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Introduction

History

@ 1900-1926 Quantum Mechanics:
(Planck, Bohr, Heisenberg, Schrddinger,...)

@ 1905, 1915 Special and General Relativity
Einstein

@ ...1950 perturbative Quantum Field Theory
renormalization, scalar fields, fermions

@ UV, IR, convergence problems

@ ...1970 renormalized gauge models
Standard Model, W, Z, Higgs?

@ add Gravity or deform Space-Time

merge general relativity with quantum physics through
noncommutative geometry
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Introduction

Requirements

QFT: Wightman, Symanzik,.... Minkowski-Euclidean, reflection
positivity

Require: Covariance, spectrum condition, locality, vacuum
representation of Lorentz group, scalar, spinor; vector; tensor
fields

renormalization gives a calculus (Connes, Kreimer)

IR, UV, convergence problems

nonperturbative approches, renormalization group, 5— function
Models: Dimension: 1,2 ,3,47?, ...... 10, 11

Supersymmetry, Superstrings,........... Loop Quantum Gravity
Noncommutative Quantum Field Theory!!! (there are relations
among them)
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Space-Time Structure

Space-Time Concepts

in Newton gr., OM, ED, GR, QFT and QG ?

gen. rel.

class. FT
1/c

QFT

G (or 0)

Newton gr.

?, or def. QM

nonrel. QM

Harald Grosse From Quantum Field Theory to Quantum Geometry



Space-Time Structure

History

@ Limited localisation of events in space-time

D > Rss = G/c*hc/\ > G/c*hc/D (1)

gives Planck lenght as a lower bound
Riemann, Schrddinger, Heisenberg, Peierls, Pauli,
Oppenheimer, Snyder, ...

@ 1986 Connes: Noncommutative Geometry
1992 H. G. and Madore: Regularization using nc manifolds
1995 Filk: Feynman rules, Doplicher et al: Free fields
1995.. H.G. and Klimcik, Presnajder
1999 Schomerus: obtains nc models from strings
2000..H. G. and Schweda, Wulkenhaar, nc Gauge models

Harald Grosse From Quantum Field Theory to Quantum Geometry



Space-Time Structure

Strategy

Unification:
Noncommutative

Generd
Relativity

Quantum Field Theory

Approach

© renormalisation of quantum field theories on
noncommutative geometries
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Space-Time Structure

Main ideas

Replace manifold by algebra deform it
keep differential calculus derivations....
Replace fields by projective modules
Replace integrals by traces

@ use renormalized perturbation expansion

Connes, Majid, S.-Jabbari, Landi, Lizzi, Vitale, Szabo,
Dabrowski, Piacitelli, Filk, Doplicher, Fredenhagen, Roberts,
Bahns, Liao, Sibold, Schweda, O"Connor, Madore, Steinacker,
Dolan, Klimcik, Presnajder, Wess, Schupp, Jurco, Aschieri,
Chaichian, Balachandran, Jochum, Gayral, Wohlgenannt,
Gracia-Bondia, Ruiz-Ruiz, Lukierski,Rivasseau, Magnen,
Seiberg, Vignes-Tourneret, Witten, Wulkenhaar, Varilly ......
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Regularization

Regularization

FUzzY SPHERE
expand smooth functions on the sphere:

f(x) = fo +fix' +fix'x) + ...
use generators of su(2)
An=[0]& - &[]
use differential calculus on matrices, integration is trace

i€ RXK

X2 =R2 X/, Xl]=
> XN) X XN = o=

i=1,2,3

embed sequence of algebras....
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Regularization

Regularization

Scalar Field becomes regularized

Snlgl = Tin [XY, ¢'1IXN, @] + m?6Te + A(¢7¢)?
<¢...p>N = %/[d¢]Ne_SN[¢]¢...¢

Quantization of sections of line bundles through sequence of
embedded NxM matrices

of functions on superspace through sequence of embedded
graded matrices

of representations of SUq(2) gives g-deformed sphere
Regularization preserves symmetries
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Renormalization

Renormalization

Formulation
#*onnc R4, [x*,x¥] =i6" or equivalently

(a*b)(x /dy/dka )b(x +y)e
¢* action

4 4
_iy  pHpr
S = /dp(p2+m2)¢p¢p+)\/n (dpjop,) 5(2 py)e 2 Lici PP O
=1 =1
Feynman rules

pu&m2 >/\<< %efii Xici PP O

cyclic order of momenta leads to ribbon graphs
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Renormalization

IR/UV mixing

One-loop two-point function planar and nonplanar
contributions:

k

AN
gp"k” 0,

A S 1 ~ 1
=5/ % 15 | W e o

planar graphs: renormalize BPHZ ....
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Renormalization

IR/UV mixing

= non-planar graph finite (noncommutativity serves as
regulator),

but behaves ~ p~2 for small momenta (renormalisation not
possible)

= this leads to non-integrable integrals when inserted as
subgraph into bigger graphs: IR/UV-mixing Minwalla, van
Raamsdonk & Seiberg, 1999

— more rigorous treatment: power-counting theorem for ribbon
graphs Chepelev & Roiban 1999/2000

— proposals: resummation, supersymmetry (all integrals exist,
but unbounded as momenta — 0), ...

satisfactory solution: modify action
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Renormalization

Main result

H. G. and R. Wulkenhaar ¢* model modified
IR/UV mixing: short and long distances related
Theorem: Action

2 2
= [ % (300050645 (3,0) (30 + i Nwins ) (X

for X, := 2(671),, x¥

is perturbativly Arenormalizable to all ordersin A

Pu = Xy, p) < 72,/ detd| ¢(x)

Fourier transformation ¢(pa) = [ d*x el=1%Panxa’s(xy),
leads to Langmann-Szabo duality

S[¢i 0. A, Q) — Q?S[¢; 8, &5, 5]
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Renormalization

Unitary Transform

operator base

¢(X): Z ¢m1m2bm1m2(x)

my,mz,eN

where
batial™ oo joged), Casixg) ™

bmyn, (X1, %2) = mal(20)™ ny!(26)™

(Bmn * b ) (X) = Sricbmi (%), /d4x bmn(X) = (270)? dmn

interaction becomes matrix product no oscillations

S = (276)? Z (%¢mnGmn;kl i+ )\¢mn¢nk¢kl¢lm)

m,n.k,leN
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Renormalization

Decay Properties

Propagator complicated!
Decay exponents decide on renormalization!

