charges (namely large N)!
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Nicely at large N , Zq
YM undergoes a Gross-Taylor like factorization into

∞∑

l=−∞

∑

R1,...,R2g−2

ZYMq,+
R1,...,R2g−2

(ts + p gsl) ZYMq,−
R1,...,R2g−2

( t̄s − p gsl)

◮ ZYMq,+
R1,...,R2g−2

(ts + p gsl) is the perturbative A-model topological string

amplitude on Xp with 2g − 2 stack of D-branes inserted into the fibers: it

is an open string amplitude. This partition function has been computed

recently by Bryan and Pandharipande.

◮ ZYMq,+, ZYMq,− are then glued together to give a closed string amplitude.

◮ The extra sum over the integer l originates from the U(1) degrees of

freedom contained in the original gauge group U(N).

◮ Since the factorization as well as the perturbative topological string

amplitude appear in the large N expansion while Zq
YM is non-perturbative

in N , ZBH has been proposed to be the non-perturbative completion of

Ztop.
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Summary of the different relations

On the Calabi-Yau Xp

Xp = O(2g − 2 + p) ⊕O(−p) −→ Σg

we have the following chain of relations

(Counting BH Microstates)          (Counting N=4 Instantons)

Z N=4Z BH Z qYM
2

= =

Z top
Z| | ||2   2

Perturbative Limit

OSV factorization
GT

1/N expansion

Other relations: qY M2
D=2

⇔ Chern − Simons on Siefert manifolds
D=3
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Results

◮ We have explored the phase structure of the q-deformed Y M2 in the large

N -limit. On S2 for p > 2 we have found that the theory has a phase

transition at a critical value of the Kahler parameter t

tc = p log(sec2(π/p))

separating a weak from a strong coupling region.

– for t < tc the theory describes a topological string on the resolved

conifold, but no sign of factorization

– for t > tc we have found a double-cut solution of the relevant matrix

model describing this regime. The solution organizes in terms of the

correct modular parameters and the desired factorization appears: it

exactly parallels the DK transition of usual Y M2
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◮ The recovery of the correct Calabi-Yau geometry can be tested in a

simpler manner by investigating a more fundamental block: the chiral

version of our theory. In this case one can prove that the chiral version

of q-deformed Y M2 reproduces, in the strong coupling phase, the correct

topological string on

Xp = O(p − 2) ⊕O(−p) −→ P1

Our matrix-model technique leads to new exact results for topological

string amplitudes on Xp at any genus

– We derived in closed form the Gromov-Witten invariants generating

functional and the mirror map

– We established the critical behavior of topological strings on Xp around

its transition point: it is the same universality class of 2D gravity
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◮ We clarified the relationship between instanton counting in N=4 topologi-

cal Yang-Mills theory (extending the analysis on a generic four-dimensional

toric orbifold) and q-deformed Yang-Mills theory (on the blowups of the

minimal resolution of the orbifold singularity)

ZN=4 ≃ Zq
YM

We described explicitly the instanton contributions to the counting of

D-brane bound states which are captured by the two-dimensional gauge

theory.: the fractional instantons. We derived an intimate relationship

between qY M2 and Chern-Simons theory on generic Lens spaces, and use

it to show that the correct instanton counting is only reproduced when

the Chern-Simons contributions are treated as non-dynamical boundary

conditions in the D4-brane gauge theory

◮ We extended these analysis to Σg = T2 studying the circle of relations on

the CY threefold

Xp = O(p) ⊕O(−p) −→ T2
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q-deformed Y M2 on S2

In the case the CY threefold is X = O(−2+p)⊕O(−p) → P1 the q-deformed

YM2 takes a particular simple form

Zq
YM =

∑

R

dimq(R)2−2g q
p
2

C2(R) e i θ C1(R) =

=
1

N !

∑

ni∈Z

e− gsp
2

PN
i=1

n2
i + i θ

PN
i=1

ni

∏

1≤i<j≤N

sinh2
(

gs

2 (ni − nj)
)

As gs → 0 the quantum dimension goes smoothly into the ordinary one. To

recover the undeformed partition function, one has also to send p → ∞ with

gsp = a = g2A = fixed

The q-deformed theory can be seen as a peculiar a/p expansion in the ordinary

theory, allowing us to carry some standard results about localizations to qYM2
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Large N-Phase Transition: Casimir Picture

Recall that the partition function of the q-deformed gauge theory on S2 is

given by

Zq
YM(gs, p) =

∑

n1,...,nN ∈Z

ni−nj≥i−j for i≥j

e− gsp
2

PN
i=1

n2
i

∏

1≤i<j≤N

sinh2
(

gs

2 (ni − nj)
)

.

The ordering of the integers ni keeps track of the their meaning in terms of

Young tableaux labels and highest weights. Now to take the large N limit we

proceed as usual. We keep fixed

t = gsN as N → ∞

We also introduce also a second parameter which is obviously fixed in the

limit

a = gsNp.

