An alternative road to LHC physics: Improved naturalness with a heavy Higgs

RB, Lawrence Hall, Vyacheslav Rychkov

Preliminary considerations The Inert Doublet Model

Particle Physics in one page

$$\mathcal{L}_{\sim SM} = -\frac{1}{4} F^{a}_{\mu\nu} F^{a\mu\nu} + i\bar{\psi}D\psi \qquad \text{The gauge sector} \quad (1) \\ +\psi_{i}\lambda_{ij}\psi_{j}h + h.c. \qquad \text{The flavor sector} \quad (2) \\ +|D_{\mu}h|^{2} - V(h) \qquad \text{The EWSB sector} \quad (3) \\ +N_{i}M_{ij}N_{j} \qquad \text{The v-mass sector} \quad (4) \\ (if Majorana) \end{cases}$$

(1): best tested quantitatively
(2) + (4): main developments of last 5 years, different in nature, both highly significant
(3): the most elusive, so far

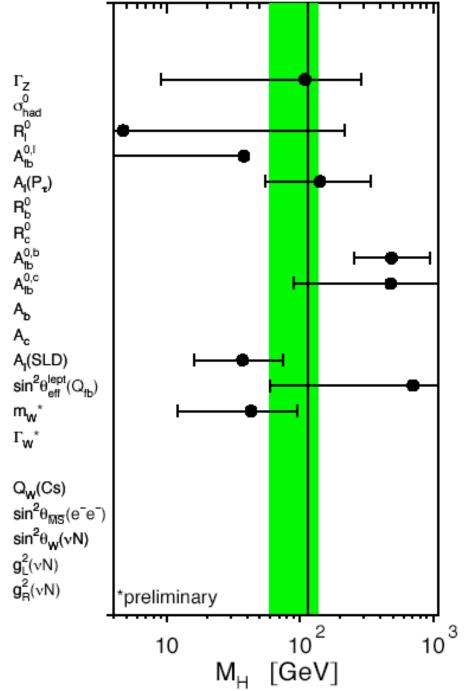
What will replace current Page 1?

1. The best theoretical candidate:

Unification + supersymmetry

(as developed in the 70's/80's)

gauge unification size of neu-masses

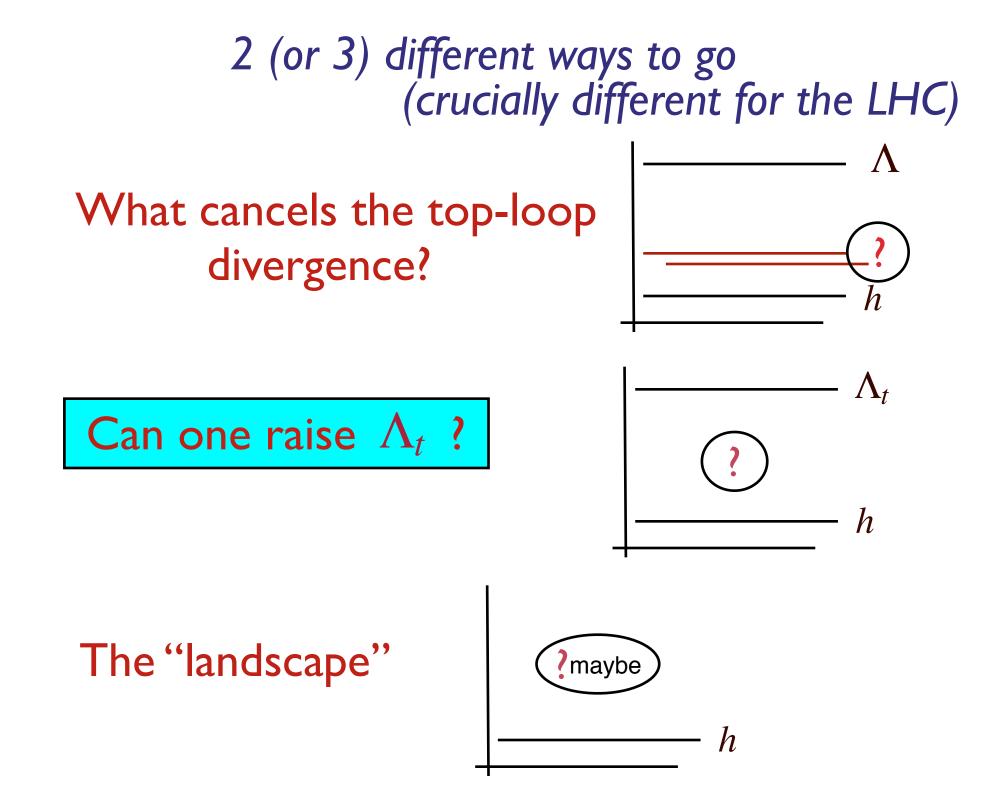

Contras

No susy particles No flavour effects No proton decay No light Higgs

so far!?