A i (0) ~ 6/8
oo;oo() VEmeD) +Q2(m1)?

my+my
Aglzrrglz;gg(o) = 2(1+Q)2(r?11+m2+1) (L—g>
special values
A has equidistant spectrum, study Jacobi matrix using Meixner
polynomials
closed formula (finite sum) due to identity for Meixner
polynomials
Propagator has asymmetric decays, is quasilocal
proof power counting rule for ribbon graphs
renormalization by flow equation

exact results for
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Renormalization

Renormalization Group

Wilson-Polchinski approach to nonlocal matrix models
Define QFT by cutoff partition function

Slo. A = 2107 (3 56mGlinu(A) du + Lo, A))

m,n.k,|

startfrom interaction

L[¢7 OO] =A Zm,n,k,l Omn Pnk Pkl Pim

require cutoff independence, add power series of interactions
graphs drawn on Riemann surface of genus g
1—-2g =L —1+V with B holes

L....single line loops for closed external lines

l....double line propagators

B....loops which cary external legs
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Renormalization

Polchinski

al_[¢,/\] > 1 DK i (A )(aL[¢,A] oLp,N] 1 62L[q§,/\])
2 a/\ 8¢mn 8¢)k| (27T9)2 a¢mn 8¢k|

m,n,k,|
Modified nc ¢* model is renormalizable
adjust four parameters: coupling, mass, frequency, field amplitude
Proof Power counting rule
use "quasilocality” of propagator to estimate ribbon graphs

example SN

N
¥ N ——

3 loop diagram, four independent sums!
proof: all nonplanar graphs irrelevant
planar graphs with more than 4 legs irrelevant
4leg graph log. divergent, 2leg graph quadr. divergent
need 4 rel/marginal parameters!
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Renormalization

RG functions

evaluate 3 function

. 0 0 0
lim (N8N+N7+uoﬁpoa 2+ﬁ>\ +hapg )r[uo,)\,Q,N] =0

N—oco
0 Mohys (1=Qphys)
=N (W) = G2 (v, e+ O0ne)
S
d AphysQpnys (1= Qpnys)
B = N (M) = PR gty + Oine)
pnys

Q = 1 special.....integrable ?
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Renormalization

A solvable model

Scalar field 4> H. G. and Harold Steinacker
recall: 9,9 = —i[X;, 4]

S:/—(imim—iiiiw) PRk + 1 ¢ +—¢3

simplifies for 2 = 1 to

2 Pl .
I PR LT S L ST By o P S DT
S_/(x,x,+ 56"+ 5 6 _Tr(23¢ +3!¢>.
where
2
= 2(2m0)%( >"<i>"<i+%) ... harmonic oscillator !

i
choose appropriate basis:
ind=2: Jn)=4r(n+1+%%n), ne{0,1,2.}
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Renormalization

Free Energy for genus g

Intersection theory of moduli space of Riemann surfaces of
genus g with marked points

2
- /d¢exp{Tr —|V|2¢* 2 9253 ; )}
1 1
Front _ 5 Z md — 2 Z(miz — 2u0)¥2 — ug z:(mi2 — 2ug)Y/?
i | !

m; + Mg

- In(l — |1),
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Renormalization

Renormalize

treated in dimension 2,4, 6

o= —(2k — )11 ) !

~ (M2 — 2ug)<tz’

1
PR N
i \/mi2—2u0

all Fg'fc’”t with g > 2 are given by finite sums of polynomials in
2k+1

Ik/(l — |1)T .
model nonperturbativly solvable also in 6 dimensions!
(not superrenormalizable) agrees with pertubation expansion

Harald Grosse
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Induced Gauge Models

Induced Gauge Models

Couple gauge field to scalar field, H. G. and Michael
Wohlgenannt

QZ
s = [ (Gox[Bo B el + 0w (B (Brd). ).

1 A
+ oo+ m¢*¢*¢*¢> (x)
use covariant coordinates

BV =Xy + AV
gauge transformation

A, = iu"xdu+u"xA, U
expand S calculate effective action
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Induced Gauge Models

One-Loop

Calculation in four dimensions
guadratic divergent

. 1 /> dt _ 140
rll[ﬁb]—i/ TTr(e e tH)

€

Use: Duhamel expansion

€ 1 4 1 v 52
(= W/dx<¥(BV*B _ %)

#4850+ 5 (8,481 + 8,89 - (°F) ) Ine)

forQ=1
(tbp) one loop calculation for general Q2
Quantization ?
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Conclusions

Conclusions

@ formulation of models on nc spaces possible gives
symmetry preserving cutoffs

@ removing cutoffs leads to IR/UV mixing not renormalizable

@ modified actions for matter fields yields a calculus
renormalons killed, constructive approach ? Nontrivial ?
@ gauge fields ?
formulated
@ gravity? ? ?
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