It plays the role of the area of S2 in the Y M2 language.
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When N is large, xi = i/N becomes continuous and we can introduce a

distribution function ρ(x) for the Young Tableaux. The partition function in

the large N -limit is then

Zq
YM(t, a) = exp

(
N2Seff (ρ)

)

with
Seff (ρ) = −

Z

dxdyρ(x)ρ(y) log

„

sinh

„

t

2
(x − y)

««

+
a

2

Z

dxρ(x)x
2

The distribution function is fixed by the requirement of minimizing the action

and satisfies the following saddle-point equation

a

2
x =

∫

ρ(y) coth
t

2
(x − y)

whose solution is

ρ(x) =
a

πt
arctan

√

et2/a

cosh2
(

tx
2

) − 1

with x ∈ [−arccosh(e−t2/2a), arccosh(e−t2/2a)]. It is the ”quantum” deforma-

tion of the Wigner distribution.
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However there is an important difference with standard matrix models:

the distribution ρ cannot be arbitrary but it must satisfy the constraint

ρ(x) ≤ 1

Breaking this constraint will imply a phase transition!

This bound can be easily checked and we find

• If p ≤ 2 the bound is never violated

• If p > 2 the bound is always violated when t ≥ tc = p log sec2
(

π
p

)

Thus qYM2 undergoes a phase transition on S2 when p > 2. Our ρ provides

a description holding just in the weak coupling regime. In this regime no

equivalence with |Ztop|2 via OSV conjecture. Over the transition the answer

will become positive. We need a strong coupling analysis (a two-cut solutions

in the matrix model language). But, first, what have we really found in the

weak coupling regime?
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The resolved conifold

Computing the free energy is a tedious (but elementary) exercise. One finds

F(t, a) = − t2

6a
+

π2a

6t2
− a2

t4
ζ(3) +

a2

t4
Li3( e−t2/a) + c(t)

This is easily identified with the genus 0 free energy topological string on the

resolved conifold.

We miss the Calabi-Yau Xp and the modulus square: one strange feature is

that the result does not change substantially with p. This factor simply scales

the Kahler modulus: why do we loose the original geometrical information

encoded in qYM2?

This question can be easily answered if we look at the dual picture: in terms

of instantons (small abuse of language).
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Instanton Picture: CS on Lens Spaces

The original expression for the partition function of qYM2 is arranged as a

strong coupling expansion (e−gspn2

). We want to write it in a way that is

more suitable for the weak coupling expansion: namely to perform a modular

transformation from gs → 1/gs. This can be done and we find

Zq
YM(gs, p) =

1

N !

∑

si∈Z

e− 2π2

gsp

PN
i=1

(si−θ)2 winst
q (s1, . . . , sN ),

where winst
q (s1, . . . , sN ) is given by

1

2

(
2π

gsp

)N

e−
gs(N3−N)

6p

∫ ∞

−∞

dz1 · · ·dzN e− 2π2

gsp

PN
i=1

z2
i

×
∏

1≤i<j≤N

[

cos
(

2 π (si−sj)
p

)

− cos
(

2 π (zi−zj)
p

)]

.

In the weak coupling regime (we shall also consider θ = 0) the theory

is dominated by the trivial vacuum winst
q (0, . . . , 0). All the others are
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exponentially suppressed: this is an instanton expansion of the exact

partition function.

All the non-trivial instanton contributions are nonperturbative in the 1/N

expansion. To detect a possible phase transition study:

R =
winst

q (0, . . . , 0)

e−
2π2N

A winst
q (1, . . . , 0)

This can be done again with matrix model techniques.

• If R ≥ 1 the theory is always in the trivial vacuum

• If R < 1 all the non trivial sectors contribute

We find that R = 1 for:

tc = p log sec2

(
π

p

)

,

which is exactly the transition curve we find in the group theory approach.
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One can plot the log of the above ratio for different values of p and the result

is impressive
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the log of the ratio for p = 1, 2, 3, 4, 5 as a function of t
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This analysis actually explains also why we get always the conifold in the

weak-coupling regime. The instanton representation can be also in fact

arranged as follows

Zq
Y M =

∑

{Nk}

p−1
∏

k=0

θ3

(
2π i p

gs

∣
∣
∣

2π i k
gs

)Nk

Nk!
Zp

CS

(
{Np}

)
.

where Zp
CS({Np}) is the partition function of Chern-Simons on Lens spaces

Lp = S3/Zp = ∂(C4 = O(−p) → P1)

.

In the weak coupling regime it dominates ZCS in the vacua with no flat

connection wrapping around the cycles of Lp. In this case ZCS on Lp is

simply equal to ZCS on S3. It was proven by Gopakumar and Vafa that

ZCS on S3 in the large limit reproduce the resolved conifold via geometric

transition!
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(1900)

1916

Quantum link?

1906
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