2. Experiments should tell, with LHC playing not the least role

The physics of Electroweak breaking


 $A \Rightarrow a \text{ light Higgs}$

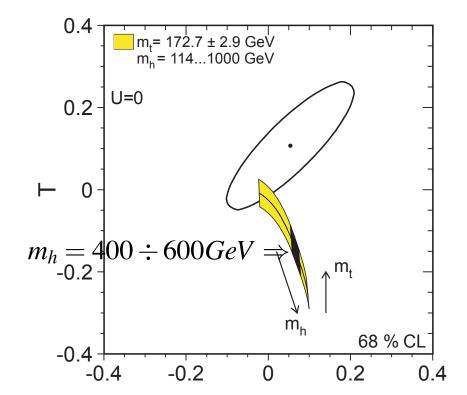
from the top loop correction to the Higgs potential

$$m_h^2 = \frac{3\lambda_t^2}{4\pi^2}\Lambda_t^2 \pm m_0^2$$

$$\Lambda_t \approx 400 GeV(\frac{m_h}{115 GeV}) D_t^{1/2}$$

What is the related, apparently necessary, new physics? How can Λ_t be so low without disturbing agreement with exps? the "LEP paradox" the "little hierarchy problem"

The Standard Model again

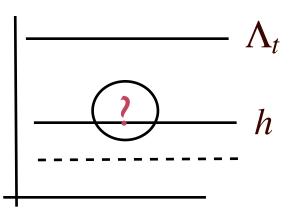

1. Naturalness

$$\Lambda_t \approx 3.5 m_h$$
$$\Lambda_g \approx 9 m_h > \Lambda_t$$
$$\Lambda_h \approx 1.3 \text{ TeV}$$

2. Perturbativity

m_h, GeV	Λ_P, TeV	Λ_L, TeV
400	2.4	80
500	1.8	16
600	1.6	7.5

3. EWPT



A simple (provisional) conclusion

A Higgs boson in the mass range of 400-600 GeV, if it were consistent with the EWPT, would allow to raise the cutoff to ~1.5 TeV without any cancellation and remaining fully perturbative

Can one raise Λ_t ?

What allows to raise m_h ?

The Inert Doublet Model

Consider the most general 2H doublet model invariant under $H_2 \Rightarrow -H_2$ to get natural flavour conservation (i.e., only H_1 couples to matter)

$$V = \mu_1^2 |H_1|^2 + \mu_2^2 |H_2|^2 + \lambda_1 |H_1|^4 + \lambda_2 |H_2|^4 + \lambda_3 |H_1|^2 |H_2|^2$$
$$+ \lambda_4 |H_1^{\dagger} H_2|^2 + \frac{\lambda_5}{2} [(H_1^{\dagger} H_2)^2 + \text{h.c.}]$$
$$\lambda_4, \ \lambda_5 \Rightarrow \text{ custodial symmetry}$$
$$\lambda_5 \Rightarrow \text{ PQ symmetry}$$

Take $\mu_1^2 < 0, \ \mu_2^2 > 0$ so that

$$H_1 = \begin{pmatrix} \phi^+ \\ v + (h + i\chi)/\sqrt{2} \end{pmatrix}, \qquad H_2 = \begin{pmatrix} H^+ \\ (S + iA)/\sqrt{2} \end{pmatrix}$$

The Inert Doublet Model (continued)

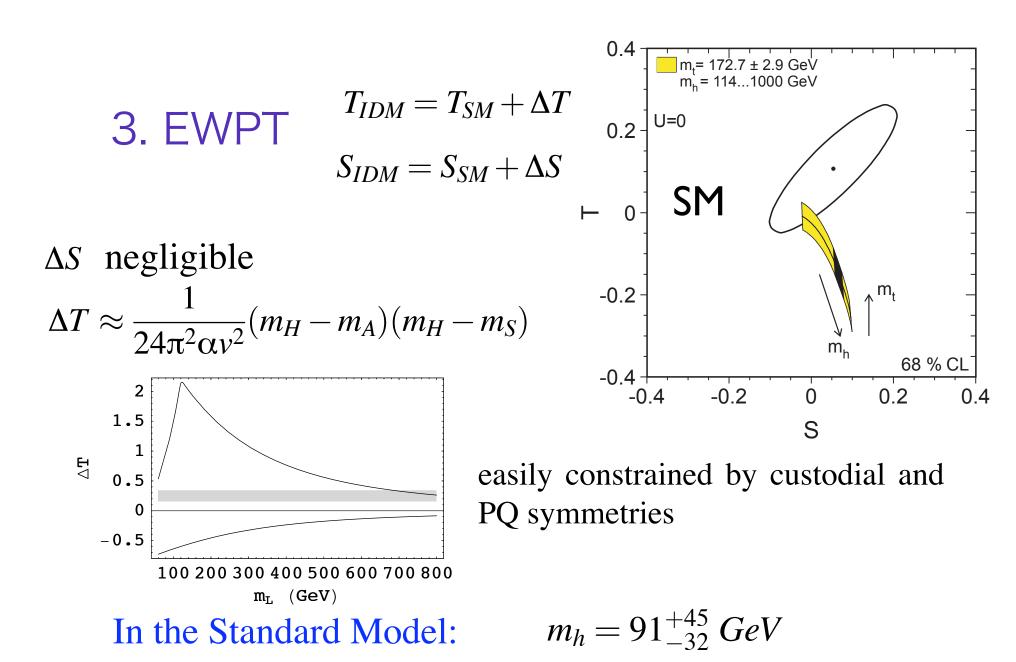
Parameter space:

 $\mu_1^2, \lambda_1 \Rightarrow v(M_Z), m_h \quad \text{(in the usual way)}$ $\lambda_2 \quad \text{(not relevant to the spectrum)}$ $\mu_2^2, \lambda_{3,4,5} \Rightarrow m_L, m_{NL}, m_H; \lambda_L$ $m_H^2 = \mu_2^2 + \lambda_3 v^2$ $m_S^2 = \mu_2^2 + (\lambda_3 + \lambda_4 + \lambda_5) v^2$ $m_A^2 = \mu_2^2 + (\lambda_3 + \lambda_4 - \lambda_5) v^2$

custodial symm. limit: $m_H = m_S = m_A$ PQ symmetry limit: $m_S = m_A$

absolute minimum:

 $\lambda_{1,2} > 0$ $\lambda_3, \lambda_L \equiv \lambda_3 + \lambda_4 - |\lambda_5| > -2(\lambda_1\lambda_2)^{1/2}$

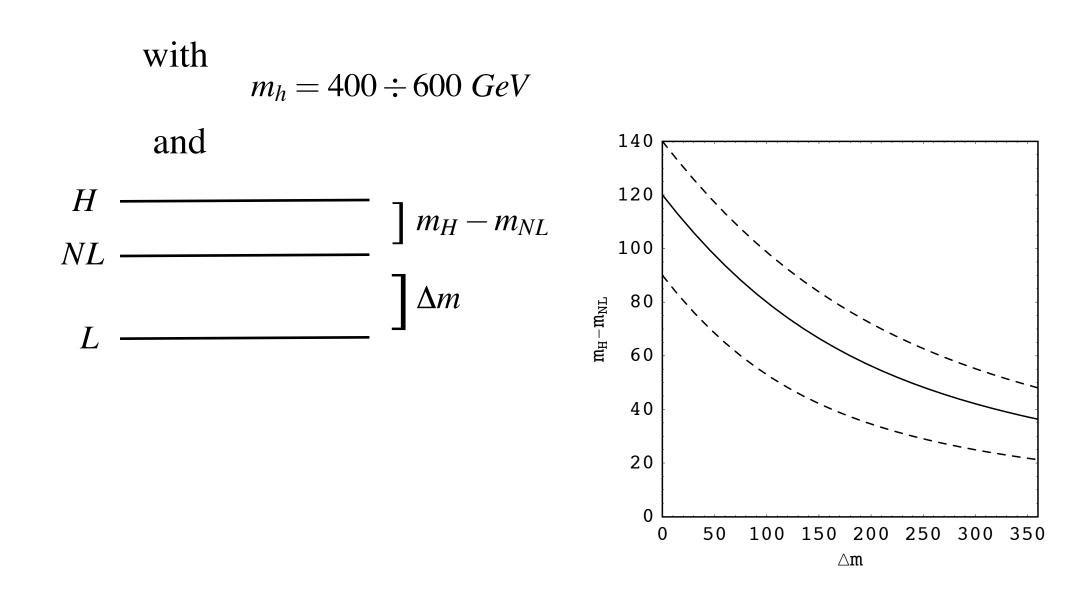

Naturalness, perturbativity, EWPT in the IDM

1. Naturalness

$$\delta m_h^2 = \alpha_t \Lambda_t^2 + \alpha_g \Lambda_g^2 + \alpha_{11} \Lambda_{H_1}^2 + \alpha_{12} \Lambda_{H_2}^2$$

$$\delta \mu_2^2 = -\frac{1}{2} \left(\alpha_g \Lambda_g^2 + \alpha_{22} \Lambda_{H_2}^2 + \alpha_{21} \Lambda_{H_1}^2 \right)$$

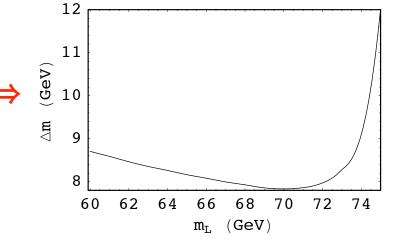
2. Perturbativity


$$16\pi^2 \frac{d\lambda_i}{d\log\Lambda} = \beta_i(\lambda)$$

In the IDM:

$$m_h = 400 \div 600 \ GeV$$

 $(m_H - m_S)(m_H - m_A) = M^2, \ M = 120^{+20}_{-30} \ GeV$


The IDM is natural and perturbative up to ~1.5 TeV (instead of the SM only up to ~400 GeV)

A Dark Matter candidate

Unbroken $H_2 \Rightarrow -H_2$ (for natural flavour conservation) Inert scalars always in pair Stable lightest inert scalar

To get the observed Ω_m need co-annihilation of S, A into light fermions as dominant process

⇒ Shouldn't one have seen S and A at LEP2 via $e^+e^- \rightarrow A + S \rightarrow (Z^* + S) + S$

 $\Rightarrow \text{ What about direct DM detection} \\ \sigma_h(\text{L}p \to \text{L}p) \approx 2 \times 10^{-9} \text{ pb } \left(\frac{\lambda_L}{0.5}\right)^2 \left(\frac{70 \text{ GeV}}{m_L}\right)^2 \left(\frac{500 \text{ GeV}}{m_h}\right)^4$

Collider Signals

350 $\triangle \Gamma$ (GeV) $m_h = 400 \div 600 \ GeV$ 1. 300 A standard Higgs boson? 250 (GeV) $h \rightarrow SS, AA, H^+H^$ g 150 <3 $\Gamma_h = 68 \ GeV$ at 100 \dot{T} $m_h = 500 \; GeV$ 50 10 $\left(\right)$ 100 125 150 175 200 225 250 75 $m_{T_{i}}$ (GeV) 2. $pp \rightarrow W^* \rightarrow HA \text{ or } HS$

 $H \to AW \text{ or } SW$ $A \to SZ^{(*)}$

for the DM parameters, looking for 3 charged leptons $\sigma_{signal}\approx 3.5~fb \qquad \sigma_{bg}\approx 20~fb$

Conclusions

The SM as an effective low energy theory

- \Rightarrow Why the perturbative Higgs among its degrees of freedom?
- \Rightarrow Where is the cut-off? $\Lambda_{SM} \approx 400 \ GeV(\frac{m_h}{115 GeV})$

Qualitatively: supersymmetry, ... Quantitatively: can we be fooled by the EWPT? (more modest in scope but physically motivated)

E.g.: The IDM as a simple way to a perturbative and fully natural description of EW physics up to 1.5 TeV

Alternatives? UV completion?

"Beyond the SM" Physics defined (in absence of a better name)

(NOT a naively reductionistic view, a definition of hierarchies in physics, a research program)

Everything that fits in Page 1 by coherent addition or emendation, meeting the same or better standards of synthesis and empirical adequacy

> The central question: What will replace current Page 1?